Algebra and Number Theory
Description
Ring theory (mainly associative), module theory, group theory, semigroup theory and number theory. Lattice theoretical approach to algebraic structures and other branches of universal algebra, including partial algebras.
Seminars
Employees and PhD students
-
dr hab. Norbert Dojer
Universal algebra, term rewriting
-
dr Łukasz Kubat
Noncommutative rings, representation theory, homological algebra
-
prof. dr hab. Zbigniew Marciniak
Noncommutative algebra, group rings, cohomology of groups
-
dr hab. Tomasz Maszczyk
Noncommutative geometry
-
dr hab. Jerzy Matczuk, prof. UW
Ring theory, Hopf algebras
-
dr Arkadiusz Męcel
Ring theory, Theory of semigroups, Finite dimensional algebras
-
prof. dr hab. Jan Okniński
Noncommutative rings, theory of semigroups, theory of matrices
-
dr Konrad Pióro
Universal algebra, in particular: theory of partial algebras, lattice theory, subalgebra and congruence lattices of an algebra, graph representation of an algebra
-
prof. dr hab. Jacek Pomykała
Elementary and analytic number theory, cryptography, some aspects of computational complexity theory
-
dr Mikołaj Rotkiewicz
Lie algebras, graded manifolds, supergeometry
-
dr hab. Mariusz Skałba, prof. UW
Number theory: polynomial and exponential congruences, multiplicative diophantine equations, elliptic curves, arithmetic properties of digital expansions, geometry of numbers
-
dr Andrzej Strojnowski
Group rings, group theory
-
dr Bartosz Źrałek
Algorithmic number theory, public-key cryptography