
Programowanie 
komputerowe

Zajęcia 10



Listy inicjujące
Istnieje możliwość bezpośredniego podania wartości zmiennych w klasie podczas 
tworzenia obiektu, np. tak:
class A { 
public:

A(): liczba(7), napis("SIEDEM") {}
int liczba;
string napis;

};
Wartości podane w nawiasach są użyte do ustawienia początkowej wartości, tak 
więc liczba przyjmie wartość 7, a napis zostanie stworzony przy pomocy 
konstruktora z parametrem "SIEDEM".



Destruktory
W klasie można zdefiniować destruktor – jest to funkcja automatycznie 
wywoływana automatycznie bezpośrednio przez zniszczeniem obiektu. Zazwyczaj 
usuwa ona tablice stworzone przez obiekt. Destruktor ma nazwę taką jak klasa 
poprzedzoną tyldą. Przykład:

class Lista {
public:

Lista() { t=new int[10]; }
~Lista() { delete [] t; }
int* t;

}
Tablica automatycznie się usunie kiedy obiekt przestanie istnieć.



Konstruktor kopiujący
Jeśli istnieje potrzeba stworzenia kopii obiektu klasy T używany jest konstruktor 
kopiujący:

T(const T& obiekt)
Słowo const oznacza, że konstruktor ten nie może zmienić oryginału, a 
referencja jest niezbędna aby nie tworzyć kopii parametru.

Jeśli konstruktor kopiujący nie jest zdefiniowany, kopia obiektu powstaje przez 
skopiowanie wartości poszczególnych pól. Nie zawsze jest to właściwe, np. gdy 
obiekt zawiera tablice.



Przeciążenie operatora przypisania
Jeśli x i y są obiektami klasy T, przypisanie

x=y;
powoduje skopiowanie wszystkich pól y na pola x. Jeśli chcemy, żeby ta operacja 
była wykonywana w inny sposób, musimy przeciążyć operator przypisania, np. 
tak:

T& operator=(const T& obiekt);

Zwyczajowo przypisanie zwraca obiekt na który przypisujemy wartość. Dostęp do 
obiektu wykonującego metodę zapewnia wskaźnik this, więc ten obiekt to 
*this.



Zadania
1. Stworzyć klasę, której obiekty reprezentują kostki do gry.
2. Stworzyć klasę, której obiekty reprezentują nieskończone tablice (tj. o 

indeksach 0,1,2,...).
3. Stworzyć klasę Macierz, której obiekty reprezentują macierze 3x3 o 

współczynnikach typu double. Należy udostępnić standardowe operacje na 
macierzach, takie jak ustawianie współczynników, drukowanie, dodawanie, 
mnożenie, liczenie wyznacznika, transpozycja. Należy też zadbać o to, aby 
przypisanie macierzy działało poprawnie (tj. żeby współczynniki tych macierzy 
były w odrębnych tablicach).



Zadania (2)
4. Zaimplementować klasę Pomiary, która przechowuje wykonane pomiary (liczby 

typu double) i umożliwia dokonanie na nich pewnych operacji statystycznych. 
Zakładamy, że Pomiary opisują wyniki uzyskane w pojedynczym badaniu, w 
ramach badania wykonuje się określoną liczbę pomiarów.

class Pomiary {
public:

Pomiary();
void dodaj(double wartosc); // dodaje nowy pomiar
int ilePomiarow(); // zwraca liczbę pomiarów
double srednia(); // zwraca średnią pomiarów
double max(); // zwraca największy pomiar

};



Zadania (3)
5. Zaimplementować klasę Znajomi, której obiekty reprezentują zbiór osób 

(ponumerowanych 1..n). Każda para może się znać lub nie, ale jeśli a zna b to b 
również zna a; każda osoba zna siebie samą.

class Znajomi {
public:

Znajomi(int n);
bool zna(int a, int b); // zwraca true wtedy i tylko wtedy, gdy a zna b
void poznaj(int a, int b); // osoby a i b stają się znajomymi
void wspolniZnajomi(int a, int b); // wypisuje wspólnych znajomych a i b
void spotkanie(int a); // wszyscy znajomi a poznają się ze sobą
int max(); // zwraca osobę, która ma najwięcej znajomych (którąkolwiek)

};



Zadania (4)
6. Stworzyć klasę Kolejka, która przechowuje ciąg napisów (string).

class Kolejka {
public:

Kolejka(); // pusta kolejka
void dodaj(string s); // dodaje napis na końcu
string usun(); // usuwa pierwszy element i go zwraca
void drukuj(); // drukuje wszystkie elementy
bool pusta(); // zwraca true jeśli kolejka jest pusta

};



Zadania (5)
7. Stworzyć klasę ZbiorLiczb, która przechowuje zbiory liczb typu int.

class ZbiorLiczb {
public:

ZbiorLiczb(); // pusty zbior
void dodaj(int a); // dodaje liczbę
void usun(int a); // usuwa liczbę
bool nalezy(int a); // true jeśli element należy do zbioru
void dodaj(const ZbiorLiczb& z); //dodaje elementy zbioru z
int ile(); // zwraca liczbę elementów

};



Zadania (6)
8. Zaimplementować klasę Histogram, która zapamiętuje wyniki pomiarów w 

podziale na zadane przedziały.
class Histogram {
public:

Histogram(double min, double max, int ilePrzedzialow); // Tworzy nowy 
obiekt, dla wartości z przedziału [min,max] podzielone na ilePrzedzialow równych części.

int dodaj(double wartosc); // Dodaje nową wartość.
int ileWPrzedziale(int numer); // Zwraca liczbę wartości w podanym przedziale
int ilePozaZakresem(); // Zwraca liczbę wartości poza obsługiwanym zakresem.
void drukuj(); // drukuje histogram

};

Następnie zmodyfikować tą klasę tak, aby do liczby pomiarów w danym 
przedziale odwoływać się przez [].


