Scheme-PG

David J. Neu
djneu at acm dot org

Version 0.2.0
September 16, 2004

1 Introduction

Scheme-PG is a MzScheme extension and set of associated Scheme procedures
and macros that combine to provide a simple yet powerful interface between
PLT Scheme and the PostgreSQL database management system. It strives to
provide programmers with an interface to PostgreSQL whose syntax is natural
for Scheme programmers, supports classic Scheme programming idioms, and
shields them from the details of interacting with PostgreSQL and creating SQL
statements.

The core Scheme-PG functionality is implemented as a MzScheme extension,
that utilizes PostgreSQL’s libpq C library. This extension provides users with
the ability to open and close connections to a PostgreSQL database server, exe-
cute arbitrary SQL statements, execute SQL SELECT and FETCH statements
that return rows into random access data structures, to access the data in these
data structures, and to manage large objects.

Scheme-PG extends the core functionality to include access to procedures
and data structures that allow programmers to access data using Scheme pro-
cedures that implement cursors and stream abstractions.

Finally, taking a cue from Scheme-QL, Scheme-PG provides a set of proce-
dures and macros that allow programmers to create SQL statements using a
little language implemented in Scheme.

Scheme-PG is released as open source software under the MIT License.
Please see the accompanying license.txt file and visit http://www.opensource.org
for more information.

2 Getting Started

In order to use Scheme-PG, PLT Scheme and PostgreSQL must be installed.
The current compile and installation scripts have been tested on FreeBSD 5.2.1
with the PLT Scheme 208, installed in /usr/local/plt/ and with the PostgreSQL
7.4.5 port. They may need to be modified for other configurations. Specifically

(system-library-subpath), which is hardcoded to i386-freebsd will need to be
modified for other systems.

1. Download the current tgz file from http://scheme-pg.sourceforge.net/ into
a temporary directory.

2. Unpack the tgz file.

Move into the scheme-pg directory.

- w

Run ./compile.sh
5. Run ./link.sh

6. As root run ./install.sh, to create a scheme-pg directory structure under
Jusr/local/plt/collect and to copy the the Scheme-PG into this structure.

An extensive set of example programs can be found in the included examples.ss
file.

3 Connections

Prior to accessing a PostgreSQL database it is necessary to obtain a connection
to the PostgreSQL server. The functions described in this section support the
opening, closing and management of these connections.

(connection-open aconnection-string) PROCEDURE
connection-open: string — c-pointer

The connection-open procedure essentially wraps the libpq PQconnectdb func-
tion. It accepts a string that contains the information necessary to establish
a connection with the PostgreSQL server and returns a c-pointer to a libpq
PGconn C structure. The PGconn structure will be simply referred to as a
connection in Scheme. The exact format of aconnection-string can be found in
the libpq documentation of the PQconnectdb function.

(connection? aconnection) PROCEDURE
connection?: connection — boolean

The connection? procedure returns true if aconnection is a connection, i.e. a
c-pointer to a PGceconn structure, and false otherwise.

(connection-close aconnection) PROCEDURE
connection-close: connection — void

The connection-close procedure essentially wraps the libpq PQfinish function
which closes the connection to the PostgreSQL server and frees any memory
utilized by the the associated PQconn structure pointed to by aconnection.

4 SQL Statement Execution

(execute-sql aconnection astatement) PROCEDURE
execute-sql: connection string — integer

The execute-sql procedure accepts a connection and a string containing an SQL
statement. It returns the number of rows affected by the execution of the
SQL statement. It supports the execution of SQL statements that do not re-
turn query results. Attempts to execute SQL statements such as SELECT and
FETCH that do return query results will raise an exception.

5 Results

The PostgreSQL libpq library includes a C structure called PGresult that, in
conjunction with a family of associated libpq functions, provide random access
to the rows returned by execution of an SQL SELECT or FETCH statement.
In addition, information such as the number of rows returned and metadata
including column names, data types, etc. is available. It is important to note
that the PGresult structure does not maintain any state information about the
“current position” in the set of rows. The PGresult structure will be simply
referred to as a result in Scheme. Programmers will probably not want to use
results directly, but will likely want to make use of the abstraction provided
by cursors (see §6) or streams (see §7) so that they can easily switch the un-
derlying implementation as an application’s requirements evolve. The functions
described in this section support the opening, closing and management of results.

(result-open aconnection aselect) PROCEDURE
result-open: connection string — c-pointer

The result-open procedure accepts a connection and a SQL SELECT or SQL
FETCH statement as a string, and returns a connection object.

(result? aresult) PROCEDURE
result?: result — boolean

The result? procedure returns true if aresult is a result, i.e. a c-pointer to a
PGresult structure, and false otherwise.

(result-ref aresult aindex) PROCEDURE
result-ref: result integer — association-list

The result-ref procedure accepts a result and a non-negative integer, and returns
an association list containing the row in position aindex 4+ 1 (i.e. 0 corresponds
to the first row) in the result. The keys of the association list are the column
names given as Scheme symbols and the values are the column values. If a
column value is NULL then the symbol 'null is returne. If aindex is negative or
greater than one less the number of row retrieved, an exception is raised.

(result-length aresult) PROCEDURE
result-length: result — integer

The result-length procedure accepts a result and returns a non-negative integer
containing the number of rows returned by the SQL SELECT or FETCH state-
ment.

(result-metadata aresult) PROCEDURE
result-metadata: result — association-list

The result-metadata procedure accepts a result and returns an association list
containing metadata for the rows returned by the SQL SELECT or FETCH
statement. The keys of the association list are the column names given as
Scheme symbols and the values are themselves association-lists with keys ’ta-
ble, ’column and ’type, corresponding to the table name, column name and
column type respectively.

(result-close aresult) PROCEDURE
result-close: result — void

The result-close procedure essentially wraps the libpq PQclear function which
frees any memory utilized by the the associated PQresult structure pointed to
by aresult.

6 Cursors

PostgreSQL provides the ability to associate SQL SELECT statements with
named server-side constructs known as CURSORs. Referring to CURSORs by
name, programmers can iterate over the rows returned by the associated SE-
LECT statement using commands such as FIRST, NEXT, PREVIOUS, and
LAST, as well as commands that allow the retrieval of rows by row number.
PostgreSQL CURSORs are complemented by the client-side result data struc-
tures that were discussed in §5. Scheme-PG allows programmers to specify
whether the rows retrieved by a query should be be maintained as a result, or
as a CURSOR, and provides a single set of Scheme procedures to manage the
rows regardless of the which option is used. This set of procedures operate on
a Scheme struct called a cursor that contains the information needed store the
rows as either results or CURSORs. It is important to note that while the set
of procedures available to manage rows is independent of the underlying stor-
age mechanism, the efficiency of many of these procedure varies significantly
depending on whether results or CURSORs. This fact will be will be further
discussed below.

(make-cursor

aconnection aname aclient/server aposition aresult aselect) PROCEDURE
make-cursor: connection symbol symbol integer result string — struct
The cursor struct contains all information necessary to manage rows retrieved
by a query, maintaining the rows either as a result or as a CURSOR. The

cursor-connection field contains a connection, i.e. a c-pointer to a PGconn
structure that maintains a connection to a PostgreSQL database. The cursor-
select field is a string that contains the SQL SELECT statement to be exe-
cuted. The client/server field is a symbol that can have either value ’client or
'server. A value of ’client for the client/server field indicates that Scheme-PG
should maintain the rows as a client-side result, while a value of ’server in-
dicates that Scheme-PG should maintain the rows as a server-side CURSOR.
When client/sever is ’client, the cursor-result field contains a result, i.e. a c-
pointer that points to a PGresult structure, that maintains the retrieved rows.
When client/sever is ’server, the cursor-name field contains a symbol that is
used to reference a CURSOR that maintains the retrieved rows. The cursor-
position field is a non-negative integer that maintains the current row number
in the retrieved rows. The reason that cursors maintain cursor-position is to
facilitate the implementation of the cursor-next and cursor-previous procedures
when cursor-client/server has value 'client. As mentioned, the result data struc-
ture is like a Scheme vector, it provides random access to its elements, but does
not maintain any state information about the “current position” in the set of
rows. Rows in PostgreSQL results are numbered from 0 to one less the number
of rows retrieved by the query, however, rows in PostgreSQL cursors are num-
bered from 1 to the number of rows retrieved by the query. The cursor-position
in the cursor struct utilizes the numbering scheme employed by PostgreSQL
results, so 0 < cursor-position < number of results retrieved — 1. It should be
noted that the make-cursor procedure should not be utilized by programmers
to create a new cursor, this is the purpose of the cursor-open procedure.

(cursor-open aconnection aselect aclient/server) PROCEDURE
cursor-open: connection string symbol — struct

The cursor-open procedure is used to create a new cursor. It accepts a con-
nection, a string containing an SQL SELECT command to run and a symbol
having value either ’client or ’'server, executes the SQL SELECT command in
the manner indicated by aclient/server, and returns a new cursor. It should be
noted that open-cursor is the only function in the cursor-xxx family in which we
check if cursor-client/server has a valid value, i.e. whether it is client or ’server.
In all other cursor-xxx functions, we check if cursor-client/server is ’client and
if not, we assume that it’s ’server.

(cursor-metadata acursor) PROCEDURE
cursor-metadata: acursor — association list

The cursor-metadata procedure accepts a cursor and returns an association list
containing metadata in the same format as the result-metadata procedure re-
turns.

(cursor-ref! acursor aindex) PROCEDURE
cursor-ref!: cursor integer — association list

The cursor-ref! procedure accepts a cursor and a non-negative integer, aindex
and returns the aindex' row as an association list and sets cursor-position to

aindex. The keys of the association list are the column names of the columns
returned by the query given as symbols and the values are the column values.
When aindex is not between 0 and one less than the number of rows retrieved,
including the specific case when the query is empty, an exception is raised.

(cursor-ref acursor aindex) PROCEDURE
cursor-ref: cursor integer — association list

The cursor-ref procedure accepts a cursor and a non-negative integer, aindex
and returns the aindex' row as an association list without modifying cursor-
position. The format of the association list is described in the documentation for
the cursor-ref! procedure. When aindex is not between 0 and one less than the
number of rows retrieved, including the specific case when the query is empty,
an exception is raised.

When cursor-client/server is ’client, both the client-ref! and client-ref proce-
dures are quite efficient as they capitalize on the random access methods of Post-
greSQL results and simply retrieve the aindex row. When cursor-client /server is
‘server, these procedures are in the worst case less efficient. For example, client-
ref! calls executes a SQL FETCH ABSOLUTE command. The worst case per-
formance of this call involves traversing, albeit on the server, O(|rows retrieved|)
rows. The performance of client-ref is even worse, since in order to avoid reset-
ting cursor-position, it makes two calls to client-ref!, one to retrieve the aindex
row and another to reset cursor-position (and the CURSOR itself) to the posi-
tion prior to the first call.

(cursor-next acursor) PROCEDURE
cursor-next: cursor — association list

The cursor-next procedure sets the cursor-position to cursor-position + 1 and
returns the cursor-position + 1" row. The format of the association list is de-
scribed in the documentation for the cursor-ref! procedure. On attempts to
retrieve beyond the last row or from an empty query, an ’eoc-object is returned.

(cursor-previous acursor) PROCEDURE
cursor-previous: cursor — association list

The cursor-previous procedure sets the cursor-position to cursor-position — 1
and returns the cursor-position — 1** row. The format of the association list is
described in the documentation for the cursor-ref! procedure. On attempts to
retrieve before the first row or from an empty query, an ’eoc-object is returned.

(cursor-first acursor) PROCEDURE
cursor-first: cursor — association list

The cursor-first procedure sets the cursor-position to 0 and returns the first
row as an association list. The format of the association list is described in the
documentation for the cursor-ref! procedure. On attempts to retrieve from an
empty query, an ’eoc-object is returned.

(cursor-last acursor) PROCEDURE
cursor-last: cursor — association list

The cursor-last procedure sets the cursor-position to one less than the number
of rows retrieved and returns the last row as an association list. The format of
the association list is described in the documentation for the cursor-ref! pro-
cedure. On attempts to retrieve from an empty query, an ’eoc-object is returned.

(cursor-length acursor) PROCEDURE
cursor-length: cursor — integer

The cursor-length procedure accepts a cursor and returns a non-negative integer
which is the the number of rows retrieved by the underlying query. It does this
without changing the cursor-position of acursor. When client/server is ’server
this operation loops through the entire set of results.

(eoc-object? arow) PROCEDURE
eoc-object?: association-list — boolean
The eoc-object? procedure returns #t if arow is ’eoc-object and #f otherwise.

(cursor-close acursor) PROCEDURE
cursor-close: cursor — void

The cursor-close “closes” the given cursor by either calling calling result-close
in the case that cursor-client/server is ’client, or calling using the appropriate
SQL commands to close the associated CURSOR.

It is important to note that procedures cursor-first, cursor-next, cursor-
previous, cursor-last and cursor-ref! have the side-effect of setting cursor-
position to the position of the row that they return. While this behavior seems
to be what a programmer would expect from the cursor-first, cursor-previous,
cursor-next and cursor-last procedures, it seems to be unusual behavior for a
xxx-ref function. For example, consider list-ref or vector-ref. Hence the proce-
dure name cursor-ref! rather than cursor-ref. The decision to include procedure
cursor-ref! with this side-effect was made because the PostgreSQL FETCH func-
tion utilized to implement it when cursor-aclient/server is ’server, essentially also
has this side-effect and as will be seen, the work around includes a performance
penalty. The procedure call (cursor-ref the-cursor 10) is implemented using the
SQL command FETCH ABSOLUTE 10 FROM mycursor, after execution of
this command, the cursor position, on the PostgreSQL server, is set to the 10"
row. To see this note that if a subsequent call to (cursor-next the-cursor), which
is implemented using the SQL command FETCH NEXT FROM mycursor, will
result in the 11*"* row being return. To avoid this side-effect in, one strategy
would be to make two FETCH calls. The first call would retrieve the desired
data, and the second call would reposition the cursor to its position prior to
the first call and simply discard any data retrieved. The cursor-ref procedure
utilizes this strategy, thereby leaving cursor-position unchanged.

7 Streams

Streams are Scheme data structures that represent sequences of data of infinite
or unknown size and that support a similar set of procedures to those that are
defined on Scheme lists. They have the advantage of delaying generation of
list components until they are needed. Therefore, in Scheme-PG, when using
cursors with cursor-client /server set to ’server, this behavior means that we can
use list-like procedures on query results without moving all retrieved rows from
the server to the client.

The stream implementation included with Scheme-PG is similar to that pre-
sented in many classic Scheme references and therefore only special features will
be discussed here.

Most streams are implemented as promises that when forced return another
promise, with the car of which is a value of interest and the cdr of which is an-
other promise. Scheme-PG streams are similar except that the aforementioned
car is a cons cell whose car is the value of interest, i.e. the next row in the set of
retrieved rows, and whose cdr is the cursor used to manage the set of retrieved
rows. Scheme-PG streams are of the form

((rowl cursor) . promisel) ((row2 cursor) . promise2) - - -

The state, e.g. the cursor-position, of the cursor varying in each stream com-
ponent. For example, the first component of the stream, the car will be a cons
cell containing the first row retrieved and the underlying cursor, with cursor-
position set to 0, and the cdr will be promise that when forced will have a car
containing the second row and underlying cursor, with cursor-position set to 1,
etc. As will be seen below, calling stream-cursor, which simply calls cdar on a
stream returns a cursor on which cursor-ref, cursor-ref!, etc. can be called.

Making the cursor available as shown above, was an important design choice,
since this allows procedures such as stream-ref, stream-ref!, stream-length and
stream-metadata to be conveinently implemented by simply calling the obvious
cursor procedures. In the case of the first three procedures this design also re-
sults in a much more efficient implementations. For example, a classic stream-ref
implementation would loop through all rows until it reached the requested one,
but since the cursor is available this can be avoided — when cursor-client /server
is ’client the operation is of constant time.

So, Scheme-PG streams have the best of both worlds: delayed list operations
as well as fast stream-ref! and stream-ref procedures that don’t involve looping
when cursor-client/server is 'client and even when cursor-client/server is ’server,
the FETCH ABSOLUTE SQL command does the looping on the PostgreSQL
server rather than bringing all the data over to the client.

8 Utility Procedures

(escape-string astring) PROCEDURE
escape-string: string — string

The escape-string procedure accepts a string and returns the string properly
prepared for use by PostgreSQL.

9 SQL Statement Creation

In order to create SQL statements, programmers frequently utilize error prone
and often syntactically unappealing string formatting operations. Taking a cue
from Scheme-QL, Scheme-PG provides a set of procedures and macros that allow
programmers to create SQL statements using a little language implemented in
Scheme. While this little language is still under development, it implements
enough of SQL that it should prove useful for many applications.

Scheme-PG introduces a set of new forms that mirror a subset of the SQL
language functions such as SELECT, INSERT, UPDATE and DELETE. These
new forms return valid SQL statements as Scheme strings, are not dependent
on other Scheme-PG functionality, and therefore can be used by themselves to
support SQL statement creation for use with other Scheme database packages.'

In the new forms introduced by Scheme-PG

e SQL keywords such as SELECT, WHERE, UPDATE and DELETE are

macro literals

e SQL objects such as columns, tables, views, etc. are represented as Scheme
symbols

e SQL values such as the value to be inserted into a database or the value
used in a condition in a SQL WHERE clause can be Scheme strings or
Scheme numbers in Scheme-PG

Scheme-PG requires that Scheme symbols appear in positions where SQL ob-
jects should appear (e.g. a column list in a SELECT statement) and it requires
that Scheme strings or numbers appear in positions where SQL values should
appear (e.g. a value in an INSERT statement). Scheme-PG handles proper for-
matting of values. Specifically, the escape-string procedure, (see §8) is called on
strings and the result is surrounded by single quotes. Scheme-PG also formats
SQL objects by surrounding them with double quotes so that table or column
names can for example contain spaces or dashes. Positions in the forms where
Scheme-PG expects an SQL object or SQL value are are quasiquoted, so un-
quoting (e.g. ,first-name ,(get-first-name)) can be utilized.

(where condition) SYNTAX
where: condition — string

where: and (listof conditions) — string

where: or (listof conditions) — string

where: not (listof conditions) — string

9

1To use the little language feature by itself simply (require (lib "sql.ss” ”scheme-pg”)).

The where macro supports the creation of WHERE clauses for use in SQL
statements such as SELECT, UPDATE and DELETE. Fundamental to the
where clause is a condition which is a length three proper list (operator column
value). In a condition, a valid operator is a symbol, a valid column is either
a symbol representing a column name or a length two proper list of symbols
representing a table name and a column name, and a valid value is either a valid
column or a string or number. The case of value being a valid column occurs
in a condition in which the values of two database columns are compared. For
example,

e SELECT * FROM pers WHERE first-name = last-name
e SELECT * FROM pers,addr WHERE pers.id = addr.id.

The case of value being a string or number occurs in a condition in which the
value of a database column is compared to a constant. For example,

e SELECT * FROM pers WHERE last-name LIKE "Do%’
e SELECT * FROM pers WHERE age < 22.

If value is a valid column it is formatted as described above. If value is not
a valid column then, if it is a string it is formatted as described above, if it
is a number it is returned unformatted and in all other cases an exception is
raised. An example of an additional Scheme data type that could be supported
as a value in future releases is a list, which could be used in an SQL IN, e.g.
SELECT * FROM addr WHERE state IN ('NH’, 'NJ’, 'NY?).

Scheme-PG tranforms a condition (operator column value) into the string
“column operator value” formatting its components as described above. The
following examples correspond to the four SELECT statements listed above

e (= first-name last-name) — first-name = last-name

(
(= (pers id) (addr id)) — pers.id = addr.id
(

like last-name “Do%”) — last-name LIKE "Do%’

(< age 22) — age < 22

The where macro accepts either a single condition or the literals and, or and
not and a list of conditions. Programmers can build where clauses that contain
arbitrarily complex Boolean expression through use of and, or and not as shown
by the following examples

e (where (and (like last-name “Do%”) (< age 22))) —
WHERE last-name LIKE 'Do%’ AND age < 22

e (where (or (and (> age 18) (< age 22)) (like last-name “Do%”))) —
WHERE (age > 18 AND age < 22) OR last-name LIKE 'Do%’

10

(select acolumns atables awhere) SYNTAX
select: (listof symbol) (listof symbol) where — string

select: all (listof symbol) where — string

The select macro supports the creation of SQL SELECT statements. It accepts
a list of column names as symbols, a list of table names as symbols and an
optional where clause. In lieu of the list of column names the single literal all
can be provided to generate the * in the common SELECT * ... statement.

(insert atable avalues) SYNTAX
insert: symbol (listof strings and/or numbers) — string

(insert atable acolumns avalues) SYNTAX
insert: symbol (listof symbols) (listof strings and/or numbers) — string

(insert atable acolumns-values) SYNTAX
insert: symbol (listof (symbols . string and/or number)) — string

(insert atable acolumns-values) SYNTAX
insert: symbol (listof (symbols string and/or number)) — string

The insert macro has four rules that support the creation of INSERT statements
as shown in the examples below. The following form implements the values-only
format of an INSERT statement.

e (insert pers (1 “John” “Doe” 20)) —
INSERT INTO “pers” (1,'John’,’Doe’,20)

The following forms all generate the same INSERT statement.
e (insert pers (id first-name last-name age) (1 “John” “Doe” 20))

e (insert pers ((id . 1) (first-name . “John”) (last-name . “Doe”) (age .

20)))

e (insert pers ((id 1) (first-name “John”) (last-name “Doe”) (age 20))) —
INSERT INTO “pers” (“id”,“first-name”,“last-name”, “age”)
VALUES (1, John’, "Doe’,20)

(delete atable) SYNTAX
delete: symbol — string

(delete atable awhere) SYNTAX
delete: symbol where — string

The delete macro has two rules that support the creation of DELETE statements
as shown in the examples below.

o (delete pers) — DELETE FROM “pers”

11

e (delete pers (where (and (< age 45) (= state "NJ”)))) —
DELETE FROM ”pers” WHERE "age” < 45 AND ”state” = 'NJ’

(update atable acolumns-values) SYNTAX
update: symbol (listof (symbols . string and/or number)) — string

(update atable acolumns-values) SYNTAX
update: symbol (listof (symbols string and/or number)) — string

(update atable acolumns avalues) SYNTAX
update: symbol (listof symbols) (listof strings and/or numbers) — string

(update atable acolumns-values where) SYNTAX
update: symbol (listof (symbols . string and/or number)) where — string

(update atable acolumns-values where) SYNTAX
update: symbol (listof (symbols string and/or number)) where — string

(update atable acolumns avalues where) SYNTAX
update: symbol (listof symbols) (listof strings and/or numbers) where — string

The update macro has six rules that support the creation of UPDATE state-
ments as shown in the examples below. The following three forms all construct
the same UPDATE statement:

e (update pers ((first-name ”John”) (age 20)))
e (update pers ((first-name . ”John”) (age . 20)))

e (update pers ((first-name age) (”John” 20))) —
UPDATE pers SET first-name="John’, age=20

The following three forms all construct the same UPDATE statement:
e (update pers ((first-name ” John”) (age 20)) (where (= last-name ”"Doe”)))

e (update pers ((first-name . ”John”) (age . 20)) (where (= last-name
77Doe77)))

e (update pers ((first-name age) (" John” 20)) (where (= last-name ”Doe”)))
N

UPDATE pers SET first-name="John’, age=20 WHERE age < 20

(limit aselect offset number) SYNTAX
limit: string (non-negative-integer non-negative-integer) — string

The limit macro appends a LIMIT clause to the end of a SELECT. The offset
argument is the number of rows to be skipped, so an offset of 0 means that the
first row returned will be the first row of the result. The number argument is
an upper bound on the number of rows to return. Less than number rows can

12

be returned depending on the number of rows in the result and the value of offset.

(order-by aselect column asc/desc) SYNTAX
order-by: string (listof (symbol ’asc or 'desc))) — string

The order-by macro appends an ORDER BY clause to the end of a SELECT.
It accepts a SELECT statment and a proper list of length two lists that consists
of a symbol representing a column name and either the symbol ’asc (to indicate
the result should be put in ascending order) or the symbol ’desc (to indicate the
result should be put in descending order).

(distinct aselect) SYNTAX
distinct: string — string

The distinct procedure checks to the aselect is a string that begins with ”SE-
LECT”. If so, it replaces ”SELECT” with "SELECT DISTINCT”, otherwise
it raises an exception.

10 Data Type Conversions

This section provides details on the PostgreSQL to Scheme data type conversion
performed by Scheme-PG. The reference material used to develop these conver-
sions included PostgreSQL 7.4.3 Documentation, Chapter 8. Data Types, Inside
PLT Scheme, The C Programming Language and the include file
/usr/local/include/postgresql/server/catalog/pg-type.h. Programmers should
note that s-pg-types.h contains data type constants and was manually con-
structed from the previously mentioned include file. It should be noted that
Scheme symbols will be treated as strings. The PostgreSQL Modifier field indi-
cates the value returned by the PQfmod() function.

PostgreSQL Name bigint

PostgreSQL Alias int8

PostgreSQL OID INT8OID = 20
PostgreSQL Modifier -1

Description signed eight-byte integer
C Type

C function for string to C type con-

version

Scheme symbol bigint

Scheme function to determine Scheme
type from Scheme_Object

Scheme function to extract C type
from Scheme_Object

Scheme function to create
Scheme_Object from C type

13

PostgreSQL Name bigserial
PostgreSQL Alias serial8
PostgreSQL OID INT8OID = 20

PostgreSQL Modifier

-1, How do you know that this is un-
signed?

Description

autoincrementing eight-byte integer

C Type

C function for string to C type con-
version

Scheme symbol

Scheme function to determine Scheme
type from Scheme_Object

Scheme function to extract C type
from Scheme_Object

Scheme function to create

Scheme_Object from C type

PostgreSQL Name bit

PostgreSQL Alias N/A
PostgreSQL OID BITOID = 1560
PostgreSQL Modifier 1

Description

fixed-length bit string

C Type

C function for string to C type con-
version

Scheme symbol

Scheme function to determine Scheme
type from Scheme_Object

Scheme function to extract C type
from Scheme_Object

Scheme function to create

Scheme_Object from C type

14

PostgreSQL Name

bit varying(n)

PostgreSQL Alias

varbit(n)

PostgreSQL OID

VARBITOID = 1562

PostgreSQL Modifier

10

Description

variable-length bit string

C Type

C function for string to C type con-
version

Scheme symbol

Scheme function to determine Scheme
type from Scheme_Object

Scheme function to extract C type
from Scheme_Object

Scheme function to create
Scheme_Object from C type

PostgreSQL Name boolean
PostgreSQL Alias bool
PostgreSQL OID BOOLOID = 16
PostgreSQL Modifier -1

Description

logical Boolean (true/false)

C Type

C function for string to C type con-
version

Scheme symbol

Scheme function to determine Scheme
type from Scheme_Object

Scheme function to extract C type
from Scheme_Object

Scheme function to create
Scheme_Object from C type

15

PostgreSQL Name box
PostgreSQL Alias .

PostgreSQL OID BOXOID = 603
PostgreSQL Modifier -1

Description

rectangular box in the plane

C Type

C function for string to C type con-
version

Scheme symbol

Scheme function to determine Scheme
type from Scheme_Object

Scheme function to extract C type
from Scheme_Object

Scheme function to create
Scheme_Object from C type

PostgreSQL Name

bytea

PostgreSQL Alias

PostgreSQL OID

BYTEAOID = 17

PostgreSQL Modifier

1

Description

binary data

C Type

C function for string to C type con-
version

Scheme symbol

Scheme function to determine Scheme
type from Scheme_Object

Scheme function to extract C type
from Scheme_Object

Scheme function to create
Scheme_Object from C type

16

*PostgreSQL Name

character varying(n)

PostgreSQL Alias varchar(n)
PostgreSQL OID VARCHAROID = 1043
PostgreSQL Modifier 14

Description

variable-length character string

C Type

char *

C function for string to C type con-
version

None

Scheme symbol

character-varying

Scheme function to determine Scheme
type from Scheme_Object

SCHEME_STRINGP

Scheme function to extract C type
from Scheme_Object

SCHEME_STR_VAL,
SCHEME_STRLEN_VAL

Scheme function to create

Scheme_Object from C type

scheme_make _string

PostgreSQL Name character(n)
PostgreSQL Alias char(n)

PostgreSQL OID BPCHAROID = 1042
PostgreSQL Modifier 14

Description

fixed-length, blank padded character
string

C Type

C function for string to C type con-
version

Scheme symbol

Scheme function to determine Scheme
type from Scheme_Object

Scheme function to extract C type
from Scheme_Object

Scheme function to create

Scheme_Object from C type

17

PostgreSQL Name

cidr

PostgreSQL Alias

PostgreSQL OID

CIDROID = 650

PostgreSQL Modifier

-1

Description

IPv4 or IPv6 network address

C Type

C function for string to C type con-
version

Scheme symbol

Scheme function to determine Scheme
type from Scheme_Object

Scheme function to extract C type
from Scheme_Object

Scheme function to create
Scheme_Object from C type

PostgreSQL Name

circle

PostgreSQL Alias

PostgreSQL OID

CIRCLEOID = 718

PostgreSQL Modifier

1

Description

circle in the plane

C Type

C function for string to C type con-
version

Scheme symbol

Scheme function to determine Scheme
type from Scheme_Object

Scheme function to extract C type
from Scheme_Object

Scheme function to create
Scheme_Object from C type

18

PostgreSQL Name

date

PostgreSQL Alias

PostgreSQL OID

DATEOID = 1082

PostgreSQL Modifier

-1

Description

calendar date (year, month, day)

C Type

C function for string to C type con-
version

Scheme symbol

Scheme function to determine Scheme
type from Scheme_Object

Scheme function to extract C type
from Scheme_Object

Scheme function to create

Scheme_Object from C type

PostgreSQL Name

double precision

PostgreSQL Alias float8
PostgreSQL OID FLOATSOID = 701
PostgreSQL Modifier -1

Description double precision floating-point num-
ber

C Type double

C function for string to C type con- | atof

version

Scheme symbol

double-precision

Scheme function to determine Scheme
type from Scheme_Object

SCHEME_DBLP

Scheme function to extract C type
from Scheme_Object

SCHEME_DBL_VAL

Scheme function to create

Scheme_Object from C type

scheme_make_double

19

PostgreSQL Name inet

PostgreSQL Alias

PostgreSQL OID INETOID = 869

PostgreSQL Modifier -1

Description IPv4 or TPv6 host address
C Type

C function for string to C type con-

version

Scheme symbol

Scheme function to determine Scheme
type from Scheme_Object

Scheme function to extract C type
from Scheme_Object

Scheme function to create
Scheme_Object from C type

PostgreSQL Name integer

PostgreSQL Alias int, int4

PostgreSQL OID INT40ID = 23
PostgreSQL Modifier -1

Description signed four-byte integer
C Type int

C function for string to C type con- | atoi

version

Scheme symbol integer

Scheme function to determine Scheme | SCHEME_INTP
type from Scheme_Object

Scheme function to extract C type | SCHEME_INT_VAL
from Scheme_Object

Scheme function to create | scheme_make_integer
Scheme_Object from C type

20

PostgreSQL Name

interval(p)

PostgreSQL Alias

PostgreSQL OID

INTERVALOID = 1186

PostgreSQL Modifier -1
Description time span
C Type

C function for string to C type con-
version

Scheme symbol

Scheme function to determine Scheme

type from Scheme_Object

Scheme function to extract C type

from Scheme_Object

Scheme function to create
Scheme_Object from C type

PostgreSQL Name line

PostgreSQL Alias

PostgreSQL OID

LINEOID = 628

PostgreSQL Modifier

1

Description

infinite line in the plane (not fully im-
plemented)

C Type

C function for string to C type con-
version

Scheme symbol

Scheme function to determine Scheme
type from Scheme_Object

Scheme function to extract C type
from Scheme_Object

Scheme function to create

Scheme_Object from C type

21

PostgreSQL Name

Iseg

PostgreSQL Alias

PostgreSQL OID

LSEGOID = 601

PostgreSQL Modifier

-1

Description

line segment in the plane

C Type

C function for string to C type con-
version

Scheme symbol

Scheme function to determine Scheme
type from Scheme_Object

Scheme function to extract C type
from Scheme_Object

Scheme function to create
Scheme_Object from C type

PostgreSQL Name

macaddr

PostgreSQL Alias

PostgreSQL OID

MACADDROID = 829

PostgreSQL Modifier

Description

MAC address

C Type

1

C function for string to C type con-
version

Scheme symbol

Scheme function to determine Scheme
type from Scheme_Object

Scheme function to extract C type
from Scheme_Object

Scheme function to create
Scheme_Object from C type

22

PostgreSQL Name

money

PostgreSQL Alias

PostgreSQL OID

CASHOID = 790

PostgreSQL Modifier

-1

Description

currency amount

C Type

C function for string to C type con-
version

Scheme symbol

Scheme function to determine Scheme
type from Scheme_Object

Scheme function to extract C type
from Scheme_Object

Scheme function to create

Scheme_Object from C type

PostgreSQL Name

numeric [(p, s)]

PostgreSQL Alias

decimal | (p, s)]

PostgreSQL OID

NUMERICOID = 1700

PostgreSQL Modifier

655367

Description

exact numeric with selectable preci-
sion

C Type

C function for string to C type con-
version

Scheme symbol

Scheme function to determine Scheme
type from Scheme_Object

Scheme function to extract C type
from Scheme_Object

Scheme function to create

Scheme_Object from C type

23

PostgreSQL Name

path

PostgreSQL Alias

PostgreSQL OID

PATHOID = 602

PostgreSQL Modifier

-1

Description

open and closed geometric path in the
plane

C Type

C function for string to C type con-
version

Scheme symbol

Scheme function to determine Scheme
type from Scheme_Object

Scheme function to extract C type
from Scheme_Object

Scheme function to create

Scheme_Object from C type

PostgreSQL Name

point

PostgreSQL Alias

PostgreSQL OID

POINTOID = 600

PostgreSQL Modifier

-1

Description

geometric point in the plane

C Type

C function for string to C type con-
version

Scheme symbol

Scheme function to determine Scheme
type from Scheme_Object

Scheme function to extract C type
from Scheme_Object

Scheme function to create

Scheme_Object from C type

24

PostgreSQL Name

polygon

PostgreSQL Alias

PostgreSQL OID

POLYGONOID = 604

PostgreSQL Modifier

-1

Description

closed geometric path in the plane

C Type

C function for string to C type con-
version

Scheme symbol

Scheme function to determine Scheme
type from Scheme_Object

Scheme function to extract C type
from Scheme_Object

Scheme function to create

Scheme_Object from C type

PostgreSQL Name real

PostgreSQL Alias float4

PostgreSQL OID FLOAT40ID = 700
PostgreSQL Modifier -1

Description

single precision floating-point number

C Type

C function for string to C type con-
version

Scheme symbol

Scheme function to determine Scheme
type from Scheme_Object

Scheme function to extract C type
from Scheme_Object

Scheme function to create

Scheme_Object from C type

25

PostgreSQL Name smallint
PostgreSQL Alias int2
PostgreSQL OID INT20ID = 21
PostgreSQL Modifier -1

Description

signed two-byte integer

C Type

C function for string to C type con-
version

Scheme symbol

Scheme function to determine Scheme
type from Scheme_Object

Scheme function to extract C type
from Scheme_Object

Scheme function to create

Scheme_Object from C type

PostgreSQL Name serial
PostgreSQL Alias seriald
PostgreSQL OID INT40ID = 23
PostgreSQL Modifier -1

Description

autoincrementing four-byte integer

C Type

C function for string to C type con-
version

Scheme symbol

integer

Scheme function to determine Scheme
type from Scheme_Object

Scheme function to extract C type
from Scheme_Object

Scheme function to create

Scheme_Object from C type

26

PostgreSQL Name

text

PostgreSQL Alias

PostgreSQL OID

TEXTOID = 25

PostgreSQL Modifier

-1

Description

variable-length character string

C Type

C function for string to C type con-
version

Scheme symbol

Scheme function to determine Scheme
type from Scheme_Object

Scheme function to extract C type
from Scheme_Object

Scheme function to create
Scheme_Object from C type

PostgreSQL Name

time [(p)] [without time zone

PostgreSQL Alias

PostgreSQL OID

TIMEOID = 1083

PostgreSQL Modifier -1
Description time of day
C Type

C function for string to C type con-
version

Scheme symbol

time-without-time-zone

Scheme function to determine Scheme
type from Scheme_Object

Scheme function to extract C type
from Scheme_Object

Scheme function to create
Scheme_Object from C type

27

PostgreSQL Name

time [(p)] with time zone

PostgreSQL Alias timetz
PostgreSQL OID TIMETZOID = 1266
PostgreSQL Modifier -1

Description

time of day, including time zone

C Type

C function for string to C type con-
version

Scheme symbol

Scheme function to determine Scheme
type from Scheme_Object

Scheme function to extract C type
from Scheme_Object

Scheme function to create

Scheme_Object from C type

PostgreSQL Name

timestamp [(p) | without time zone

PostgreSQL Alias timestamp
PostgreSQL OID TIMESTAMPOID = 1114
PostgreSQL Modifier -1

Description

date and time

C Type

C function for string to C type con-
version

Scheme symbol

Scheme function to determine Scheme
type from Scheme_Object

Scheme function to extract C type
from Scheme_Object

Scheme function to create

Scheme_Object from C type

28

PostgreSQL Name

timestamp [(p) | [with time zone |

PostgreSQL Alias

timestamptz

PostgreSQL OID

TIMESTAMPTZOID = 1184

PostgreSQL Modifier

1

Description

date and time, including time zone

C Type

C function for string to C type con-

version

Scheme symbol

Scheme function to determine Scheme
type from Scheme_Object

Scheme function to extract C type
from Scheme_Object

Scheme
Scheme_Object from C type

function to create

References

[1]

Harold Abelson and Gerald Jay Sussman with Julie Sussman, Structure
and Interpretation of Computer Programs, second edition, The MIT Press,
Cambridge, Massachusetts, 1996.

[2] Philip L. Bewig, SRFI 40: A Library of Streams,
http://srfi.schemers.org/srfi-40/, 2003.
[3] Ryan Culpepper, spgsql: A PostgreSQL Database Library,

[9]
[10]

http://schematics.sourceforge.net /spgsql.html.

R. Kent Dybvig, The Scheme Programming Language, third edition, The
MIT Press, Cambridge, Massachusetts, 2003.

Daniel P. Friedman and Matthias Felleisen, The Little Schemer, fourth
edition, The MIT Press, Cambridge, Massachusetts, 1996.

Daniel P. Friedman and Matthias Felleisen, The Seasoned Schemer, The
MIT Press, Cambridge, Massachusetts, 1996.

Brian W. Kernighan and Dennis M. Ritchie, The C' Programming Language,
second edition, Prentice Hall, Englewood Cliffs, New Jersey, 1988.

Noel Welsh, Francisco Solsona and Tan Glover, SchemeUnit and SchemeQL:
Two Little Languages, Scheme 2002 Workshop, Pittsburgh, Pennsylvania,
October 3, 2002.

PLT Scheme, http://www.plt-scheme.org.

PostgreSQL, http://www.postgresql.org.

29

