
Programowanie komputerowe WNE UW
Zadania przygotowawcze do egzaminu

Krzysztof Ziemiański

1.​ Zaimplementować klasę ​Pomiary​, która przechowuje wykonywane pomiary (liczby
całkowite) i umożliwia odczyt pewnych wartości statystycznych.
Metody publiczne:

Pomiary();
Tworzy nowy pusty obiekt (nie zawierający żadnych pomiarów.

void dodaj(int wartosc);
Rejestruje nowy pomiar o podanej wartości.

int ilePomiarow();
Zwraca liczbę zarejestrowanych pomiarów.

double srednia();
Zwraca średnią wartość wszystkich zarejestrowanych pomiarów.

int najwiekszy();
Zwraca wartość największego zarejestrowanego pomiaru.

 2.​ Zaimplementować klasę ​Napis​, której obiekty reprezentują napisy.
Metody publiczne:

Napis();
Tworzy nowy pusty napis.

Napis(char* s);
Tworzy nowy napis o podanej treści.

void dolacz(char znak);
Dołącza na koniec napisu podany znak.

char znak(int pozycja);
Zwraca znak na podanej pozycji.

void wypisz();
Wypisuje napis na strumień ​cout​.

3.​ Zaimplementować klasę ​Trojkat​, której obiekty reprezentują trójkąty na płaszczyźnie.
Zakładamy, że zdefiniowana została następująca struktura reprezentująca punkty:

struct Punkt {

double x;
double y;

};

Metody publiczne:
Trojkat(Punkt p1, Punkt p2, Punkt p3);

Tworzy nowy trójkąt o podanych wierzchołkach.
void przesun(double dx, double dy);

Przesuwa trójkąt o zadany wektor.
bool nalezy(Punkt p);

Zwraca true jeśli dany punkt należy do trójkąta.

Następnie zmodyfikować tą klasę tak, aby trójkąty można było porównywać przy użyciu
operatorów ​==​ i ​!=​.

4.​ Zaimplementować klasę ​Osoba​, której obiekty przechowują informacje o osobach.
Metody publiczne:

Osoba(char* imie, char* nazwisko)​;
Tworzy osobę o podanym imieniu i nazwisku.

void ustawWiek(int wiek);
Ustawia wiek osoby.

bool starszaNiz(const Osoba& osoba);
Zwraca true, jeśli osoba jest starsza niż podana jako argument.

bool imiennik(const Osoba& osoba);
Zwraca true, jeśli imiona osób są takie same.

5.​ Zaimplementować klasę ​TablicaPosortowana​, której obiekty przechowują kolekcję
liczb całkowitych posortowanych rosnąco.
Metody publiczne:

TablicaPosortowana(int maksymalnyRozmiar);
Tworzy nową pustą tablicę, która może przechowywać nie więcej niż podaną liczbę​ ​elementów.

int dodaj(int wartosc);
Dodaje nowy element.

bool usun(int wartosc);
Jeśli podany element znajduje się w tablicy, to go usuwa i zwraca true; jeśli nie zwraca false.

int element(int indeks);
Zwraca element o podanym indeksie, np. element(0) to najmniejszy element, element(1) drugi
najmniejszy, itd.

int max();

Zwraca największy element.

6.​ Zaimplementować klasę ​Konto​ o następujących metodach:
Metody publiczne:

Konto();
Tworzy nowe konto o stanie 0.

int stanKonta();
Zwraca stan konta.

void zmien(int oIle);
Zmienia stan konta o podaną wartość.

int sumaUznan();
Zwraca sumę uznań (dodatnich zmian stanu).

int sumaObciazen();
Zwraca sumę obciążeń.

Następnie zmodyfikować klasę tak, aby móc ustanowić maksymalny dopuszczalny debet i żeby
operacje prowadzące do przekroczenia tego debetu nie były wykonywane.

7. Zaimplementować klasę ​Histogram​, która zapamiętuje wyniki pomiarów w podziale na
zadane przedziały.
Metody publiczne:

Histogram(double min, double max, int ilePrzedzialow);
Tworzy nowy obiekt, który obsługuje wartości z przedziału [​min​,​max​] podzielone na
ilePrzedzialow ​równych części.

int dodaj(double wartosc);
Dodaje nową wartość.

int ileWPrzedziale(int numer);
Zwraca liczbę wartości należącą do podanego przedziału (numeracja zaczyna się od 1).

int ilePozaZakresem();
Zwraca liczbę wartości poza obsługiwanym zakresem.

Następnie zmodyfikować tą klasę tak, aby do liczby pomiarów w danym przedziale odwoływać
się przez ​[]​.

8. Zaimplementować klasę ​Set zliczającą punkty w secie. Gra toczy się między graczami A i B
do określonej liczby punktów, ale zwycięzca musi mieć 2 punkty przewagi, aby set został
zakończony.

Uwaga: jeśli set został ukończony zaliczanie punktów nie powinno być możliwe.
Metody publiczne:

Set(int doIlu);

Tworzy nowy set grany do ​doIlu​ punktów (i do 2-punktowej przewagi).
void punktA();

Zalicza punkt graczowi A.
void punktB();

Zalicza punkt graczowi B.
void drukujWynik();

Drukuje wynik, np. tak:​ 22:17

char zwyciezca();
Jeśli set został ukończony to zwraca zwycięzcę (​'A'​ lub ​'B'​); jeśli nie zwraca ​'?'​.

bool koniec();

Zwraca true jeśli set został ukończony.

9.​ Zaimplementować klasę ​Czas​, której obiekty reprezentują godziny i minuty.
Metody publiczne:

Czas();
Tworzy obiekt ustawiony na północ (0:00).

Czas(int godzina);
Równa godzina.

Czas(int godzina, int minut);
Tworzy czas o zadanej wartości.

void drukuj24();
Drukuje czas na cout w formacie 24-godzinnym.

void drukuj12();
Drukuje czas na ​cout​ w formacie 12-godzinnym.

int roznica(Czas c);
Zwraca liczbę minut, po jakiej nastąpi podana godzina.

Następnie zmodyfikować tą klasę tak, aby operator ​+=​ dodawał do obiektu odpowiednią liczbę
minut.

10​. Zaimplementować klasę ​Trapez​, której obiekty reprezentują trapezy równoramienne.
Istotne będą tylko wymiary trapezów, a nie ich położenie na płaszczyźnie.
Metody publiczne:

Trapez(double a);

tworzy kwadrat o podanym boku,
Trapez(double a, double b);

tworzy prostokąt o podanych bokach,
Trapez(double a, double h, double kat);

tworzy trapez o podstawie a, wysokości h i kącie przy podstawie kat (wyrażonym w stopniach),
double pole();

zwraca pole trapezu,
double obwod();

zwraca obwód,
bool rowne(Trapez& t);

zwraca ​true​ jeśli trapezy są przystające.
Mamy do dyspozycji funkcje matematyczne (​sin​, ​cos​, ​sqrt​, itd.) oraz stałą ​PI​.

11. ​Zaimplementować klasę ​Obraz​, której obiekty reprezentują czarno-białe, prostokątne
obrazy o ustalonych wymiarach x na y. Obrazy składają się z kwadratowych pikseli, których
współrzędne należą do zakresu (0...x-1), (0...y-1), a jasność jest dana przez liczbę całkowitą z
zakresu od 0 (czarny) do 100 (biały).
Metody publiczne:

Obraz(double sz, double wys);
tworzy nowy, biały obraz o podanej szerokości i wysokości.

Obraz(double sz, double wys, int jasnosc);
tworzy nowy, biały obraz o podanej szerokości i wysokości. Trzeci parametr opisuje jasność
wszystkich punktów.

int jasnosc(int x, int y);
zwraca jasność podanego piksela.

void lustro();
odbija obraz względem osi pionowej (OY).

void wklej(Obraz& o, int x, int y);
wkleja podany obraz tak, aby jego lewy górny róg (tzn. piksel o współrzędnych (0,0)) znalazł się
w punkcie (x,y)

Obraz wytnij(int x, int y, int sz, int wys);
zwraca obraz powstały z wycięcia obszaru o lewym górnym rogu (x,y), szerokości ​sz​ i
wysokości ​wys​. Jeśli wycinany obszar nie mieści się w obrazie, należy zwrócić mniejszy.

12​. Zaimplementować klasę ​Znajomi​, której obiekty reprezentują zbiór osób
(ponumerowanych 1..n). Każda para osób może się znać lub nie (jest to relacja symetryczna, tzn.
jeśli a zna b, to b również zna a).

Metody publiczne:
Znajomi(int n);

Tworzy zbiór ​n​ osób, żadne dwie się nie znają.
bool zna(int a, int b);

Zwraca true wtedy i tylko wtedy, gdy ​a​ zna ​b​.
void poznaj(int a, int b);

Osoby ​a​ i ​b​ stają się znajomymi,
void wspolniZnajomi(int a, int b);

Wypisuje na ekran listę wspólnych znajomych osób ​a​ i ​b​,
void spotkanie(int a);

Wszyscy znajomi osoby ​a​ poznają się ze sobą,
int max();

Zwraca osobę która ma najwięcej znajomych (jeśli takich jest wiele, którąkolwiek z nich).

13. ​Dany jest typ

class Karta { public: int kolor; int ranga; };
reprezentujący karty do gry. Pole ​kolor może przyjmować wartości 1..4, a pole ​ranga
wartości 1..13. Zaimplementować klasę ​ZbiorKart​, której obiekty reprezentują zbiory kart z
52-elementowej talii.
Metody publiczne:

ZbiorKart();
tworzy pusty zbiór kart.

void dodaj(Karta k);
dodaje nową kartę do zbioru.

Karta losowa();
zwraca losową kartę należącą do zbioru. Prawdopodobieństwo wylosowania każdej karty
powinno być jednakowe. Można użyć funkcji

int losuj(int n);
która zwraca losową liczbę z zakresu 1..n.

int ileWKolorze(int kolor);
zwraca liczbę kart w podanym kolorze.

bool sekwens();
zwraca true wtedy i tylko wtedy, gdy zbiór zawiera trzy karty w tym samym kolorze o
sąsiadujących rangach (np. 4,5,6).

14​. Zaimplementować klasę ​Kolo​, której obiekty reprezentują koła na płaszczyźnie.
Metody publiczne:

Kolo(double x, double y, double r);
tworzy koło o środku w punkcie ​(x,y)​ i promieniu ​r​.

void przesun(double dx, double dy);
przesuwa koło o wektor ​(dx, dy)​.

bool zawiera(double x, double y);
zwraca true wtedy i tylko wtedy, gdy koło zawiera punkt ​(x,y)​.

bool zawiera(Kolo k);
zwraca ​true​ wtedy i tylko wtedy gdy dane koło zawiera koło ​k​.

Kolo przechodzace(double x, double y);
zwraca koło współśrodkowe przechodzące przez punkt ​(x,y)​.
Uwaga: funkcja ​sqrt​ zwraca pierwiastek parametru.

15​. Zaimplementować klasę ​Prostokat​, której obiekty reprezentują prostokąty na
płaszczyźnie. Zakładamy, że boki prostokątów są równoległe do osi układu współrzędnych.
Metody publiczne:

Prostokat(double x1, double y1, double x2, double y2);
tworzy prostokąt o wierzchołkach ​(x1,y1)​ i ​(x2,y2)​,

Prostokat(double x, double y, double a);
tworzy kwadrat o środku ​(x, y)​ i długości boku ​a​,

double pole();
zwraca pole prostokąta,

Prostokat czescWspolna(Prostokat p);
zwraca część wspólną z podanym prostokątem (można założyć że jest niepusta).

void powieksz(double c);
powiększa rozmiary prostokąta ​c​ razy. Środek prostokąta powinien zostać zachowany.

16. Zaimplementować klasę ​Macierz​, której obiekty reprezentują kwadratowe macierze liczb
rzeczywistych (tj. typu double).
Metody publiczne:

Macierz(int rozmiar);
tworzy zerową macierz o podanym rozmiarze.

Macierz(int rozmiar, double x);
tworzy macierz o podanym rozmiarze. Wartości na przekątnej powinny być równe x, poza nią 0.

Macierz suma(Macierz& m);
zwraca sumę macierzy. Można założyć, że parametr m ma taki sam rozmiar jak dana macierz.

double slad();
zwraca sumę elementów na przekątnej.

void trans();
transponuje macierz, tzn zamienia elementy o współrzędnych (a,b) z elementami o
współrzędnych (b,a).

double min();
zwraca najmniejszy element macierzy.

17​. Zaimplementować klasę ​Trojmian​, której obiekty reprezentują trójmiany kwadratowe
postaci ax​2​+bx+c. Uwaga: funkcja ​sqrt​ zwraca pierwiastek kwadratowy z podanej liczby.
Metody publiczne:

Trojmian(double a, double b, double c);
tworzy trójmian o podanych współczynnikach.

Trojmian(double x1, double x2);
tworzy trójmian, którego współczynnik a jest równy 1, a pierwiastki to ​x1​ i ​x2​.

int ilePierwiastkow();
zwraca liczbę pierwiastków rzeczywistych trójmianu.

void pomnoz(double s);
mnoży trójmian przez podaną liczbę.

void drukuj();
drukuje współczynniki trójmianu na ekranie.

18. Zaimplementować klasę ​Tablica​, której obiekty reprezentują nieskończone tablice liczb
typu ​int​. Każda tablica zawiera elementy o indeksach 0,1,2,3,.. itd.
Metody publiczne:

Tablica();
tworzy nową tablicę wypełnioną zerami.

void ustaw(int indeks, int wartosc);
ustawia podany element o podanym indeksie.

int wartosc(int indeks);
zwraca element o podanym indeksie.

int suma();
zwraca sumę elementów tablicy.

void ustaw(int a, int b, int wartosc);
ustawia elementy o indeksach a, a+1, …, b-1 na zadaną wartość.

void przesun();
przesuwa elementy tablicy o 1 w lewo, tzn. element indeksie 0 staje się równy elementowi o
indeksie 1, element o indeksie 1 elementowi o indeksie 2, itd.

19.​ Zaimplementować klasę ​Odcinek​. Obiekt tej klasy reprezentuje odcinek na płaszczyźnie.
Metody publiczne:

Odcinek(double x1, double y1, double x2, double y2);
Tworzy odcinek o końcach ​(x1,y1)​ i ​(x2, y2)​.

void przesun(double dx, double dy);
Przesuwa odcinek o wektor ​(dx, dy)​.

double dlugosc();
Zwraca długość odcinka (funkcja ​sqrt​ liczy pierwiastek).

bool rownolegly(Odcinek o);
Zwraca ​true​ jeśli odcinek o jest równoległy do danego.

bool przecina(Odcinek o);
Zwraca ​true​ jeśli odcinek o przecina dany odcinek.

20​. Zaimplementować klasę ​Liczby​, której obiekty reprezentują zbiory liczb z zakresu od 0 do
n-1, gdzie n jest wartością podaną w konstruktorze. Liczby w zbiorze nie mogą się powtarzać.
Metody publiczne:

Liczby(int n);
Tworzy pusty zbiór.

int sumaElementow();
Zwraca sumę liczb należących do zbioru.

void dodaj(int a, int b);
Dodaje do zbioru liczby od a do b-1.

bool zawiera(Liczby& z);
Zwraca true jeśli dany zbiór zawiera zbiór podany jako parametr.

Liczby suma(Liczby& z);
Zwraca sumę zbiorów – wywołującego metodę i podanego jako parametr.

21. ​Zaimplementować klasę ​Liczby​, której obiekty reprezentują zbiory liczb z zakresu od 0 do
n-1, gdzie n jest wartością podaną w konstruktorze. Liczby w zbiorze nie mogą się powtarzać.
Metody publiczne:

Liczby(int n);
tworzy pusty zbiór.

int sumaElementow();
zwraca sumę liczb należących do zbioru.

void dodaj(int a, int b);
dodaje do zbioru liczby od ​a​ do ​b-1​.

bool zawiera(Liczby& z);
zwraca true jeśli dany zbiór zawiera zbiór podany jako parametr.

Liczby suma(Liczby& z);
zwraca sumę zbiorów – wywołującego metodę i podanego jako parametr.

22. ​Zaimplementować klasę ​Kolejka​, której obiekty to ciągi liczb, niekoniecznie różnych,
które można dodawać i usuwać. Ważna jest kolejność w jakiej elementy występują. Można
założyć, że w żadnym momencie w kolejce nie ma więcej liczb niż wartość podana w
konstruktorze.
Metody publiczne:

Kolejka(int n);
tworzy pustą kolejkę.

void dodaj(int a);
dodaje liczbę a na końcu kolejki.

int usun();
usuwa pierwszą liczbę z kolejki i zwraca ją jako wynik​.

void ostatniBedaPierwszymi();
odwraca kolejność elementów tak, że ostatni staje się pierwszym przedostatni drugim, itd.

int usunW(int a);
usuwa z kolejki wszystkie elementy równe ​a​, kolejność pozostałych elementów nie ulega
zmianie.

23. Zaimplementować klasę ​Plansza​. Obiekt tej klasy reprezentuje kwadratową planszę o
wymiarach podanych w konstruktorze. Na każdym polu planszy może się znajdować (lub nie)
pionek.
Metody publiczne:

Plansza(int r);
tworzy pustą planszę o wymiarach ​r x ​r​. Każde jej pole jest określone przez współrzędne
(x,y)​ z zakresu 1...​r​.

void umiesc(int x, int y);
umieszcza pionek na podanym polu.

int ile();
zwraca liczbę pionków na planszy.

int sasiedzi(int x, int y);
zwraca liczbę pionków na polach sąsiadujących z polem (x,y). Sąsiednie pola to te, które stykają
się bokami lub rogami.

void usun();

usuwa z planszy wszystkie pionki, które mają mniej niż dwóch sąsiadów. Np. jeśli na planszy
znajdowały się tylko trzy pionki w jednej linii na sąsiednich polach, to skrajne należy usunąć
(mają tylko jednego sąsiada), a środkowy powinien pozostać.

24​. Zaimplementować klasę​ ​Drogi​, której obiekty sieć dróg w pewnym kraju. Każda droga
łaczy dwa miasta, miasta są ponumerowane 0,..,n-1, a między dwoma miastami może istnieć co
najwyżej jedna droga.
Metody publiczne:

Drogi(int n);
tworzy pustą sieć dróg pomiędzy miastami 0,...,n-1,

void dodajDroge(int a, int b, int d);
dodaje drogę pomiędzy miastami​ ​a​ i​ ​b​ ​o długości​ ​d​; jeśli droga już była zostaje zastąpiona
nową,

void usunDroge(int a, int b);
usuwa drogę z ​a​ do ​b​,

int sumaDlugosci();
zwraca sumę długości wszystkich dróg w kraju.

void drogiZMiasta(int a);
drukuje listę dróg wyjazdowych z danego miasta: ich długości oraz dokąd prowadzą.

bool jestTrasa(int a, int b);
zwraca ​true​ jeśli z miasta ​a​ można dojechać do miasta ​b​ (być może przez inne miasta).

25. ​Zaimplementować klasę ​Trasa​, która przechowuje informacje o trasie przebytej przez
wędrowca. Trasa składa się z odcinków; każdy odcinek jest scharakteryzowany przez jego
długość (w poziomie) i wysokość n.p.m. jego końców.
Metody publiczne:

Trasa(double wysokosc);
nowa trasa rozpoczynająca się na podanej wysokości.

void wedruj(double dlugosc, double wysokosc);
zaznacza nowy odcinek trasy o podanej długości kończący się na poziomie ​wysokosc​.

double dystans();
zwraca całkowity pokonany dystans (w poziomie).

double najwiekszePodejscie();
zwraca największe podejście w trakcie pojedynczego odcinka, tj. różnicę pomiędzy wysokością
na końcu i na początku.

int ileOdcinkow();
zwraca liczbę pokonanych odcinków trasy.

26.​ Zaimplementować klasę​ ​Mapa​, której obiekty reprezentują układ miast w pewnym kraju.
Każde miasto ma unikalny numer, współrzędne na mapie oraz liczbę mieszkańców.
Metody publiczne:

Mapa();
tworzy pustą mapę,

void dodaj(int miasto, double x, double y, int mieszk);
dodaje miasto o numerze ​miasto​, współrzędnych ​x​, ​y​ oraz ​mieszk​ mieszkańcach. Jeśli
miasto o tym numerze już istnieje, nic się nie dzieje.

void ustawMieszk(int miasto, int mieszk);
ustawia nową liczbę mieszkańców (o ile miasto istnieje).

int najblizsze(double x, double y);
zwraca numer miasta które znajduje się najbliżej podanego punktu.

int mieszkancy(double x, double y, double r);
zwraca liczbę osób zamieszkałych w promieniu ​r​ od podanego punktu.

void usun(int miasto);
usuwa miasto o podanym numerze.

27.​ Zaimplementować klasę ​Wektor​, której obiekty reprezentują wektory w przestrzeni R​n​.
Metody publiczne:

 ​Wektor(int n);
tworzy wektor (0,…,0) w R​n​,

 ​double dlugosc();
zwraca długość wektora (funkcja ​sqrt​ liczy pierwiastek),

 ​double iloczynSkalarny(Wektor& w);
zwraca iloczyn skalarny z podanym wektorem,

void pomnoz(double c);
mnoży wektor przez podany skalar.

Ponadto należy zdefiniować operator ​+​, tak, aby zwracał sumę wektorów oraz zadbać o to, żeby
przypisanie wektorów działało poprawnie.

28.​ Zaimplementować klasę ​ListaPlac​, której obiekty reprezentują listy pracowników pewnej
firmy. Dla każdego pracownika pamiętamy jego nazwisko oraz pensję.
Metody publiczne:

 ​ListaPlac​();
nowa, pusta lista płac,

void dodaj(char* nazwisko, int pensja);
dodaje nowego pracownika; jeśli istnieje już pracownik o podanym nazwisku, nic się nie dzieje,

void usun(char* nazwisko);

usuwa pracownika o podanym nazwisku (o ile taki jest),
void podwyzka(double ileProcent);

podnosi wszystkie pensje o podany procent,
void ustawPensje(char* nazwisko, int nowaPensja);

ustawia pensję podanego pracownika; jeśli takiego nie ma, nic się nie dzieje,
void lista();

drukuje listę płac; każda pozycja to nazwisko i pensja. Pozycje powinny być uporządkowane od
najwyższej pensji do najniższej.

29​. Zaimplementować klasę ​Urna​, której obiekty reprezentują głosy oddane na poszczególnych
kandydatów w wyborach. Kandydaci mają numery 0,..,n-1, liczba wyborców uprawnionych do
głosowania podawana jest w konstruktorze.
Metody publiczne:

Urna(int ileKadydatow, int ileWyborcow);
tworzy pustą urnę, startuje podana liczba kandydatów,

void glos(int kandydat);
dodaje głos na kandydata o podanym numerze, jeśli wszyscy wyborcy już głosowali nic się nie
dzieje,

int ileNaKandydata(int kandydat);
zwraca liczbę głosów oddanych na danego kandydata,

double frekwencja();
zwraca frekwencję, tj. stosunek głosów oddanych do liczby uprawnionych do głosowania,

bool drugaTura();
zwraca true, jeśli żaden z kandydatów nie zdobył więcej niż połowy wszystkich oddanych
głosów,

void raport();
należy wydrukować listę wyników poszczególnych kandydatów w procentach. Każda linijka
powinna zawierać numer kandydata i procent zdobytych głosów. Kandydatów należy
wydrukować w kolejności malejącej liczby głosów.

30. ​Zaimplementować klasę ​Lamana​, której obiekty reprezentują łamane na płaszczyźnie.
Każda łamana jest wyznaczona przez ciąg punktów, być może jednoelementowy.
Metody publiczne:

Lamana(double x, double y);
tworzy łamaną składającą się z jednego punktu,

void dodajNaKoncu(double x, double y);
dodaje punkt na końcu łamanej,

double dlugosc();
zwraca długość łamanej (funkcja ​sqrt​ liczy pierwiastek),

double najdluzszy();
zwraca długość najdłuższego odcinka łamanej,

bool powtorzenie();
 zwraca ​true​ jeśli pewien punkt łamanej się powtarza.

