Powrót do listy instytutów
Publikacje
Remy Rodiac
Liczba publikacji: 92025
- Jan Peszek , Remy Rodiac , Mean‐field limit of 2D stationary particle systems with signed Coulombian interactions, Journal of the London Mathematical Society, 111 (1) 2025, s. e70068. Zobacz w PBN
2024
- Marco Barchiesi, Duvan Henao, Carlos Mora-Corral, Remy Rodiac , A Relaxation Approach to the Minimization of the Neo-Hookean Energy in 3D, SIAM Journal on Mathematical Analysis, 56 (6) 2024, s. 7830-7845. Zobacz w PBN
- Marco Barchiesi, Duvan Henao, Carlos Mora-Corral, Remy Rodiac , On the lack of compactness in the axisymmetric neo-Hookean model, Forum of Mathematics Sigma, 12 2024, s. e26: 1-70. Zobacz w PBN
2023
- Jean-François Babadjian, Vincent Millot, Remy Rodiac , A note on the one-dimensional critical points of the Ambrosio–Tortorelli functional, Asymptotic Analysis, 135 (3-4) 2023, s. 349-362. Zobacz w PBN
- Marco Barchiesi, Duvan Henao, Carlos Mora-Corral, Remy Rodiac , Harmonic Dipoles and the Relaxation of the Neo-Hookean Energy in 3D Elasticity, Archive for Rational Mechanics and Analysis, 247 (4) 2023. Zobacz w PBN
- Jean-François Babadjian, Vincent Millot, Remy Rodiac , On the convergence of critical points of the Ambrosio–Tortorelli functional, Annales de l'Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis, 41 (6) 2023, s. 1367-1417. Zobacz w PBN
- Mickaël Dos Santos, Remy Rodiac , Etienne Sandier, The Ginzburg–Landau energy with a pinning term oscillating faster than the coherence length, Interfaces and Free Boundaries, 25 (3) 2023, s. 491-515. Zobacz w PBN
2022
- Juan Dávila, Manuel del Pino, Maria Medina, Remy Rodiac , Interacting helical vortex filaments in the three-dimensional Ginzburg–Landau equation, JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 24 (12) 2022, s. 4143-4199. Zobacz w PBN
2021
- Antonin Monteil, Remy Rodiac , Jean Van Schaftingen, Renormalised energies and renormalisable singular harmonic maps into a compact manifold on planar domains, MATHEMATISCHE ANNALEN, 383 (3-4) 2021, s. 1061-1125. Zobacz w PBN