Shorthands | denote |
---|---|

u_a | algebraic unknotting number |

Nak | Nakanishi index |

det | determinant |

sign | signature |

max LT | maximum absolute value of Levine-Tristram signatures |

Hidden features | |

Click on | to see |

algebraic unknotting number | how it has been detected |

Alexander polynomial | a Seifert matrix (nondegenerate representative in the S-equivalence class) |

Nakanishi index | generator of the Alexander module, if Nakanishi index is 1 |

Determinant | H_1 of the double branched cover |

Welcome to the KNOTORIOUS world wide web page! | ||

set up by | Maciej Borodzik | mcboro'at'mimuw;edu;pl |

and | Stefan Friedl | sfriedl'at'gmail;com |

last update of the webpage | 19 Feb 2012 | |

last update of the knotorious data | 01 Dec 2011 |

Knot | u_a | Alexander polynomial | Nak. index | det. | sign | max LT. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_1 | 1 detected by an unknotting move | -1+7t-11t^2+7t^3-t^4 Seifert matrix of 11n_1
| 1 Generator of the Alexander module (0,-2,1,0) the Blanchfield form on it t^-1-5+t | 27 First homology of the double branched cover of 11n_1 Z/27 | 2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_2 | 2 detected by the signature | -2+8t-12t^2+13t^3-12t^4+8t^5-2t^6 Seifert matrix of 11n_2
| 1 Generator of the Alexander module (0,0,0,0,-t,1) the Blanchfield form on it -t^-2+3t^-1-3+3t-t^2 | 57 First homology of the double branched cover of 11n_2 Z/57 | -4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_3 | 1 detected by an unknotting move | -3+11t-15t^2+11t^3-3t^4 Seifert matrix of 11n_3
| 1 Generator of the Alexander module (0,1,0,0) the Blanchfield form on it -2t^-2+9t^-1-14+9t-2t^2 | 43 First homology of the double branched cover of 11n_3 Z/43 | 2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_4 | 1 detected by an unknotting move | -1+5t-11t^2+15t^3-11t^4+5t^5-t^6 Seifert matrix of 11n_4
| 1 Generator of the Alexander module (0,0,-t,1,1,1) the Blanchfield form on it -t^-1+3-t | 49 First homology of the double branched cover of 11n_4 Z/49 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_5 | 1 detected by an unknotting move | 1-7t+17t^2-21t^3+17t^4-7t^5+t^6 Seifert matrix of 11n_5
| 1 Generator of the Alexander module (0,0,1,0,0,0) the Blanchfield form on it -t^-1+3-t | 71 First homology of the double branched cover of 11n_5 Z/71 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_6 | 1 detected by an unknotting move | -1+3t-3t^2+3t^3-3t^4+3t^5-t^6 Seifert matrix of 11n_6
| 1 Generator of the Alexander module (0,0,-t,-t,1,0) the Blanchfield form on it t^-1-2+t | 17 First homology of the double branched cover of 11n_6 Z/17 | 0 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_7 | 1 detected by an unknotting move | 1-6t+16t^2-21t^3+16t^4-6t^5+t^6 Seifert matrix of 11n_7
| 1 Generator of the Alexander module (0,0,0,-t,t,1) the Blanchfield form on it t^-2-5t^-1+10-5t+t^2 | 67 First homology of the double branched cover of 11n_7 Z/67 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_8 | 2 detected by the signature | -1+6t-12t^2+15t^3-12t^4+6t^5-t^6 Seifert matrix of 11n_8
| 1 Generator of the Alexander module (0,2-2t+2t^2-t^3,0,-5+8t-9t^2+7t^3-3t^4+t^5,0,0) the Blanchfield form on it 2t^-2-9t^-1+9-9t+2t^2 | 53 First homology of the double branched cover of 11n_8 Z/53 | 4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_9 | 2 detected by the signature | -1+3t-t^2-4t^3+7t^4-4t^5-t^6+3t^7-t^8 Seifert matrix of 11n_9
| 1 Generator of the Alexander module (0,0,0,0,1,1,-t,1) the Blanchfield form on it -t^-3+4t^-2-7t^-1+9-7t+4t^2-t^3 | 5 First homology of the double branched cover of 11n_9 Z/5 | -4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_10 | 2 detected by the signature | -1+7t-15t^2+19t^3-15t^4+7t^5-t^6 Seifert matrix of 11n_10
| 1 Generator of the Alexander module (0,1-2t-2t^2,-1-t,t+t^2,-t+2t^2,-1-3t-2t^2-t^3) the Blanchfield form on it 2t^-2-11t^-1+12-11t+2t^2 | 65 First homology of the double branched cover of 11n_10 Z/65 | 4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_11 | 2 detected by the Lickorish test | 1-5t+13t^2-17t^3+13t^4-5t^5+t^6 Seifert matrix of 11n_11
| 1 Generator of the Alexander module (0,0,0,0,0,1) the Blanchfield form on it t^-2-4t^-1+8-4t+t^2 | 55 First homology of the double branched cover of 11n_11 Z/55 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_12 | 1 detected by an unknotting move | 1-3t+5t^2-3t^3+t^4 Seifert matrix of 11n_12
| 1 Generator of the Alexander module (0,0,0,1) the Blanchfield form on it t^-1-1+t | 13 First homology of the double branched cover of 11n_12 Z/13 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_13 | 3 detected by the signature | -1+3t-2t^2+t^3-t^4+t^5-2t^6+3t^7-t^8 Seifert matrix of 11n_13
| 1 Generator of the Alexander module (0,0,0,1,0,0,0,0) the Blanchfield form on it -t^-3+3t^-2-2t^-1+1-2t+3t^2-t^3 | 15 First homology of the double branched cover of 11n_13 Z/15 | -6 | 6 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_14 | 2 detected by the signature | -1+6t-10t^2+11t^3-10t^4+6t^5-t^6 Seifert matrix of 11n_14
| 1 Generator of the Alexander module (0,0,0,0,0,1) the Blanchfield form on it t^-2-6t^-1+9-6t+t^2 | 45 First homology of the double branched cover of 11n_14 Z/45 | 4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_15 | 2 detected by the Lickorish test | 1-4t+8t^2-9t^3+8t^4-4t^5+t^6 Seifert matrix of 11n_15
| 1 Generator of the Alexander module (0,0,0,1,0,0) the Blanchfield form on it t^-2-4t^-1+7-4t+t^2 | 35 First homology of the double branched cover of 11n_15 Z/35 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_16 | 2 detected by the signature | -2+7t-7t^2+5t^3-7t^4+7t^5-2t^6 Seifert matrix of 11n_16
| 1 Generator of the Alexander module (0,0,0,1,0,0) the Blanchfield form on it t^-3-4t^-2+5t^-1-4+5t-4t^2+t^3 | 37 First homology of the double branched cover of 11n_16 Z/37 | -4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_17 | 1 detected by an unknotting move | -2+12t-19t^2+12t^3-2t^4 Seifert matrix of 11n_17
| 1 Generator of the Alexander module (0,0,0,1) the Blanchfield form on it -t^-2+6t^-1-10+6t-t^2 | 47 First homology of the double branched cover of 11n_17 Z/47 | 2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_18 | 1 detected by an unknotting move | 2-8t+13t^2-8t^3+2t^4 Seifert matrix of 11n_18
| 1 Generator of the Alexander module (1,1,0,2) the Blanchfield form on it -t^-2+4t^-1-6+4t-t^2 | 33 First homology of the double branched cover of 11n_18 Z/33 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_19 | 2 detected by the signature | -1+2t-t^3+2t^5-t^6 Seifert matrix of 11n_19
| 1 Generator of the Alexander module (0,0,0,0,0,1) the Blanchfield form on it t^-2-2t^-1+1-2t+t^2 | 5 First homology of the double branched cover of 11n_19 Z/5 | 4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_20 | 1 detected by an unknotting move | -2+6t-7t^2+6t^3-2t^4 Seifert matrix of 11n_20
| 1 Generator of the Alexander module (0,t,-t,1) the Blanchfield form on it t^-1-2+t | 23 First homology of the double branched cover of 11n_20 Z/23 | 2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_21 | 1 detected by an unknotting move | -1+5t-11t^2+15t^3-11t^4+5t^5-t^6 Seifert matrix of 11n_21
| 1 Generator of the Alexander module (0,0,0,0,1,0) the Blanchfield form on it t^-1-1+t | 49 First homology of the double branched cover of 11n_21 Z/49 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_22 | 1 detected by an unknotting move | 1-5t+13t^2-17t^3+13t^4-5t^5+t^6 Seifert matrix of 11n_22
| 1 Generator of the Alexander module (-1,0,t,1,-1,-1) the Blanchfield form on it -t^-2+5t^-1-7+5t-t^2 | 55 First homology of the double branched cover of 11n_22 Z/55 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_23 | 2 detected by the signature | -1+3t-5t^2+4t^3-3t^4+4t^5-5t^6+3t^7-t^8 Seifert matrix of 11n_23
| 1 Generator of the Alexander module (0,0,0,1,0,0,0,0) the Blanchfield form on it -t^-3+2t^-2-3t^-1+3-3t+2t^2-t^3 | 29 First homology of the double branched cover of 11n_23 Z/29 | -4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_24 | 1 detected by an unknotting move | 1-3t+5t^2-5t^3+5t^4-3t^5+t^6 Seifert matrix of 11n_24
| 1 Generator of the Alexander module (0,0,0,0,1,0) the Blanchfield form on it -t^-1+1-t | 23 First homology of the double branched cover of 11n_24 Z/23 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_25 | 1 detected by an unknotting move | 1-5t+11t^2-13t^3+11t^4-5t^5+t^6 Seifert matrix of 11n_25
| 1 Generator of the Alexander module (0,0,1,0,1,0) the Blanchfield form on it -t^-1+2-t | 47 First homology of the double branched cover of 11n_25 Z/47 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_26 | 1 detected by an unknotting move | -1+5t-9t^2+11t^3-9t^4+5t^5-t^6 Seifert matrix of 11n_26
| 1 Generator of the Alexander module (0,0,0,0,1,0) the Blanchfield form on it t^-2-6t^-1+9-6t+t^2 | 41 First homology of the double branched cover of 11n_26 Z/41 | 0 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_27 | 3 detected by the signature | 1-3t+3t^2-2t^3+t^4-2t^5+3t^6-3t^7+t^8 Seifert matrix of 11n_27
| 1 Generator of the Alexander module (0,0,0,1,0,0,0,0) the Blanchfield form on it t^-3-2t^-2+3t^-1-3+3t-2t^2+t^3 | 19 First homology of the double branched cover of 11n_27 Z/19 | -6 | 6 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_28 | 1 detected by an unknotting move | 1-5t+9t^2-5t^3+t^4 Seifert matrix of 11n_28
| 1 Generator of the Alexander module (0,0,0,1) the Blanchfield form on it -1 | 21 First homology of the double branched cover of 11n_28 Z/21 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_29 | 2 detected by the Lickorish test | -3+13t-19t^2+13t^3-3t^4 Seifert matrix of 11n_29
| 1 Generator of the Alexander module (0,0,0,1) the Blanchfield form on it 2t^-1-3+2t | 51 First homology of the double branched cover of 11n_29 Z/51 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_30 | 2 detected by the signature | -2+6t-6t^2+5t^3-6t^4+6t^5-2t^6 Seifert matrix of 11n_30
| 1 Generator of the Alexander module (0,0,0,1,0,0) the Blanchfield form on it -t^-2+t^-1-1+t-t^2 | 33 First homology of the double branched cover of 11n_30 Z/33 | -4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_31 | 1 detected by an unknotting move | -1+2t+2t^2-5t^3+2t^4+2t^5-t^6 Seifert matrix of 11n_31
| 1 Generator of the Alexander module (0,1,0,0,1,0) the Blanchfield form on it 1 | 3 First homology of the double branched cover of 11n_31 Z/3 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_32 | 1 detected by an unknotting move | -1+6t-16t^2+23t^3-16t^4+6t^5-t^6 Seifert matrix of 11n_32
| 1 Generator of the Alexander module (0,0,-1,0,1,0) the Blanchfield form on it -t^-2+3t^-1-6+3t-t^2 | 69 First homology of the double branched cover of 11n_32 Z/69 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_33 | 2 detected by the Lickorish test | 1-6t+12t^2-13t^3+12t^4-6t^5+t^6 Seifert matrix of 11n_33
| 1 Generator of the Alexander module (0,0,0,0,0,1) the Blanchfield form on it t^-2-3t^-1+3-3t+t^2 | 51 First homology of the double branched cover of 11n_33 Z/51 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_34 | 0 detected by | 1 Seifert matrix of 11n_34
| 0 | 1 First homology of the double branched cover of 11n_34 trivial | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_35 | 2 detected by the signature | -2+10t-20t^2+25t^3-20t^4+10t^5-2t^6 Seifert matrix of 11n_35
| 1 Generator of the Alexander module (1,0,0,0,0,0) the Blanchfield form on it -t^-2+4t^-1-5+4t-t^2 | 89 First homology of the double branched cover of 11n_35 Z/89 | -4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_36 | 1 detected by an unknotting move | 1-4t+8t^2-13t^3+15t^4-13t^5+8t^6-4t^7+t^8 Seifert matrix of 11n_36
| 1 Generator of the Alexander module (0,0,0,1,1,0,0,0) the Blanchfield form on it -t^-3+4t^-2-6t^-1+6-6t+4t^2-t^3 | 67 First homology of the double branched cover of 11n_36 Z/67 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_37 | 2 detected by the Lickorish test | -1+3t-5t^2+7t^3-5t^4+3t^5-t^6 Seifert matrix of 11n_37
| 1 Generator of the Alexander module (0,0,0,1,0,0) the Blanchfield form on it t^-1-1+t | 25 First homology of the double branched cover of 11n_37 Z/25 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_38 | 1 detected by an unknotting move | -1+t+t^2+t^3-t^4 Seifert matrix of 11n_38
| 1 Generator of the Alexander module (0,0,0,1) the Blanchfield form on it 1 | 3 First homology of the double branched cover of 11n_38 Z/3 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_39 | 1 detected by an unknotting move | 2-6t+9t^2-6t^3+2t^4 Seifert matrix of 11n_39
| 1 Generator of the Alexander module (0,1,0,1) the Blanchfield form on it t^-1-2+t | 25 First homology of the double branched cover of 11n_39 Z/25 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_40 | 1 detected by an unknotting move | 2-8t+18t^2-23t^3+18t^4-8t^5+2t^6 Seifert matrix of 11n_40
| 1 Generator of the Alexander module (0,0,0,1,1,0) the Blanchfield form on it -t^-1+2-t | 79 First homology of the double branched cover of 11n_40 Z/79 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_41 | 2 detected by the signature | -1+4t-8t^2+9t^3-9t^4+9t^5-8t^6+4t^7-t^8 Seifert matrix of 11n_41
| 1 Generator of the Alexander module (-2+2t+2t^2+2t^3-2t^4,-1+2t^3-t^4,-1+t+t^2+t^3-t^4,-t^2-t^3+t^4,t+t^2-t^3,t^2+t^3-t^4,1+3t+t^2-2t^3,0) the Blanchfield form on it -14t^-3+123t^-2-286t^-1+361-286t+123t^2-14t^3 | 53 First homology of the double branched cover of 11n_41 Z/53 | -4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_42 | 0 detected by | 1 Seifert matrix of 11n_42
| 0 | 1 First homology of the double branched cover of 11n_42 trivial | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_43 | 2 detected by the signature | -2+10t-20t^2+25t^3-20t^4+10t^5-2t^6 Seifert matrix of 11n_43
| 1 Generator of the Alexander module (0,0,1,0,0,t) the Blanchfield form on it 2t^-1-3+2t | 89 First homology of the double branched cover of 11n_43 Z/89 | -4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_44 | 1 detected by an unknotting move | 1-4t+8t^2-13t^3+15t^4-13t^5+8t^6-4t^7+t^8 Seifert matrix of 11n_44
| 1 Generator of the Alexander module (0,0,0,1,0,0,0,0) the Blanchfield form on it t^-3-4t^-2+7t^-1-9+7t-4t^2+t^3 | 67 First homology of the double branched cover of 11n_44 Z/67 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_45 | 1 detected by an unknotting move | 2-6t+9t^2-6t^3+2t^4 Seifert matrix of 11n_45
| 1 Generator of the Alexander module (0,0,0,1) the Blanchfield form on it t^-1-2+t | 25 First homology of the double branched cover of 11n_45 Z/25 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_46 | 1 detected by an unknotting move | 2-8t+18t^2-23t^3+18t^4-8t^5+2t^6 Seifert matrix of 11n_46
| 1 Generator of the Alexander module (-3+2t,0,0,0,-2+t,0) the Blanchfield form on it 4t^-2-10t^-1+17-10t+4t^2 | 79 First homology of the double branched cover of 11n_46 Z/79 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_47 | 2 detected by the signature | -1+4t-8t^2+9t^3-9t^4+9t^5-8t^6+4t^7-t^8 Seifert matrix of 11n_47
| 1 Generator of the Alexander module (0,0,0,-t,-t,1,0,0) the Blanchfield form on it t^-3-2t^-2+2t^-1-2+2t-2t^2+t^3 | 53 First homology of the double branched cover of 11n_47 Z/53 | -4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_48 | 1 detected by an unknotting move | -1+3t-6t^2+9t^3-6t^4+3t^5-t^6 Seifert matrix of 11n_48
| 1 Generator of the Alexander module (0,1,t,-t,0,1) the Blanchfield form on it -t^-1+2-t | 29 First homology of the double branched cover of 11n_48 Z/29 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_49 | 2 detected by A(F_2) | -1+3t^2-t^4 Seifert matrix of 11n_49
| 2 | 1 First homology of the double branched cover of 11n_49 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_50 | 1 detected by an unknotting move | 2-6t+9t^2-6t^3+2t^4 Seifert matrix of 11n_50
| 1 Generator of the Alexander module (0,-2,1,0) the Blanchfield form on it t^-1-2+t | 25 First homology of the double branched cover of 11n_50 Z/25 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_51 | 1 detected by an unknotting move | -1+4t-6t^2+7t^3-6t^4+4t^5-t^6 Seifert matrix of 11n_51
| 1 Generator of the Alexander module (t,0,0,1,0,0) the Blanchfield form on it -t^-2+2t^-1+2t-t^2 | 29 First homology of the double branched cover of 11n_51 Z/29 | 0 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_52 | 1 detected by an unknotting move | 1-6t+14t^2-17t^3+14t^4-6t^5+t^6 Seifert matrix of 11n_52
| 1 Generator of the Alexander module (-t,0,0,1,0,0) the Blanchfield form on it t^-2-4t^-1+6-4t+t^2 | 59 First homology of the double branched cover of 11n_52 Z/59 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_53 | 1 detected by an unknotting move | -1+4t-8t^2+11t^3-8t^4+4t^5-t^6 Seifert matrix of 11n_53
| 1 Generator of the Alexander module (0,0,0,-t,1,1) the Blanchfield form on it -t^-2+4t^-1-6+4t-t^2 | 37 First homology of the double branched cover of 11n_53 Z/37 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_54 | 1 detected by an unknotting move | 1-4t+10t^2-13t^3+10t^4-4t^5+t^6 Seifert matrix of 11n_54
| 1 Generator of the Alexander module (1,0,0,0,0,0) the Blanchfield form on it t^-1-1+t | 43 First homology of the double branched cover of 11n_54 Z/43 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_55 | 1 detected by an unknotting move | -1+6t-14t^2+19t^3-14t^4+6t^5-t^6 Seifert matrix of 11n_55
| 1 Generator of the Alexander module (0,0,1,0,0,0) the Blanchfield form on it t^-2-4t^-1+5-4t+t^2 | 61 First homology of the double branched cover of 11n_55 Z/61 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_56 | 1 detected by an unknotting move | 1-4t+8t^2-9t^3+8t^4-4t^5+t^6 Seifert matrix of 11n_56
| 1 Generator of the Alexander module (0,0,0,0,1,0) the Blanchfield form on it t^-2-2t^-1+3-2t+t^2 | 35 First homology of the double branched cover of 11n_56 Z/35 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_57 | 3 detected by the signature | 1-3t+2t^2+t^3-3t^4+t^5+2t^6-3t^7+t^8 Seifert matrix of 11n_57
| 1 Generator of the Alexander module (0,0,0,0,t,0,0,1) the Blanchfield form on it t^-3-t^-2+1-t^2+t^3 | 7 First homology of the double branched cover of 11n_57 Z/7 | -6 | 6 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_58 | 2 detected by the Lickorish test | 1-4t+8t^2-9t^3+8t^4-4t^5+t^6 Seifert matrix of 11n_58
| 1 Generator of the Alexander module (0,0,1,0,-1,1) the Blanchfield form on it -t^-2+3t^-1-5+3t-t^2 | 35 First homology of the double branched cover of 11n_58 Z/35 | 2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_59 | 2 detected by the signature | -1+6t-12t^2+15t^3-12t^4+6t^5-t^6 Seifert matrix of 11n_59
| 1 Generator of the Alexander module (0,1,-2t,0,0,t) the Blanchfield form on it -t^-2+4t^-1-4+4t-t^2 | 53 First homology of the double branched cover of 11n_59 Z/53 | -4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_60 | 1 detected by an unknotting move | 1-3t+4t^2-5t^3+5t^4-5t^5+4t^6-3t^7+t^8 Seifert matrix of 11n_60
| 1 Generator of the Alexander module (0,0,0,1,0,0,0,0) the Blanchfield form on it -t^-3+3t^-2-2t^-1+1-2t+3t^2-t^3 | 31 First homology of the double branched cover of 11n_60 Z/31 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_61 | 2 detected by the signature | -1+3t-4t^2+t^3+t^4+t^5-4t^6+3t^7-t^8 Seifert matrix of 11n_61
| 1 Generator of the Alexander module (0,0,1+t^2,0,0,t^2,0,0) the Blanchfield form on it -t^-3+2t^-2-2t^-1-2t+2t^2-t^3 | 17 First homology of the double branched cover of 11n_61 Z/17 | -4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_62 | 1 detected by an unknotting move | 2-8t+13t^2-8t^3+2t^4 Seifert matrix of 11n_62
| 1 Generator of the Alexander module (0,0,1,1) the Blanchfield form on it -t^-1+2-t | 33 First homology of the double branched cover of 11n_62 Z/33 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_63 | 1 detected by an unknotting move | -2+10t-15t^2+10t^3-2t^4 Seifert matrix of 11n_63
| 1 Generator of the Alexander module (1,0,1,0) the Blanchfield form on it -t^-1+2-t | 39 First homology of the double branched cover of 11n_63 Z/39 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_64 | 2 detected by the signature | -2+5t-3t^2+t^3-3t^4+5t^5-2t^6 Seifert matrix of 11n_64
| 1 Generator of the Alexander module (0,0,0,0,0,1) the Blanchfield form on it -t^-3+2t^-2-t^-1-t+2t^2-t^3 | 21 First homology of the double branched cover of 11n_64 Z/21 | -4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_65 | 1 detected by an unknotting move | 3-8t+11t^2-8t^3+3t^4 Seifert matrix of 11n_65
| 1 Generator of the Alexander module (0,0,1,1) the Blanchfield form on it t^-1-2+t | 33 First homology of the double branched cover of 11n_65 Z/33 | 0 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_66 | 1 detected by an unknotting move | 1-7t+18t^2-23t^3+18t^4-7t^5+t^6 Seifert matrix of 11n_66
| 1 Generator of the Alexander module (0,0,1,0,0,0) the Blanchfield form on it -t^-2+3t^-1-3+3t-t^2 | 75 First homology of the double branched cover of 11n_66 Z/75 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_67 | 1 detected by an unknotting move | -2+5t-2t^2 Seifert matrix of 11n_67
| 1 Generator of the Alexander module (1,-3t+2t^2) the Blanchfield form on it -3t^-1+8-3t | 9 First homology of the double branched cover of 11n_67 Z/9 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_68 | 2 detected by the Lickorish test | -4+16t-23t^2+16t^3-4t^4 Seifert matrix of 11n_68
| 1 or 2 | 63 First homology of the double branched cover of 11n_68 Z/63 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_69 | 2 detected by the signature | -2+7t-9t^2+9t^3-9t^4+7t^5-2t^6 Seifert matrix of 11n_69
| 1 or 2 | 45 First homology of the double branched cover of 11n_69 Z/45 | -4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_70 | 2 detected by the signature | -1+2t-2t^2+3t^3-2t^4+2t^5-t^6 Seifert matrix of 11n_70
| 1 Generator of the Alexander module (0,0,0,0,1,0) the Blanchfield form on it -t^-2+2t^-1-1+2t-t^2 | 13 First homology of the double branched cover of 11n_70 Z/13 | -4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_71 | 2 detected by the Nakanishi index | 2-7t+14t^2-17t^3+14t^4-7t^5+2t^6 Seifert matrix of 11n_71
| 2 | 63 First homology of the double branched cover of 11n_71 Z/21+Z/3 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_72 | 2 detected by the Nakanishi index | -2+9t-18t^2+23t^3-18t^4+9t^5-2t^6 Seifert matrix of 11n_72
| 2 | 81 First homology of the double branched cover of 11n_72 Z/27+Z/3 | -4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_73 | 2 detected by the Nakanishi index | 1-2t+3t^2-2t^3+t^4 Seifert matrix of 11n_73
| 2 | 9 First homology of the double branched cover of 11n_73 Z/3+Z/3 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_74 | 2 detected by the Nakanishi index | 1-2t+3t^2-2t^3+t^4 Seifert matrix of 11n_74
| 2 | 9 First homology of the double branched cover of 11n_74 Z/3+Z/3 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_75 | 2 detected by the Nakanishi index | 2-7t+14t^2-17t^3+14t^4-7t^5+2t^6 Seifert matrix of 11n_75
| 2 | 63 First homology of the double branched cover of 11n_75 Z/21+Z/3 | 2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_76 | 2 detected by the Nakanishi index | -1+3t-6t^2+8t^3-9t^4+8t^5-6t^6+3t^7-t^8 Seifert matrix of 11n_76
| 2 | 45 First homology of the double branched cover of 11n_76 Z/15+Z/3 | 4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_77 | 3 detected by the signature | -1+t+2t^2-8t^3+11t^4-8t^5+2t^6+t^7-t^8 Seifert matrix of 11n_77
| 2 | 27 First homology of the double branched cover of 11n_77 Z/9+Z/3 | -6 | 6 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_78 | 2 detected by the Nakanishi index | -1+3t-6t^2+8t^3-9t^4+8t^5-6t^6+3t^7-t^8 Seifert matrix of 11n_78
| 2 | 45 First homology of the double branched cover of 11n_78 Z/15+Z/3 | -4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_79 | 2 detected by the Lickorish test | -2+4t-3t^2+4t^3-2t^4 Seifert matrix of 11n_79
| 1 Generator of the Alexander module (0,1,0,0) the Blanchfield form on it t^-2-2t^-1+2-2t+t^2 | 15 First homology of the double branched cover of 11n_79 Z/15 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_80 | 2 detected by the Lickorish test | -1+t+5t^2-9t^3+5t^4+t^5-t^6 Seifert matrix of 11n_80
| 1 Generator of the Alexander module (0,0,0,1,0,0) the Blanchfield form on it t^-2-2t^-1+1-2t+t^2 | 15 First homology of the double branched cover of 11n_80 Z/15 | 2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_81 | 3 detected by the signature | 1-3t+4t^2-4t^3+3t^4-4t^5+4t^6-3t^7+t^8 Seifert matrix of 11n_81
| 2 | 27 First homology of the double branched cover of 11n_81 Z/9+Z/3 | -6 | 6 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_82 | 1 detected by an unknotting move | 1-3t+4t^2-3t^3+4t^4-3t^5+t^6 Seifert matrix of 11n_82
| 1 Generator of the Alexander module (0,1,1,1,1,-t) the Blanchfield form on it 1 | 19 First homology of the double branched cover of 11n_82 Z/19 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_83 | 2 detected by A(F_2) | 3-12t+19t^2-12t^3+3t^4 Seifert matrix of 11n_83
| 2 | 49 First homology of the double branched cover of 11n_83 Z/49 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_84 | 1 detected by an unknotting move | -2+9t-13t^2+9t^3-2t^4 Seifert matrix of 11n_84
| 1 Generator of the Alexander module (0,1,0,-2+t) the Blanchfield form on it -1 | 35 First homology of the double branched cover of 11n_84 Z/35 | 2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_85 | 1 detected by an unknotting move | -1+5t-10t^2+13t^3-10t^4+5t^5-t^6 Seifert matrix of 11n_85
| 1 Generator of the Alexander module (1,0,0,0,-t,t) the Blanchfield form on it 2t^-2-8t^-1+11-8t+2t^2 | 45 First homology of the double branched cover of 11n_85 Z/45 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_86 | 1 detected by an unknotting move | -1+4t-7t^2+9t^3-7t^4+4t^5-t^6 Seifert matrix of 11n_86
| 1 Generator of the Alexander module (0,1,0,0,0,0) the Blanchfield form on it 1 | 33 First homology of the double branched cover of 11n_86 Z/33 | 0 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_87 | 1 detected by an unknotting move | 1-5t+12t^2-15t^3+12t^4-5t^5+t^6 Seifert matrix of 11n_87
| 1 Generator of the Alexander module (0,0,0,0,1,0) the Blanchfield form on it t^-1-2+t | 51 First homology of the double branched cover of 11n_87 Z/51 | 2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_88 | 3 detected by the signature | -1+3t-2t^2+t^4-2t^6+3t^7-t^8 Seifert matrix of 11n_88
| 1 Generator of the Alexander module (0,0,0,1+t^2-t^3,t^2+t^4-t^5,0,0,-t-t^4+t^5) the Blanchfield form on it x | 11 First homology of the double branched cover of 11n_88 Z/11 | -6 | 6 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_89 | 2 detected by the signature | -1+7t-14t^2+17t^3-14t^4+7t^5-t^6 Seifert matrix of 11n_89
| 1 Generator of the Alexander module (2-2t-t^2+2t^3,0,-t^2+t^3,-t^2,-1+t+t^2-t^3,t) the Blanchfield form on it -209t^-2+344t^-1-365+344t-209t^2 | 61 First homology of the double branched cover of 11n_89 Z/61 | 4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_90 | 2 detected by the signature | -2+7t-8t^2+7t^3-8t^4+7t^5-2t^6 Seifert matrix of 11n_90
| 2 | 41 First homology of the double branched cover of 11n_90 Z/41 | -4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_91 | 2 detected by A(F_2) | -1+8t-13t^2+8t^3-t^4 Seifert matrix of 11n_91
| 2 | 31 First homology of the double branched cover of 11n_91 Z/31 | 2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_92 | 2 detected by the Lickorish test | 1-3t+3t^2-t^3+3t^4-3t^5+t^6 Seifert matrix of 11n_92
| 1 or 2 | 15 First homology of the double branched cover of 11n_92 Z/15 | 2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_93 | 3 detected by the signature | 3-7t+9t^2-9t^3+9t^4-7t^5+3t^6 Seifert matrix of 11n_93
| 1 or 2 | 47 First homology of the double branched cover of 11n_93 Z/47 | -6 | 6 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_94 | 1 detected by an unknotting move | -1+6t-13t^2+17t^3-13t^4+6t^5-t^6 Seifert matrix of 11n_94
| 1 Generator of the Alexander module (1,0,0,0,1,0) the Blanchfield form on it t^-2-4t^-1+6-4t+t^2 | 57 First homology of the double branched cover of 11n_94 Z/57 | 0 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_95 | 2 detected by the signature | -1+5t-7t^2+7t^3-7t^4+5t^5-t^6 Seifert matrix of 11n_95
| 1 or 2 | 33 First homology of the double branched cover of 11n_95 Z/33 | -4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_96 | 1 detected by an unknotting move | 1-2t+t^2+t^3+t^4-2t^5+t^6 Seifert matrix of 11n_96
| 1 Generator of the Alexander module (0,1,0,0,0,0) the Blanchfield form on it 1 | 7 First homology of the double branched cover of 11n_96 Z/7 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_97 | 1 detected by an unknotting move | -2+5t-2t^2 Seifert matrix of 11n_97
| 1 Generator of the Alexander module (4-2t,1) the Blanchfield form on it -1 | 9 First homology of the double branched cover of 11n_97 Z/9 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_98 | 1 detected by an unknotting move | -1+7t-16t^2+21t^3-16t^4+7t^5-t^6 Seifert matrix of 11n_98
| 1 Generator of the Alexander module (0,-1-2t,1-t-3t^2,2+t+2t^2,-t+2t^2,1+t+2t^2) the Blanchfield form on it t^-1-2+t | 69 First homology of the double branched cover of 11n_98 Z/69 | 0 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_99 | 1 detected by an unknotting move | -3+10t-13t^2+10t^3-3t^4 Seifert matrix of 11n_99
| 1 Generator of the Alexander module (1,0,0,0) the Blanchfield form on it -t^-2+4t^-1-6+4t-t^2 | 39 First homology of the double branched cover of 11n_99 Z/39 | 2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_100 | 1 detected by an unknotting move | 2-11t+19t^2-11t^3+2t^4 Seifert matrix of 11n_100
| 1 Generator of the Alexander module (0,0,-1,-1) the Blanchfield form on it t^-1-2+t | 45 First homology of the double branched cover of 11n_100 Z/45 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_101 | 1 detected by an unknotting move | -2+10t-15t^2+10t^3-2t^4 Seifert matrix of 11n_101
| 1 Generator of the Alexander module (0,0,1,0) the Blanchfield form on it -1 | 39 First homology of the double branched cover of 11n_101 Z/39 | 2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_102 | 1 detected by an unknotting move | -1+t+t^2+t^3-t^4 Seifert matrix of 11n_102
| 1 Generator of the Alexander module (0,1,2t,1) the Blanchfield form on it 3t^-1-7+3t | 3 First homology of the double branched cover of 11n_102 Z/3 | 2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_103 | 2 detected by the signature | -1+7t-15t^2+19t^3-15t^4+7t^5-t^6 Seifert matrix of 11n_103
| 1 or 2 | 65 First homology of the double branched cover of 11n_103 Z/65 | 4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_104 | 3 detected by the signature | -1+3t-2t^2-2t^3+5t^4-2t^5-2t^6+3t^7-t^8 Seifert matrix of 11n_104
| 1 Generator of the Alexander module (0,1+2t-3t^2+t^3,1-t,0,0,0,0,0) the Blanchfield form on it -2t^-3+3t^-2+2t^-1-4+2t+3t^2-2t^3 | 3 First homology of the double branched cover of 11n_104 Z/3 | -6 | 6 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_105 | 2 detected by the signature | -1+7t-16t^2+21t^3-16t^4+7t^5-t^6 Seifert matrix of 11n_105
| 1 Generator of the Alexander module (1,0,0,0,0,0) the Blanchfield form on it 2t^-1-3+2t | 69 First homology of the double branched cover of 11n_105 Z/69 | -4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_106 | 1 detected by an unknotting move | 1-3t+6t^2-7t^3+6t^4-3t^5+t^6 Seifert matrix of 11n_106
| 1 Generator of the Alexander module (0,0,0,1,0,0) the Blanchfield form on it -t^-2+4t^-1-6+4t-t^2 | 27 First homology of the double branched cover of 11n_106 Z/27 | 2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_107 | 2 detected by the signature | 1-3t+4t^2-2t^3+t^4-2t^5+4t^6-3t^7+t^8 Seifert matrix of 11n_107
| 1 Generator of the Alexander module (0,0,0,0,1,0,0,0) the Blanchfield form on it t^-3-3t^-2+5t^-1-5+5t-3t^2+t^3 | 21 First homology of the double branched cover of 11n_107 Z/21 | -4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_108 | 2 detected by the signature | -1+8t-17t^2+21t^3-17t^4+8t^5-t^6 Seifert matrix of 11n_108
| 1 or 2 | 73 First homology of the double branched cover of 11n_108 Z/73 | 4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_109 | 2 detected by the signature | -1+7t-13t^2+15t^3-13t^4+7t^5-t^6 Seifert matrix of 11n_109
| 1 or 2 | 57 First homology of the double branched cover of 11n_109 Z/57 | 4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_110 | 1 detected by an unknotting move | -1+4t-9t^2+13t^3-9t^4+4t^5-t^6 Seifert matrix of 11n_110
| 1 Generator of the Alexander module (0,3-2t,0,0,-1+t,0) the Blanchfield form on it t^-1-2+t | 41 First homology of the double branched cover of 11n_110 Z/41 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_111 | 1 detected by an unknotting move | -1+t+3t^2-5t^3+3t^4+t^5-t^6 Seifert matrix of 11n_111
| 1 Generator of the Alexander module (0,1,0,0,1,0) the Blanchfield form on it 1 | 7 First homology of the double branched cover of 11n_111 Z/7 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_112 | 1 detected by an unknotting move | 1-5t+13t^2-17t^3+13t^4-5t^5+t^6 Seifert matrix of 11n_112
| 1 Generator of the Alexander module (-t,0,0,0,0,1) the Blanchfield form on it -t^-1+2-t | 55 First homology of the double branched cover of 11n_112 Z/55 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_113 | 2 detected by the Lickorish test | -1+9t-15t^2+9t^3-t^4 Seifert matrix of 11n_113
| 1 or 2 | 35 First homology of the double branched cover of 11n_113 Z/35 | 2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_114 | 1 detected by an unknotting move | 3-13t+21t^2-13t^3+3t^4 Seifert matrix of 11n_114
| 1 Generator of the Alexander module (0,1,3,t) the Blanchfield form on it 15t^-1-27+15t | 53 First homology of the double branched cover of 11n_114 Z/53 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_115 | 1 detected by an unknotting move | -1+6t-18t^2+27t^3-18t^4+6t^5-t^6 Seifert matrix of 11n_115
| 1 Generator of the Alexander module (4+10t-2t^2+179t^3-32t^4-568t^5+527t^6-24t^7-178t^8+174t^9-96t^10+20t^11,-2+36t^2-160t^3+499t^4+807t^5-2575t^6+1780t^7+112t^8-1010t^9+808t^10-292t^11+40t^12,0,-8+16t-64t^2-78t^3+578t^4-666t^5+216t^6+164t^7-308t^8+192t^9-40t^10,-5+9t-53t^2+38t^3+181t^4-220t^5+1249t^6-2355t^7+1190t^8+504t^9-954t^10+65 the Blanchfield form on it x | 77 First homology of the double branched cover of 11n_115 Z/77 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_116 | 1 detected by an unknotting move | -1+3t^2-t^4 Seifert matrix of 11n_116
| 1 Generator of the Alexander module (0,0,1,1) the Blanchfield form on it t^-1-2+t | 1 First homology of the double branched cover of 11n_116 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_117 | 2 detected by the Lickorish test | -3+9t-11t^2+9t^3-3t^4 Seifert matrix of 11n_117
| 1 Generator of the Alexander module (0,-1+2t,0,3-2t) the Blanchfield form on it -16t^-3+80t^-2-171t^-1+214-171t+80t^2-16t^3 | 35 First homology of the double branched cover of 11n_117 Z/35 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_118 | 2 detected by the signature | -1+4t-4t^2+3t^3-4t^4+4t^5-t^6 Seifert matrix of 11n_118
| 1 or 2 | 21 First homology of the double branched cover of 11n_118 Z/21 | -4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_119 | 1 detected by an unknotting move | -1+6t-16t^2+23t^3-16t^4+6t^5-t^6 Seifert matrix of 11n_119
| 1 Generator of the Alexander module (0,0,0,1,1,1) the Blanchfield form on it t^-2-4t^-1+6-4t+t^2 | 69 First homology of the double branched cover of 11n_119 Z/69 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_120 | 1 detected by an unknotting move | -1+4t-7t^2+8t^3-7t^4+8t^5-7t^6+4t^7-t^8 Seifert matrix of 11n_120
| 1 Generator of the Alexander module (0,0,0,0,0,0,0,1) the Blanchfield form on it -t^-1+1-t | 47 First homology of the double branched cover of 11n_120 Z/47 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_121 | 2 detected by the signature | -1+6t-10t^2+11t^3-10t^4+6t^5-t^6 Seifert matrix of 11n_121
| 1 or 2 | 45 First homology of the double branched cover of 11n_121 Z/45 | 4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_122 | 1 detected by an unknotting move | -2+7t-9t^2+7t^3-2t^4 Seifert matrix of 11n_122
| 1 or 2 | 27 First homology of the double branched cover of 11n_122 Z/27 | 2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_123 | 1 detected by an unknotting move | 3-14t+23t^2-14t^3+3t^4 Seifert matrix of 11n_123
| 1 Generator of the Alexander module (30-12t-24t^2+12t^3,-20+8t+16t^2-8t^3,4-2t,-5+2t-8t^2+4t^3) the Blanchfield form on it -3712t^-4+14700t^-3-10166t^-2-35115t^-1+67282-35115t-10166t^2+14700t^3-3712t^4 | 57 First homology of the double branched cover of 11n_123 Z/57 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_124 | 1 detected by an unknotting move | 1-6t+14t^2-17t^3+14t^4-6t^5+t^6 Seifert matrix of 11n_124
| 1 Generator of the Alexander module (0,-4+t,1,0,-t,0) the Blanchfield form on it t^-2-4t^-1+5-4t+t^2 | 59 First homology of the double branched cover of 11n_124 Z/59 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_125 | 1 detected by an unknotting move | 1-6t+15t^2-19t^3+15t^4-6t^5+t^6 Seifert matrix of 11n_125
| 1 Generator of the Alexander module (0,0,0,0,0,1) the Blanchfield form on it 1 | 63 First homology of the double branched cover of 11n_125 Z/63 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_126 | 3 detected by the signature | 3-6t+4t^2-t^3+4t^4-6t^5+3t^6 Seifert matrix of 11n_126
| 2 | 27 First homology of the double branched cover of 11n_126 Z/3+Z/9 | -6 | 6 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_127 | 2 detected by the Lickorish test | 1-5t+13t^2-17t^3+13t^4-5t^5+t^6 Seifert matrix of 11n_127
| 1 Generator of the Alexander module (0,0,0,0,1,0) the Blanchfield form on it -t^-1+1-t | 55 First homology of the double branched cover of 11n_127 Z/55 | 2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_128 | 1 detected by an unknotting move | 1-5t+10t^2-11t^3+10t^4-5t^5+t^6 Seifert matrix of 11n_128
| 1 Generator of the Alexander module (0,0,0,-1,1,1) the Blanchfield form on it t^-2-5t^-1+9-5t+t^2 | 43 First homology of the double branched cover of 11n_128 Z/43 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_129 | 1 detected by an unknotting move | 1-4t+10t^2-13t^3+10t^4-4t^5+t^6 Seifert matrix of 11n_129
| 1 Generator of the Alexander module (0,0,0,1,0,0) the Blanchfield form on it -t^-2+2t^-1-3+2t-t^2 | 43 First homology of the double branched cover of 11n_129 Z/43 | 2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_130 | 1 detected by an unknotting move | -1+5t-12t^2+17t^3-12t^4+5t^5-t^6 Seifert matrix of 11n_130
| 1 Generator of the Alexander module (0,-3+2t,0,0,1,0) the Blanchfield form on it t^-2-3t^-1+5-3t+t^2 | 53 First homology of the double branched cover of 11n_130 Z/53 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_131 | 1 detected by an unknotting move | 1-6t+16t^2-21t^3+16t^4-6t^5+t^6 Seifert matrix of 11n_131
| 1 Generator of the Alexander module (0,0,0,-3+3t-t^2,0,-2+2t-t^2) the Blanchfield form on it t^-1-2+t | 67 First homology of the double branched cover of 11n_131 Z/67 | 2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_132 | 2 detected by the Lickorish test | 2-6t+9t^2-6t^3+2t^4 Seifert matrix of 11n_132
| 1 Generator of the Alexander module (2-t,0,1,t) the Blanchfield form on it 2t^-1-3+2t | 25 First homology of the double branched cover of 11n_132 Z/25 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_133 | 3 detected by the Stoimenow criterion | 1-4t+6t^2-2t^3-t^4-2t^5+6t^6-4t^7+t^8 Seifert matrix of 11n_133
| 2 | 25 First homology of the double branched cover of 11n_133 Z/5+Z/5 | -4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_134 | 1 detected by an unknotting move | -3+12t-17t^2+12t^3-3t^4 Seifert matrix of 11n_134
| 1 Generator of the Alexander module (-1,0,0,1) the Blanchfield form on it -1 | 47 First homology of the double branched cover of 11n_134 Z/47 | 2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_135 | 2 detected by the signature | -1+2t-t^3+2t^5-t^6 Seifert matrix of 11n_135
| 1 Generator of the Alexander module (0,0,0,t,0,1) the Blanchfield form on it -t^-2+t^-1+2+t-t^2 | 5 First homology of the double branched cover of 11n_135 Z/5 | -4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_136 | 3 detected by the signature | 3-8t+13t^2-15t^3+13t^4-8t^5+3t^6 Seifert matrix of 11n_136
| 1 or 2 | 63 First homology of the double branched cover of 11n_136 Z/63 | -6 | 6 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_137 | 2 detected by the signature | -1+7t-13t^2+15t^3-13t^4+7t^5-t^6 Seifert matrix of 11n_137
| 1 or 2 | 57 First homology of the double branched cover of 11n_137 Z/57 | 4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_138 | 1 detected by an unknotting move | -2+4t-3t^2+4t^3-2t^4 Seifert matrix of 11n_138
| 1 Generator of the Alexander module (2+2t^2,0,0,1) the Blanchfield form on it -t^-1+2-t | 15 First homology of the double branched cover of 11n_138 Z/15 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_139 | 1 detected by an unknotting move | -2+5t-2t^2 Seifert matrix of 11n_139
| 1 Generator of the Alexander module (2,1) the Blanchfield form on it -2 | 9 First homology of the double branched cover of 11n_139 Z/9 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_140 | 2 detected by the Lickorish test | -2+13t-21t^2+13t^3-2t^4 Seifert matrix of 11n_140
| 1 Generator of the Alexander module (0,1,0,0) the Blanchfield form on it -2t^-1+3-2t | 51 First homology of the double branched cover of 11n_140 Z/51 | 2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_141 | 1 detected by an unknotting move | -5+11t-5t^2 Seifert matrix of 11n_141
| 1 Generator of the Alexander module (1,0) the Blanchfield form on it -t^-1+2-t | 21 First homology of the double branched cover of 11n_141 Z/21 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_142 | 1 detected by an unknotting move | 1-8t+15t^2-8t^3+t^4 Seifert matrix of 11n_142
| 1 Generator of the Alexander module (0,1,-t,0) the Blanchfield form on it 4t^-1-9+4t | 33 First homology of the double branched cover of 11n_142 Z/33 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_143 | 1 detected by an unknotting move | -1+2t-t^2+t^3-t^4+2t^5-t^6 Seifert matrix of 11n_143
| 1 Generator of the Alexander module (0,0,0,0,1,0) the Blanchfield form on it 1 | 9 First homology of the double branched cover of 11n_143 Z/9 | 0 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_144 | 2 detected by the signature | -1+7t-15t^2+19t^3-15t^4+7t^5-t^6 Seifert matrix of 11n_144
| 1 or 2 | 65 First homology of the double branched cover of 11n_144 Z/65 | -4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_145 | 1 detected by an unknotting move | 1-t-3t^2+7t^3-3t^4-t^5+t^6 Seifert matrix of 11n_145
| 1 Generator of the Alexander module (0,1,0,0,0,0) the Blanchfield form on it -1 | 9 First homology of the double branched cover of 11n_145 Z/9 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_146 | 2 detected by the Lickorish test | 1-5t+15t^2-21t^3+15t^4-5t^5+t^6 Seifert matrix of 11n_146
| 1 or 2 | 63 First homology of the double branched cover of 11n_146 Z/63 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_147 | 2 detected by the signature | 1-4t+7t^2-5t^3+3t^4-5t^5+7t^6-4t^7+t^8 Seifert matrix of 11n_147
| 1 Generator of the Alexander module (0,0,0,0,0,0,0,1) the Blanchfield form on it -t^-2+t^-1-1+t-t^2 | 37 First homology of the double branched cover of 11n_147 Z/37 | -4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_148 | 3 detected by the new u==2 criterion | -1+5t-10t^2+14t^3-15t^4+14t^5-10t^6+5t^7-t^8 Seifert matrix of 11n_148
| 2 | 75 First homology of the double branched cover of 11n_148 Z/15+Z/5 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_149 | 2 detected by the signature | -1+4t-6t^2+4t^3-3t^4+4t^5-6t^6+4t^7-t^8 Seifert matrix of 11n_149
| 1 or 2 | 33 First homology of the double branched cover of 11n_149 Z/33 | -4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_150 | 2 detected by the Lickorish test | 2-9t+17t^2-19t^3+17t^4-9t^5+2t^6 Seifert matrix of 11n_150
| 1 Generator of the Alexander module (0,0,1,0,-1+2t,0) the Blanchfield form on it 2t^-2-9t^-1+15-9t+2t^2 | 75 First homology of the double branched cover of 11n_150 Z/75 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_151 | 1 detected by an unknotting move | -2+6t-7t^2+6t^3-2t^4 Seifert matrix of 11n_151
| 1 Generator of the Alexander module (0,0,0,1) the Blanchfield form on it 1 | 23 First homology of the double branched cover of 11n_151 Z/23 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_152 | 1 detected by an unknotting move | -2+6t-7t^2+6t^3-2t^4 Seifert matrix of 11n_152
| 1 Generator of the Alexander module (-t,0,1,0) the Blanchfield form on it 1 | 23 First homology of the double branched cover of 11n_152 Z/23 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_153 | 1 detected by an unknotting move | -1+4t-7t^2+10t^3-13t^4+10t^5-7t^6+4t^7-t^8 Seifert matrix of 11n_153
| 1 Generator of the Alexander module (12t-20t^2-2t^3+31t^4-48t^5+55t^6-41t^7+22t^8-9t^9+2t^10,1+5t-20t^2+34t^3-40t^4+37t^5-25t^6+13t^7-5t^8+t^9,10t-20t^2+23t^3-24t^4+17t^5-9t^6+4t^7-t^8,0,20t-40t^2+46t^3-48t^4+34t^5-18t^6+8t^7-2t^8,0,-20t+40t^2-51t^3+58t^4-43t^5+25t^6-12t^7+3t^8,5t-10t^2-11t^3+33t^4-42t^5+47t^6-34t^7+18t^8-8t^9+2t^10) the Blanchfield form on it x | 57 First homology of the double branched cover of 11n_153 Z/57 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_154 | 1 detected by an unknotting move | 1-7t+19t^2-25t^3+19t^4-7t^5+t^6 Seifert matrix of 11n_154
| 1 Generator of the Alexander module (0,-2+t,5-4t+t^2,0,0,0) the Blanchfield form on it -t^-2+4t^-1-5+4t-t^2 | 79 First homology of the double branched cover of 11n_154 Z/79 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_155 | 2 detected by the Lickorish test | 2-8t+11t^2-9t^3+11t^4-8t^5+2t^6 Seifert matrix of 11n_155
| 1 Generator of the Alexander module (0,0,0,0,0,1) the Blanchfield form on it 2t^-2-10t^-1+17-10t+2t^2 | 51 First homology of the double branched cover of 11n_155 Z/51 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_156 | 1 detected by an unknotting move | -1+7t-18t^2+25t^3-18t^4+7t^5-t^6 Seifert matrix of 11n_156
| 1 Generator of the Alexander module (1,0,0,0,0,0) the Blanchfield form on it -1 | 77 First homology of the double branched cover of 11n_156 Z/77 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_157 | 2 detected by the Lickorish test | -1+6t-15t^2+21t^3-15t^4+6t^5-t^6 Seifert matrix of 11n_157
| 2 | 65 First homology of the double branched cover of 11n_157 Z/65 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_158 | 2 detected by the signature | -1+4t-7t^2+7t^3-7t^4+7t^5-7t^6+4t^7-t^8 Seifert matrix of 11n_158
| 1 or 2 | 45 First homology of the double branched cover of 11n_158 Z/45 | -4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_159 | 1 detected by an unknotting move | 1-6t+17t^2-23t^3+17t^4-6t^5+t^6 Seifert matrix of 11n_159
| 1 Generator of the Alexander module (0,0,0,0,0,1) the Blanchfield form on it -1 | 71 First homology of the double branched cover of 11n_159 Z/71 | 2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_160 | 1 detected by an unknotting move | 1-6t+16t^2-21t^3+16t^4-6t^5+t^6 Seifert matrix of 11n_160
| 1 Generator of the Alexander module (-t,0,0,0,1,0) the Blanchfield form on it -t^-1+2-t | 67 First homology of the double branched cover of 11n_160 Z/67 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_161 | 1 detected by an unknotting move | 2-8t+14t^2-15t^3+14t^4-8t^5+2t^6 Seifert matrix of 11n_161
| 1 Generator of the Alexander module (0,4-104t+182t^2-286t^3+471t^4-357t^5+293t^6-139t^7-4t^8+20t^9,-3+69t-108t^2+258t^3-408t^4+366t^5-444t^6+231t^7+6t^8-30t^9,-2+46t-60t^2+166t^3-244t^4+229t^5-302t^6+159t^7+4t^8-20t^9,1-23t+40t^2-34t^3+61t^4-36t^5-t^6+5t^7,1-29t+46t^2-51t^3+77t^4-41t^5-t^6+5t^7) the Blanchfield form on it x | 63 First homology of the double branched cover of 11n_161 Z/63 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_162 | 2 detected by the Lickorish test | -3+14t-21t^2+14t^3-3t^4 Seifert matrix of 11n_162
| 2 | 55 First homology of the double branched cover of 11n_162 Z/55 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_163 | 2 detected by the Lickorish test | 1-8t+22t^2-29t^3+22t^4-8t^5+t^6 Seifert matrix of 11n_163
| 1 Generator of the Alexander module (0,0,0,0,0,1) the Blanchfield form on it -t^-2+3t^-1-3+3t-t^2 | 91 First homology of the double branched cover of 11n_163 Z/91 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_164 | 2 detected by the Nakanishi index | -1+5t-10t^2+13t^3-10t^4+5t^5-t^6 Seifert matrix of 11n_164
| 2 | 45 First homology of the double branched cover of 11n_164 Z/15+Z/3 | -4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_165 | 2 detected by the Lickorish test | -1+7t-20t^2+29t^3-20t^4+7t^5-t^6 Seifert matrix of 11n_165
| 2 | 85 First homology of the double branched cover of 11n_165 Z/85 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_166 | 1 detected by an unknotting move | 1-4t+8t^2-11t^3+11t^4-11t^5+8t^6-4t^7+t^8 Seifert matrix of 11n_166
| 1 Generator of the Alexander module (0,0,0,0,0,1,0,0) the Blanchfield form on it t^-1-1+t | 59 First homology of the double branched cover of 11n_166 Z/59 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_167 | 2 detected by the Nakanishi index | 1-5t+15t^2-21t^3+15t^4-5t^5+t^6 Seifert matrix of 11n_167
| 2 | 63 First homology of the double branched cover of 11n_167 Z/21+Z/3 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_168 | 2 detected by the Lickorish test | 1-6t+18t^2-25t^3+18t^4-6t^5+t^6 Seifert matrix of 11n_168
| 1 or 2 | 75 First homology of the double branched cover of 11n_168 Z/75 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_169 | 3 detected by the signature | 3-6t+6t^2-5t^3+6t^4-6t^5+3t^6 Seifert matrix of 11n_169
| 1 or 2 | 35 First homology of the double branched cover of 11n_169 Z/35 | -6 | 6 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_170 | 2 detected by the Lickorish test | -3+16t-25t^2+16t^3-3t^4 Seifert matrix of 11n_170
| 1 Generator of the Alexander module (-1,0,0,1) the Blanchfield form on it 6t^-1-11+6t | 63 First homology of the double branched cover of 11n_170 Z/63 | 2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_171 | 2 detected by the signature | 6-16t+21t^2-16t^3+6t^4 Seifert matrix of 11n_171
| 1 Generator of the Alexander module (2t+4t^2-9t^3+11t^4-8t^5+2t^6,0,3t+t^2-9t^3+8t^4-2t^5,1+2t-9t^2+8t^3-2t^4) the Blanchfield form on it 2553t^-3-10225t^-2+20602t^-1-25578+20602t-10225t^2+2553t^3 | 65 First homology of the double branched cover of 11n_171 Z/65 | -4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_172 | 1 detected by an unknotting move | -1+5t-11t^2+15t^3-11t^4+5t^5-t^6 Seifert matrix of 11n_172
| 1 Generator of the Alexander module (0,t,0,0,0,1-2t) the Blanchfield form on it t^-1-2+t | 49 First homology of the double branched cover of 11n_172 Z/49 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_173 | 2 detected by the signature | -1+4t-8t^2+7t^3-5t^4+7t^5-8t^6+4t^7-t^8 Seifert matrix of 11n_173
| 1 or 2 | 45 First homology of the double branched cover of 11n_173 Z/45 | -4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_174 | 2 detected by the signature | -2+11t-22t^2+27t^3-22t^4+11t^5-2t^6 Seifert matrix of 11n_174
| 1 Generator of the Alexander module (0,0,0,0,1,0) the Blanchfield form on it 4t^-1-7+4t | 97 First homology of the double branched cover of 11n_174 Z/97 | -4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_175 | 2 detected by the signature | -2+9t-14t^2+15t^3-14t^4+9t^5-2t^6 Seifert matrix of 11n_175
| 2 | 65 First homology of the double branched cover of 11n_175 Z/65 | -4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_176 | 1 detected by an unknotting move | 1-6t+15t^2-19t^3+15t^4-6t^5+t^6 Seifert matrix of 11n_176
| 1 Generator of the Alexander module (0,1,0,0,1,1) the Blanchfield form on it -t^-2+4t^-1-6+4t-t^2 | 63 First homology of the double branched cover of 11n_176 Z/63 | 2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_177 | 1 detected by an unknotting move | 1-5t+11t^2-16t^3+17t^4-16t^5+11t^6-5t^7+t^8 Seifert matrix of 11n_177
| 1 Generator of the Alexander module (-2-2t,-t^2-t^3,-3-3t,t+t^2+t^3+2t^4,1+t,-t^2,1+t,-t-t^2) the Blanchfield form on it 395t^-3-989t^-2+1732t^-1-1761+1732t-989t^2+395t^3 | 83 First homology of the double branched cover of 11n_177 Z/83 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_178 | 2 detected by the Lickorish test | 2-9t+22t^2-29t^3+22t^4-9t^5+2t^6 Seifert matrix of 11n_178
| 1 Generator of the Alexander module (0,0,0,1,0,0) the Blanchfield form on it 2t^-2-5t^-1+8-5t+2t^2 | 95 First homology of the double branched cover of 11n_178 Z/95 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_179 | 1 detected by an unknotting move | -1+7t-18t^2+25t^3-18t^4+7t^5-t^6 Seifert matrix of 11n_179
| 1 Generator of the Alexander module (0,0,1,0,0,0) the Blanchfield form on it t^-2-3t^-1+5-3t+t^2 | 77 First homology of the double branched cover of 11n_179 Z/77 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_180 | 3 detected by the signature | 3-7t+11t^2-13t^3+11t^4-7t^5+3t^6 Seifert matrix of 11n_180
| 1 or 2 | 55 First homology of the double branched cover of 11n_180 Z/55 | -6 | 6 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_181 | 2 detected by the signature | 5-11t+13t^2-11t^3+5t^4 Seifert matrix of 11n_181
| 1 or 2 | 45 First homology of the double branched cover of 11n_181 Z/45 | -4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_182 | 1 detected by an unknotting move | -1+5t-11t^2+18t^3-23t^4+18t^5-11t^6+5t^7-t^8 Seifert matrix of 11n_182
| 1 Generator of the Alexander module (0,0,1,0,0,0,0,0) the Blanchfield form on it t^-2-3t^-1+3-3t+t^2 | 93 First homology of the double branched cover of 11n_182 Z/93 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_183 | 2 detected by the signature | 1+t-6t^2+9t^3-6t^4+t^5+t^6 Seifert matrix of 11n_183
| 2 | 21 First homology of the double branched cover of 11n_183 Z/21 | -4 | 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_184 | 1 detected by an unknotting move | 2-9t+20t^2-25t^3+20t^4-9t^5+2t^6 Seifert matrix of 11n_184
| 1 Generator of the Alexander module (0,1,0,0,0,0) the Blanchfield form on it -t^-3+6t^-2-15t^-1+20-15t+6t^2-t^3 | 87 First homology of the double branched cover of 11n_184 Z/87 | -2 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

11n_185 | 2 detected by the signature | -2+11t-24t^2+31t^3-24t^4+11t^5-2t^6 Seifert matrix of 11n_185
| 2 | 105 First homology of the double branched cover of 11n_185 Z/105 | -4 | 4 |