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Log-concave vectors

Definition
We say that a random vector X in Rn is log-concave if for any compact
subsets A,B of Rn and any λ ∈ (0, 1) we have

P(X ∈ A)λP(X ∈ B)1−λ ¬ P(X ∈ λA+ (1− λ)B).

Roughly speaking, X is log-concave iff it has log-concave density.

Proposition
If X is a log-concave vector and ‖ · ‖ is a seminorm on Rn, then for every
1 ¬ p ¬ q we have

(E‖X‖p)1/p  C
p

q
(E‖X‖q)1/q.
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The Paouris inequality

Theorem [Paouris, 2006]

For a log-concave vector X in Rn and any p  1 we have(
E‖X‖p2

)1/p ¬ C
(
E‖X‖2 + σX (p)

)
,

where σX (p) is the p-th weak moment of X defined by

σX (p) := sup
‖t‖2=1

(
E
∣∣〈t,X 〉∣∣p)1/p.

In other words,

(
E sup

t∈T

∣∣ n∑
i=1

tiXi

∣∣p)1/p ¬ C

[
E sup

t∈T

∣∣ n∑
i=1

tiXi

∣∣+ sup
t∈T

(
E
∣∣ n∑
i=1

tiXi

∣∣p)1/p]

for T = Bn
2 (Euclidean ball of radius 1, with the centre at the origin).
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Comparison of weak and strong moments – general case

Question
For which (reasonable) class of vectors in Rn holds the following: for any
X of this class, any set T ⊂ Rn, and p  1 we have

(
E sup

t∈T

∣∣ n∑
i=1

tiXi

∣∣p)1/p ¬ C1E sup
t∈T

∣∣ n∑
i=1

tiXi

∣∣+ C2 sup
t∈T

(
E
∣∣ n∑
i=1

tiXi

∣∣p)1/p?

Consider T = Bn
2 only.

Then the comparison holds for the class of log-concave vectors
(Paouris 2006), but it fails for vectors which moments grow
α-regularly (α is fixed).
Consider all T and assume X has independent coordinates. Then the
comparison holds under the assumption that the norms of these
coordinates grow α-regularly (C1, C2 depend on α) – Latała, Tkocz
2015. Can we relax this assumption?
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The main results

Comparison of weak and strong moments (definition)

(
E sup

t∈T

∣∣ n∑
i=1

tiXi

∣∣p)1/p ¬ C1E sup
t∈T

∣∣ n∑
i=1

tiXi

∣∣+ C2 sup
t∈T

(
E
∣∣ n∑
i=1

tiXi

∣∣p)1/p (1)

Theorem [Latała, S., 2016]

If X1, . . . ,Xn are independent random vectors such that for any q  2:

‖Xi‖2q ¬ α‖Xi‖q, (2)

then (1) holds for all p  1 and T ⊂ Rn with C1,C2 depending only on α.

Theorem [Latała, S., 2016]

Assume X1,X2, . . . are i.i.d. and satisfy (1) for any n  1, p  1 and
T = {±e1, . . . ,±en}. Then X1 satisfies (2) with α depending on C1,C2.
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Corollaries

Main theorem

‖Xi‖2q ¬ α‖Xi‖q, for all q  2 (3)

implies that for all p  1 and T ⊂ Rn we have

(
E sup

t∈T

∣∣ n∑
i=1

tiXi

∣∣p)1/p ¬ C1(α)E sup
t∈T

∣∣ n∑
i=1

tiXi

∣∣+ C2(α) sup
t∈T

(
E
∣∣ n∑
i=1

tiXi

∣∣p)1/p

Corollary 1 – tail estimate
(3) implies that for all u  0 we have

P
(

sup
t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣  C3(α)

[
u + E sup

t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣])

¬ C4(α) sup
t∈T

P
(∣∣∣ n∑

i=1

tiXi

∣∣∣  u

)
,
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Corollaries

Main theorem

‖Xi‖2q ¬ α‖Xi‖q, for all q  2 (4)

implies that for all p  1 and T ⊂ Rn we have

(
E sup

t∈T

∣∣ n∑
i=1

tiXi

∣∣p)1/p ¬ C1(α)E sup
t∈T

∣∣ n∑
i=1

tiXi

∣∣+ C2(α) sup
t∈T

(
E
∣∣ n∑
i=1

tiXi

∣∣p)1/p

Corollary 2 – Khintchine-Kahane-type inequalities
(4) implies that for all p  q  2 and any non-empty set T in Rn we have,

(
E sup

t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p ¬ C5(α)

(
p

q

)max{1/2,log2 α}(
E sup

t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣q)1/q

The exponent max{1/2, log2 α} is optimal.
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Further questions

Question
For which (reasonable) class of vectors in Rn holds the following: for any
X of this class, set T ⊂ Rn, and p  1 we have

(
E sup

t∈T

∣∣ n∑
i=1

tiXi

∣∣p)1/p ¬ C1E sup
t∈T

∣∣ n∑
i=1

tiXi

∣∣+ C2 sup
t∈T

(
E
∣∣ n∑
i=1

tiXi

∣∣p)1/p?

What happens if the coordinates of X are not independent?

Does the comparison hold for all log-concave X for the general T?

Assume again X1, . . . ,Xn are independent. When does the comparison
hold with C1 = 1?
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