
Programowanie
komputerowe

Zajęcia 8

Przykład – liczby wymierne
class Wymierna {
public:

Wymierna() { l=0; m=1; }
Wymierna(int n) { l=n; m=1; }
Wymierna(int a, int b) { l=a; m=b; }
void drukuj() { cout << l << "/" << m; }
Wymierna suma(Wymierna w) {

return Wymierna(l*w.m+w.l*m, m*w.m);
}

private:
int l,m;

};

Automatyczna konwersja
● Jeśli podamy wartość, która nie ma odpowiedniego typu, kompilator próbuje

ją zamienić na poprawną, np.
○ double x=2; // 2 jest typu int, zostanie zamienione na 2.0 typu double
○ int n; if(n) { … }; // n zostanie zamienione na false jeśli n=0 i true jeśli n!=0

● Można zdefiniować konwersję z dowolnego typu T na typ klasowy K, który
definiujemy. W tym celu należy zdefiniować konstruktor w klasie K, którego
parametrem jest T.

● Przykład: w klasie Wymierna zdefiniowany jest konstruktor z parametrem int.
Poprawne są więc wyrażenia

Wymierna w=5; // w będzie równa 5/1
w.suma(3); // w powiększy się o 3

Przeciążanie operatorów
Żeby dodać dwie liczby wymierne w i x należy napisać

Wymierna y=w.suma(x);
co nie jest zbyt wygodne (szczególnie gdy chcemy tworzyć bardziej
skomplikowane wyrażenia). Można jednak zdefiniować znaczenie standardowych
operatorów, takich jak +, *, ++, ==, <, itd. dla klas tworzonych przez użytkownika.
Można to zrobić na dwa sposoby:

● W klasie K zdefiniować metodę operator+(T t). Jeśli k jest typu K, t typu
T, to wyrażenie k+t zostanie zamienione na k.operator+(t).

● Zdefiniować funkcję operator+(T t, U u). Wtedy t+u (t typu T, k typu
K) zostanie zamienione na operator+(t, u).

● Nie wolno używać obu sposobów jednocześnie.

Przeciążanie operatorów – przykład
Dodawanie w klasie Wymierna.

● Sposób 1: w klasie Wymierna dodać metodę
Wymierna operator+(Wymierna w) {

return Wymierna(l*w.m+w.l*m, m*w.m);
}

● Sposób 2: dodać funkcję (poza klasą Wymierna)
Wymierna operator+(Wymierna w1, Wymierna w2) {

return Wymierna(w1.l*w2.m+w2.l*w1.m, w1.m*w2.m);
}

Drukowanie obiektów
Drukowanie obiektów klasy T może być zrealizowane jako funkcja

ostream& operator<<(ostream& f, T x)

Np. dla klasy Wymierna można dodać funkcję (globalną, na zewnątrz klasy)
ostream& operator<<(ostream &f, Wymierna w) {

f << w.l << "/" << w.m;
return f;

}
Ponieważ korzysta ona z pól prywatnych, dodajemy (w klasie Wymierna)
stosowne zezwolenie (deklarację zaprzyjaźnienia):

friend ostream& operator<<(ostream &f, Wymierna w);

Konwersja raz jeszcze
Jeśli chcemy umożliwić konwersję z tworzonego przez nas typu klasowego K na
pewien typ T, dodajemy w klasie K metodę

operator T();
Np. konwersję Wymierna => double definiujemy dodając

operator double() {
return (double)l / m;

}
Uwaga: (double)l oznacza wymuszenie konwersji int=>double.

Ćwiczenia
1. Zadbać o to, żeby klasa Wymierna operowała na skróconych ułamkach, tj.

żeby wynikiem działania 1/9+1/9 było 2/9 a nie 18/81.
2. Dodać do klasy Wymierna operatory -, *, /, ==, <, +=, itd.
3. Napisać program, który pyta użytkownika o liczbę wymierną, a następnie

przedstawia ją w postaci sumy różnych ułamków postaci 1/n.

