Uniwersytet Warszawski

Wydział Matematyki Informatyki i Mechaniki

Instytut Matematyki Stosowanej i Mechaniki

Zakład Równań Fizyki Matematycznej







Prof. dr hab. Dariusz Wrzosek


University of Warsaw

Institute of Applied Mathematics and Mechanics

ul. Banacha 2

02-097 Warszawa, Poland

office +48225544560

darekw@mimuw.edu.pl


Dydaktyka :

Matematyka dla I roku Biologii

1) zasady zaliczenia ujęte na jednym z pierwszych slajdów są następujące

30 pktów - sprawdziany (2x3 zadania, 5 pktów za zadanie)

30 pktów -prace domowe ( 5x3 zadania, 2 punkty za zadanie) 

10 pktów -aktywność na zajęciach

40 pktów -egzamin 

RAZEM 110. Aby zaliczyć trzeba uzyskać 50 punktów (można je uzyskać bez podchodzenia do egzaminu).


2) Nieobecność na zajęciach musi być usprawiedliwiona przez okazanie prowadzącemu zajęcia zwolnienia lekarskiego bądź innego dokumentu poświadczającego ważne obiektywne powody nieobecności (np. udział w zawodach sportowych). Można nie być na dwóch  zajęciach bez usprawiedliwienia. Osobie,  która przekroczy ten limit odejmuje się 10 punktów z całkowitej punktacji za każdy dzień nieobecności.


UWAGA!!!! termin egzaminu:

Zajęcia nr 1 - plik zawiera zasady zaliczenia

Zajęcia nr 2

Zajęcia nr 3

Zajęcia nr 4

Zajęcia nr 5

Zajęcia nr 6

Zajęcia nr 7

Zajęcia nr 8 Zajęcia nr 9 Zajęcia nr 10 Zajęcia nr 11 Zajęcia nr 12 Zajęcia nr 13 Zajęcia nr 14


Research

I am interested in:

nonlinear partial differential equations and mathematical modelling in biology. In particular in systems of parabolic partial differential equations describing complex interactions including cross-diffusion e.g. chemotaxis.


Many mathematical models describing complex interactions between components of biological systems have the structure of systems of partial differential equations of parabolic type which describe changes in time and space of densities of system components. For instance we may think of densities of populations belonging to an ecosystem, densities of cells in a tissue, some chemicals or nutrients. Such systems referred to as the quasilinear parabolic systems reflect local or nonlocal in space interactions between systems components as well as their diffusive transport which is usually described by means of nonlinear elliptic operators which contain second order partial differential derivatives of the densities. Often it is assumed that the domain occupied by the system components is isolated i.e. there is no flux or species migration through the boundary of the domain. Thus the densities of system components depend only on the initial conditions and on specific nature of interactions. We are particularly interested in situations when the coupling between system components occurs also in the part of the system which describes the transport processes and to so called degenerate systems when one or more system components are immobile or is subject to unidirectional non-diffusive transport. Such a situations occur in many biological models as different transport mechanisms may characterize various components of real life system. Models of this sort are considered at all levels of biological complexity starting from a sub-cellular level through tissue level up to the interspecies interactions on ecological level. We try to develop new mathematical techniques to study such models as well as to build entirely new models mostly in the range of ecology and oncology. Those two research directions look entirely different however many similarities between them from modeling view point have been recently observed. The main goal of such mathematical models is to describe and explain the occurrence of spatio-temporal patterns observed in nature which result from highly nonlinear interactions between components of complex systems.


Recent papers

J.I Tello and D.Wrzosek, Predator--prey model with diffusion and indirect prey-taxis. M3AS 2016

J.I Tello and D.Wrzosek, Inter-species competition and chemorepulsion. JMAA2018


List of Publications 2017