Nie jesteś zalogowany | Zaloguj się

THE CLIFFORD-DIRAC QUANTIZATION OF THE DE RHAM COMPLEX

Prelegent(ci)
TOMASZ MASZCZYK
Afiliacja
Uniwersytet Warszawski, Poland
Język referatu
angielski
Termin
8 stycznia 2025 17:15
Link
https://uw-edu-pl.zoom.us/j/95105055663?pwd=TTIvVkxmMndhaHpqMFUrdm8xbzlHdz09
Informacje na temat wydarzenia
IMPAN 405 & ZOOM
Tytuł w języku polskim
THE CLIFFORD-DIRAC QUANTIZATION OF THE DE RHAM COMPLEX
Seminarium
North Atlantic Noncommutative Geometry Seminar

We show that the de Rham complex is a degeneration of a one parameter family of filtered Z/2Z-graded algebras with a degree one almost derivation that are generically isomorphic to the Clifford algebra equipped with a Dirac operator. It turns out that the relation between the Dirac operator and the Levi-Civita connection is Hochschild-homological in nature. Moreover, the Levi-Civita connection itself can be obtained as a symmetric analog of the jacobiator for a symmetric bracket on functions. In turn, this symmetric bracket canonically extends to a graded symmetric bracket on the de Rham complex that is compatible with the differential. This leads to an intriguing symmetric bracket on the de Rham cohomology which is trivial in several regular examples, but could be an interesting invariant of singularities.