Nie jesteś zalogowany | Zaloguj się
Facebook
LinkedIn

A generalized central limit theorem for critical marked Hawkes processes

Prelegent(ci)
Anna Talarczyk-Noble
Afiliacja
Uniwersytet Warszawski
Język referatu
angielski
Termin
3 grudnia 2025 16:15
Pokój
p. 3170
Tytuł w języku polskim
Uogólnione centralne twierdzenie graniczne dla krytycznych cechowanych procesów Hawkesa
Seminarium
Seminarium "Metody ilościowe w finansach"

W referacie rozważamy jedną z typowych klas cechowanych procesów Hawkesa. Są to procesy samowzbudzające się, w którch pojawienie się zdarzenia zwiększa intensywność pojawiania się kolejnych zdarzeń w przyszłości o pewną ustaloną funkcję intensywności wymnożoną przez "cechę" danego zdarzenia. Cechy przypisywane są zdarzeniom niezależnie. Rozważamy przypadek krytyczny, tj. gdy średnia liczba zdarzeń wzbudzanych przez jedno zdarzenie jest równa 1. Jesteśmy szczególnie zainteresowani przypadkiem, gdy zarówno bazowa funkcja intensywności, jak i rozkład cech mają ciężkie ogony. Przedstawiamy rodzaj centralnego twierdzenia granicznego dla procesu zliczającego liczbę zdarzeń. W granicy otrzymujemy pewien ciekawy proces stabilny z zależnościami dalekiego zasięgu.


We study marked Hawkes processes in which occurrence of an event increases the intensity of future events by a certain base intensity function multiplied by an independent mark. We are particularly interested in the case when both the base intensity function and the law of the marks are heavy tailed and the mean number of events triggered by a single event is 1 (criticality). We discuss the relation of marked Hawkes processes with branching processes and prove a central limit type theorem for the process counting the number of events. In the limit we obtain an interesting long range dependent stable process.