| Shorthands | denote |
|---|---|
| u_a | algebraic unknotting number |
| Nak | Nakanishi index |
| det | determinant |
| sign | signature |
| max LT | maximum absolute value of Levine-Tristram signatures |
| Hidden features | |
| Click on | to see |
| algebraic unknotting number | how it has been detected |
| Alexander polynomial | a Seifert matrix (nondegenerate representative in the S-equivalence class) |
| Nakanishi index | generator of the Alexander module, if Nakanishi index is 1 |
| Determinant | H_1 of the double branched cover |
| Welcome to the KNOTORIOUS world wide web page! | ||
| set up by | Maciej Borodzik | mcboro'at'mimuw;edu;pl |
| and | Stefan Friedl | sfriedl'at'gmail;com |
| last update of the webpage | 19 Feb 2012 | |
| last update of the knotorious data | 01 Dec 2011 | |
| 12a_0050 | 12a_0141 | 12a_0364 | 12a_0649 | 12a_0728 | 12a_0791 | 12a_0901 |
| 12a_1049 | 12a_1054 | 12a_1064 | 12a_1138 | 12a_1141 | 12a_1234 | 12a_1236 |
| 12a_1264 | 12n_0200 | 12n_0260 | 12n_0657 | 12n_0864 |
| Knot | Presentation matrix | |
|---|---|---|
| 12a_1054 | 2t^3 | -1+4t-7t^2+4t^3-t^4 |
| 1-5t+t^2-5t^3+t^4 | 3t | |
| 12a_1141 | 1+2t | 2-2t+t^2 |
| 4t-9t^2+6t^3-8t^4+6t^5-t^6 | 1-2t | |
| 12a_1264 | 2-5t | 1-5t+4t^2-t^3 |
| 6-14t-6t^2-7t^3-2t^5 | 2-13t+3t^2 | |
| 12n_0260 | 1-4t^2 | 4-4t-5t^3+t^4-t^5 |
| -t+3t^2-t^3 | -1+3t^2 | |
| 12n_0657 | 11 | 59-27t+11t^2-3t^3 |
| 2+t | 11 | |
| Knot | Alexander polynomial | Blanchfield pairing of the generator |
|---|---|---|
| 12a_0050 | -8z_3+20z_2-30z_1+3 | -z_3+7z_2-13z_1+17 |
| 12a_0141 | -z_4+7z_3-20z_2+33z_1-39 | z_2+4z_1-8 |
| 12a_0364 | z_4-8z_3+29z_2-63z_1+81 | -2z_2+10z_1-15 |
| 12a_0649 | -z_4+7z_3-17z_2+25z_1-27 | z_2-z_1+1 |
| 12a_0728 | 2z_4-8z_3+17z_2-25z_1+29 | 4z_2-9z_1+14 |
| 12a_0791 | 3z_3-9z_2+13z_1-13 | z_2-z_1+1 |
| 12a_0901 | -z_4+9z_3-27z_2+47z_1-55 | -2z_3+7z_2-13z_1+15 |
| 12a_1064 | -2z_4+9z_3-21z_2+33z_1-37 | z_2-z_1+2 |
| 12a_1138 | 3z_3-11z_2+17z_1-17 | 3z_2-11z_1+17 |
| 12a_1234 | -2z_4+7z_3-15z_2+25z_1-29 | -2z_2+5z_1-6 |
| 12a_1236 | -2z_4+9z_3-21z_2+33z_1-37 | -z_2+z_1-2 |
| 12n_0200 | 2z_2-2z_1+1 | 2z_1-4 |
| 12n_0864 | z_4-5z_3+15z_2-28z_1+33 | -z_2+2z_1-5 |