Schubert varieties, equivariant cohomology and characteristic classes

IMPANGA15, EMS Series of Congress Reports, 2018

DOI: 10.4171/182


  • Jarosław Buczyński (University of Warsaw; Polish Academy of Sciences), jabu*at*
  • Mateusz Michałek (Max Planck Institute in Leipzig; Polish Academy of Sciences), wajcha2*at*
  • Elisa Postighel (Loughborough University), elisa.postinghel*at*

List of contributions

  1. P. Pragacz: Friedrich Hirzebruch – a handful of reminiscences
  2. S. Cho and T. Ikeda: Pieri rule for the factorial Schur $P$-functions
  3. I. Coskun: Restriction varieties and the rigidity problem
  4. L. Gatto and P. Salehyan: On Plücker Equations Characterizing Grassmann Cones
  5. T. Hudson and T. Matsumura: Kempf–Laksov Schubert classes for even infinitesimal cohomology theories
  6. T. Katsura: On the multicanonical systems of quasi-elliptic surfaces in characteristic 3
  7. L. Maxim and J. Schürmann: Characteristic classes of mixed Hodge modules and applications
  8. P. Pragacz: On a certain family of $U(\mathfrak{b})$-modules
  9. R. Rimanyi and A. Varchenko: Equivariant Chern-Schwartz-MacPherson classes in partial flag varieties: interpolation and formulae
  10. T. Sasajima and T. Ohmoto: Thom polynomials in $\mathcal A$-classification I: counting singular projections of a surface
  11. H. Tamvakis: Schubert polynomials and degeneracy locus formulas
  12. S. Yokura: Hirzebruch $\chi_y$-genera of complex algebraic fiber bundles – the multiplicativity of the signature modulo 4
  13. M. Zielenkiewicz: Pushing-forward Schur classes using iterated residues at infinity
The choice of topics is motivated by the scientific range of the conference IMPANGA15, 12-18 April 2015, Będlewo, Poland.


We dedicate the volume as a whole to the memory of Friedrich Hirzebruch (1927-2012).