Nie jesteś zalogowany | Zaloguj się
Powrót do listy seminarów

Seminarium Zakładu Rachunku Prawdopodobieństwa

Cotygodniowe seminarium badawcze


Organizatorzy

Informacje

czwartki, 12:15 , sala: 3160

Strona domowa

http://lists.mimuw.edu.pl/listinfo/sem-rp

Lista referatów

  • 19 lutego 2004 12:15
    Adam Osękowski (Uniwersytet Warszawski)
    Porównanie norm Orlicza martyngałów słabo dominowanych
    Niech M, N będą dwoma martyngałami o wartościach w przestrzeniach Hilberta, takimi, że N słabo dominuje M. Niech F będzie rosnącą funkcją wypukłą na półprostej dodatniej, a |.| - normą Orlicza wyznaczoną przez tę funkcją. …

  • 12 lutego 2004 12:15
    prof. Stanisław Kwapień (Uniwersytet Warszawski)
    Splot procesów gaussowskich z semimartyngałami
    W referacie udowodnimy że splot niezależnych procesów, z których jeden jest ciągłym stacjonarnym procesem gaussowskim a drugi semimartyngałem jest procesem ciągłym. Jest to ugólnienie wyniku referowanego na posiedzniu w dniu 9 X 2004 r. Uogólnienie …

  • 15 stycznia 2004 12:15
    Jan Obłój (Uniwersytet Warszawski)
    Zagadnienia optymalnego stopowania a problem Skorohoda
    W referacie przedstawię skrótowo rozwiązanie następującego problemu stopowania: niech $X$ będzie dyfuzją nieograniczoną, $S$ jej procesem maksimum, a $f,c$ dwoma funkcjami klasy $C^1$, znaleźć $V=\sup_T E[f(S_T)-\int_0^T c(X_s)ds]$, gdzie supremum jest brane po wszystkich momentach stopu …

  • 18 grudnia 2003 12:00
    Katarzyna Pietruska-Pałuba (Uniwersytet Warszawski)
    Dyfuzje ułamkowe na przestrzeniach metrycznych i twierdzenie Bourgaina-Brezisa-Mironescu
    Jeżeli na przestrzeni metrycznej X istnieje dyfuzja ułamkowa (proces Markowa, którego gęstość przejścia spełnia własność "słabego skalowania"), to przestrzeń ta posiada wiele własnosci pokrewnych przestrzeni Euklidesowej. W szczególności przenosi się na nią twierdzenie Bourgaina-Brezisa-Mironescu mówiące, …

  • 11 grudnia 2003 12:15
    Tomasz Bojdecki (Uniwersytet Warszawski)
    Zbieżność fluktuacji "procesów przebywania" układów cząstek
    W chwili t=0 mamy w R^d standardowy poissonowski układ cząstek, które następnie poruszają się niezależnie, zgodnie ze standardowym procesem alfa-stabilnym. Ponadto, po czasie wykładniczym cząstka albo ginie albo, z prawdopodobieństwem 1/2, rozszczepia się na dwie, …

  • 25 listopada 2003 15:15
    Piotr Sniady (Uniwersytet Wroclawski)
    Mild introduction to free probability
    Free probability theory was initiated around 1985 by Voiculescu in order to answer some questions concerning certain von Neumann algebras. Today is a self--standing mathematical theory with fascinating links to topics such as random matrices, …

  • 20 listopada 2003 12:15
    Jacek Wesołowski (Politechnika Warszawska)
    Własność Matsumoto-Yor'a
    W 1998 roku Matsumoto i Yor, badając funkcjonały wykładniczego ruchu Browna, odkryli przekształcenie zachowujące niezależność zmiennych losowych o rozkładach GIG i gamma (własność MY). W 2000 roku otrzymano macierzową wersję tej własności (dla rozkładu Wisharta …

  • 13 listopada 2003 12:15
    Adam Osękowski (Uniwersytet Warszawski)
    Nierówność silnego typu dla martyngałów wypukle dominowanych: przypadek p>2. Zastosowanie do martyngałów gaussowskich
    Udowodnimy, że jeżeli martyngał M jest dominowany wypukle przez martyngał N, to dla p>2 zachodzi (E|M_{n}|^p)^1/p <= C_{p}(E|M_{n}|^p)^1/p, n=1,2,... dla pewnej stałej C_{p}. Wykażemy także, że dla martyngałów gaussowskich M, N zachodzi tP(|M_{n}|>t)<=CE|N_{n}|, E|M_{n}|^p<= C_{p}E|M_{n}|^p, …

  • 6 listopada 2003 12:15
    Witold Bednorz (Uniwersytet Warszawski)
    Uczenie statystyczne (Statistical Learning)
    Korzystajac z dwoch prostych przykladow na regresje i na klasyfikator Bayesa, zamierzam zobrazowac pewne ciekawe twierdzenie dotyczace statystycznej nauki. Dzieki umiejetnemu zastosowaniu nierownosci koncentracyjnych, liczeniu entropii i innych metodach dostaniemy dobre oszacowanie na estymatory empirycznej …

  • 30 października 2003 12:15
    Witold Bednorz (Uniwersytet Warszawski)
    Zastosowanie metod entropijnych do nierownosci koncentracyjnych
    W moim wystapieniu zamierzam opowiedziec o nowoczesnym podejsciu do zjawiska koncentracji miary oraz o zastosowaniach w statystyce matematycznej. Moim celem jest zdefiniowanie uogolnionych entropii tzw. $\phi$ entropii. Nastepnie zaprezentuje kilka ciekawych twierdzen dotyczacych koncentracji (np. …

  • 23 października 2003 12:15
    Jan Obłój (Uniwersytet Warszawski)
    Wokół problemu zanurzenia Skorochoda: nowe spojrzenie na klasyczne wyniki oraz nowe rozwiązanie dla funkcjonałów wycieczek ruchu Browna
    Klasyczny problem zanurzenia Skorohoda brzmi nastepujaco: dla $\mu$ scentrowanej miary probabilistycznej, znalezc "możliwie maly" (np. calkowlany jeżeli jest to możliwe) moment stopu $T$ taki, aby zatrzymany ruch Browna mial zadany rozklad: $B_T\sim \mu$. Najbardziej znane …

  • 14 października 2003 15:15
    Rafal Latała (Uniwersytet Warszawski)
    Dwa nowe wyniki o miarach gaussowskich: 1. Rozwiązanie problemu Ehrharda (według C. Borella) 2. Rozwiązanie problemu Banaszczyka)
    W pierwszej części odczytu omówiony zostanie wynik C.Borella pokazujący, że nierówność Ehrharda $\Phi^{-1}(\mu(tA+(1-t)B))\geq t\Phi^{-1}(\mu(A))+(1-t)\Phi^{-1}(\mu(B))$ zachodzi dla dowolnej miary gaussowskiej $\mu$ i zbiorów borelowskich $A,B$ oraz $00$ $K$ wypukłego i $\mu$ miary gaussowskiej. Wynik ten został …

  • 9 października 2003 12:15
    prof. dr hab. Stanislaw Kwapien (Uniwersytet Warszawski)
    Ciaglosc splotow calek stochastycznych
    Udowodnimy dwa twierdzenia dotyczące ciaglosci procesow postaci $Y_t =\int_0^t f(t-s)dZ_s$ gdzie $Z_t$ proces Levy'ego i $f$ jest funkcja ciagla, z $f(0) =0$ (sa ta warunki konieczne na ciaglosc.) Procesy takie, zwane srednimi ruchomymi, pojawiaja sie …

  • 22 maja 2003 12:15
    Anna Talarczyk (Uniwersytet Warszawski)
    Czas lokalny przeciec niezaleznych d-wymiarowych procesow a SILT procesu gestosci.
    Gdy Hd<2, to istnieje czas lokalny dwukrotnych przeciec dwoch niezaleznych ulamkowych ruchow Browna w R^d, z parametrem Hursta H, a takze istnieje czas lokalny dwukrotnych samoprzeciec (SILT) ulamkowego procesu gestosci. Podobna zgodnosc zachodzi tez dla …

  • 8 maja 2003 12:15
    Rafał Łochowski (Uniwersytet Warszawski)
    Oszacowania momentów i ogonów dla chaosu rademacherowego
    W odczycie przedstawię wyniki z pracy R. Blei i S. Jansona pt. "Rademacher chaos: tail estimates vs limit theorems". Autorzy rozpatrują chaos rademacherowy indeksowany przez zbiór posiadający tzw. wymiar ułamkowy; otrzymują oszacowania ogonów dla skończonych, …

  • 24 kwietnia 2003 12:15
    Jacek Wesołowski (Politechnika Warszawska)
    Własność Matsumoto-Yor'a
    W 1998 roku Matsumoto i Yor, badając funkcjonały wykładniczego ruchu Browna, odkryli przekształcenie zachowujące niezależność zmiennych losowych o rozkładach GIG i gamma (własność MY). W 2000 roku otrzymano macierzową wersję tej własności (dla rozkładu Wisharta …

  • 3 kwietnia 2003 12:15
    Adam Osękowski (Uniwersytet Warszawski)
    Ruch Browna w środowisku poissonowskim
    Niech $(\{w\in C(\QTR{Bbb}{R_{+}}\rightarrow \QTR{Bbb}{R}^{d})\},\QTR{cal}{F},P)$ będzie ruchem Browna w $\QTR{Bbb}{R}^{d}$ i niech $\eta $ będzie miarą Poissonowską na $\QTR{Bbb}{R_{+}}\times \QTR{Bbb}{R}^{d}$ z intensywnością będęcą miarą Lebesgue'a. Rozważmy ,,kiełbaskę Wienera \EQN{6}{1}{}{0}{\RD{\CELL{V_{t}=\{(s,x)\in \QTR{Bbb}{R_{+}}\times \QTR{Bbb}{R}^{d}:0\leq s\leq t,x\in B(\omega _{s})\},}}{1}{}{}{}}gdzie $B(u)$ …

  • 27 marca 2003 12:15
    Witold Bednorz (Uniwersytet Warszawski)
    Oszacowania dla wartosci oczekiwanej normy losowej macierzy Toeplitza.
    Zamierzam pokazać, ze dla losowej macierzy Toeplitza $T_n$, zachodzą następujące oszacowania na jej normę $$ C^{-1}sqrt(nlogn)

  • 20 marca 2003 12:15
    Rafał Latała (Uniwersytet Warszawski)
    Identyfikacja granicy w Prawie Iterowanego Logarytmu dla U-statystyk rzędu dwa
    Przedstawimy wyniki ze wspólnej pracy z S.Kwapieniem, K.Oleszkiewiczem i J.Zinnem dotyczące Prawa Iterowanego Logarytmu (PIL) dla U-statystyk rzędu dwa. Od pewnego czasu znane są warunki konieczne i dostateczne by zachodziło PIL, ale granicę można wyznaczyć …

  • 6 marca 2003 12:15
    Włodzimierz Bryc (University of Cincinnati)
    Metoda funkcjonałów Varadhana w teorii wielkich odchyleń
    Istnieje kilka alternatywnych podejść do analizy wielkich odchyleń. Tematem wykładu jest pewna mniej szeroko znana metoda dowodzenia twierdzeń o wielkich odchyleniach w sformułowaniu pochodzącym od Varadhana. Zaletą podejścia jest prawie natychmiastowy dowód wielu klasycznych twierdzeń, …

  • 27 lutego 2003 12:15
    Krzysztof Oleszkiewicz (Uniwersytet Warszawski)
    Oszacowanie liczby kopii małych podgrafów w grafie losowym
    Omówione zostaną wyniki uzyskane wspólnie ze Svante Jansonem (Uppsala) i Andrzejem Rucińskim (Poznań), dotyczące zliczania kopii ustalonego małego grafu w grafie losowym G(n,p). Jeśli np. X oznacza liczbę trójkątów w G(n,p) i p>1/n, to udowodnimy, …

  • 12 grudnia 2002 12:15
    Rafał Łochowski (Uniwersytet Warszawski)
    Oszacowania momentów i ogonów wielowymiarowego chaosu
    Odczyt będzie poświęcony dowodowi oszacowań momentów i ogonów wielowymiarowego chaosu tzn. zmiennych postaci \sum a_{i_{1},...,i_{d}} X_{i_{1}}^{(1)}...X_{i_{d}}^{(d)} gdzie zmienne X_{i_{1}}^{(1)},...,X_{i_{d}}^{(d)} są niezależne. Uzyskane szacowania będą dotyczyły przypadku, gdy X_{i_{1}}^{(1)},...,X_{i_{d}}^{(d)} są dodatnie i mają logarytmicznie wklęsłe ogony. …