Comparison of weak and strong moments for vectors with independent coordinates

Marta Strzelecka

(based on joint work with Rafał Latała)

University of Warsaw

Warsaw, July 6, 2017

Log-concave vectors

Definition

We say that a random vector X in \mathbb{R}^n is log-concave if for any compact subsets A, B of \mathbb{R}^n and any $\lambda \in (0, 1)$ we have

$$\mathbb{P}(X\in A)^{\lambda}\mathbb{P}(X\in B)^{1-\lambda}\leqslant \mathbb{P}(X\in\lambda A+(1-\lambda)B).$$

Log-concave vectors

Definition

We say that a random vector X in \mathbb{R}^n is log-concave if for any compact subsets A, B of \mathbb{R}^n and any $\lambda \in (0, 1)$ we have

$$\mathbb{P}(X\in A)^{\lambda}\mathbb{P}(X\in B)^{1-\lambda}\leqslant \mathbb{P}(X\in\lambda A+(1-\lambda)B).$$

Roughly speaking, X is log-concave iff it has log-concave density.

Log-concave vectors

Definition

We say that a random vector X in \mathbb{R}^n is log-concave if for any compact subsets A, B of \mathbb{R}^n and any $\lambda \in (0, 1)$ we have

$$\mathbb{P}(X\in A)^{\lambda}\mathbb{P}(X\in B)^{1-\lambda}\leqslant \mathbb{P}(X\in\lambda A+(1-\lambda)B).$$

Roughly speaking, X is log-concave iff it has log-concave density.

Proposition

If X is a log-concave vector and $\|\cdot\|$ is a seminorm on \mathbb{R}^n , then for every $1\leqslant p\leqslant q$ we have

$$(\mathbb{E}\|X\|^p)^{1/p} \geqslant Crac{p}{q} (\mathbb{E}\|X\|^q)^{1/q}.$$

The Paouris inequality

Theorem [Paouris, 2006]

For a log-concave vector X in \mathbb{R}^n and any $p \ge 1$ we have

$$(\mathbb{E}\|X\|_2^p)^{1/p} \leqslant C(\mathbb{E}\|X\|_2 + \sigma_X(p)),$$

where $\sigma_X(p)$ is the *p*-th weak moment of X defined by

$$\sigma_X(p) := \sup_{\|t\|_2=1} \left(\mathbb{E} |\langle t, X \rangle|^p \right)^{1/p}.$$

Theorem [Paouris, 2006]

For a log-concave vector X in \mathbb{R}^n and any $p \ge 1$ we have

$$(\mathbb{E}\|X\|_2^p)^{1/p} \leqslant C(\mathbb{E}\|X\|_2 + \sigma_X(p)),$$

where $\sigma_X(p)$ is the *p*-th weak moment of X defined by

$$\sigma_X(p) := \sup_{\|t\|_2=1} \left(\mathbb{E} |\langle t, X \rangle|^p \right)^{1/p}.$$

In other words,

$$\left(\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{1/p} \leqslant C\left[\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right| + \sup_{t\in\mathcal{T}}\left(\mathbb{E}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{1/p}\right]$$

for $T = B_2^n$ (Euclidean ball of radius 1, with the centre at the origin).

Question

$$\left(\mathbb{E}\sup_{t\in T}|\sum_{i=1}^{n}t_{i}X_{i}|^{p}\right)^{1/p} \leq C_{1}\mathbb{E}\sup_{t\in T}|\sum_{i=1}^{n}t_{i}X_{i}| + C_{2}\sup_{t\in T}\left(\mathbb{E}|\sum_{i=1}^{n}t_{i}X_{i}|^{p}\right)^{1/p}?$$

Question

For which (reasonable) class of vectors in \mathbb{R}^n holds the following: for any X of this class, any set $T \subset \mathbb{R}^n$, and $p \ge 1$ we have

$$\left(\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{1/p} \leqslant C_{1}\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right| + C_{2}\sup_{t\in\mathcal{T}}\left(\mathbb{E}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{1/p}?$$

• Consider $T = B_2^n$ only.

Question

For which (reasonable) class of vectors in \mathbb{R}^n holds the following: for any X of this class, any set $T \subset \mathbb{R}^n$, and $p \ge 1$ we have

$$\left(\mathbb{E}\sup_{t\in\mathcal{T}}|\sum_{i=1}^{n}t_{i}X_{i}|^{p}\right)^{1/p} \leq C_{1}\mathbb{E}\sup_{t\in\mathcal{T}}|\sum_{i=1}^{n}t_{i}X_{i}| + C_{2}\sup_{t\in\mathcal{T}}\left(\mathbb{E}|\sum_{i=1}^{n}t_{i}X_{i}|^{p}\right)^{1/p}?$$

• Consider $T = B_2^n$ only. Then the comparison holds for the class of log-concave vectors (Paouris 2006),

Question

For which (reasonable) class of vectors in \mathbb{R}^n holds the following: for any X of this class, any set $T \subset \mathbb{R}^n$, and $p \ge 1$ we have

$$\left(\mathbb{E}\sup_{t\in T}|\sum_{i=1}^{n}t_{i}X_{i}|^{p}\right)^{1/p} \leq C_{1}\mathbb{E}\sup_{t\in T}|\sum_{i=1}^{n}t_{i}X_{i}| + C_{2}\sup_{t\in T}\left(\mathbb{E}|\sum_{i=1}^{n}t_{i}X_{i}|^{p}\right)^{1/p}?$$

• Consider $T = B_2^n$ only. Then the comparison holds for the class of log-concave vectors (Paouris 2006), but it fails for vectors which moments grow α -regularly (α is fixed).

Question

$$\left(\mathbb{E}\sup_{t\in T} |\sum_{i=1}^{n} t_{i}X_{i}|^{p}\right)^{1/p} \leq C_{1}\mathbb{E}\sup_{t\in T} |\sum_{i=1}^{n} t_{i}X_{i}| + C_{2}\sup_{t\in T} \left(\mathbb{E}|\sum_{i=1}^{n} t_{i}X_{i}|^{p}\right)^{1/p}?$$

- Consider $T = B_2^n$ only. Then the comparison holds for the class of log-concave vectors (Paouris 2006), but it fails for vectors which moments grow α -regularly (α is fixed).
- Consider all T and assume X has independent coordinates.

Question

$$\left(\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{1/p} \leqslant C_{1}\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right| + C_{2}\sup_{t\in\mathcal{T}}\left(\mathbb{E}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{1/p}?$$

- Consider $T = B_2^n$ only. Then the comparison holds for the class of log-concave vectors (Paouris 2006), but it fails for vectors which moments grow α -regularly (α is fixed).
- Consider all *T* and assume *X* has independent coordinates. Then the comparison holds under the assumption that the norms of these coordinates grow α-regularly (*C*₁, *C*₂ depend on α) Latała, Tkocz 2015.

Question

$$\left(\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{1/p} \leqslant C_{1}\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right| + C_{2}\sup_{t\in\mathcal{T}}\left(\mathbb{E}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{1/p}?$$

- Consider $T = B_2^n$ only. Then the comparison holds for the class of log-concave vectors (Paouris 2006), but it fails for vectors which moments grow α -regularly (α is fixed).
- Consider all *T* and assume *X* has independent coordinates. Then the comparison holds under the assumption that the norms of these coordinates grow α-regularly (*C*₁, *C*₂ depend on α) Latała, Tkocz 2015. Can we relax this assumption?

Comparison of weak and strong moments (definition)

$$\left(\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{1/p} \leqslant C_{1}\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right| + C_{2}\sup_{t\in\mathcal{T}}\left(\mathbb{E}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{1/p}$$
(1)

Comparison of weak and strong moments (definition)

$$\left(\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{1/p} \leq C_{1}\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right| + C_{2}\sup_{t\in\mathcal{T}}\left(\mathbb{E}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{1/p}$$
(1)

Theorem [Latała, S., 2016]

If X_1, \ldots, X_n are independent random vectors such that for any $q \ge 2$:

$$\|X_i\|_{2q} \leqslant \alpha \|X_i\|_q,\tag{2}$$

Comparison of weak and strong moments (definition)

$$\left(\mathbb{E}\sup_{t\in T}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{1/p} \leq C_{1}\mathbb{E}\sup_{t\in T}\left|\sum_{i=1}^{n}t_{i}X_{i}\right| + C_{2}\sup_{t\in T}\left(\mathbb{E}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{1/p}$$
(1)

Theorem [Latała, S., 2016]

If X_1, \ldots, X_n are independent random vectors such that for any $q \ge 2$:

$$\|X_i\|_{2q} \leqslant \alpha \|X_i\|_q,\tag{2}$$

then (1) holds for all $p \ge 1$ and $T \subset \mathbb{R}^n$ with C_1, C_2 depending only on α .

Comparison of weak and strong moments (definition)

$$\left(\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{1/p} \leqslant C_{1}\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right| + C_{2}\sup_{t\in\mathcal{T}}\left(\mathbb{E}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{1/p}$$
(1)

Theorem [Latała, S., 2016]

If X_1, \ldots, X_n are independent random vectors such that for any $q \ge 2$:

$$\|X_i\|_{2q} \leqslant \alpha \|X_i\|_q,\tag{2}$$

then (1) holds for all $p \ge 1$ and $T \subset \mathbb{R}^n$ with C_1, C_2 depending only on α .

Theorem [Latała, S., 2016]

Assume X_1, X_2, \ldots are i.i.d. and satisfy (1) for any $n \ge 1$, $p \ge 1$ and $T = \{\pm e_1, \ldots, \pm e_n\}$.

Marta Strzelecka (University of Warsaw) Comparison of weak and strong moments

Comparison of weak and strong moments (definition)

$$\left(\mathbb{E}\sup_{t\in T}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{1/p} \leq C_{1}\mathbb{E}\sup_{t\in T}\left|\sum_{i=1}^{n}t_{i}X_{i}\right| + C_{2}\sup_{t\in T}\left(\mathbb{E}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{1/p}$$
(1)

Theorem [Latała, S., 2016]

If X_1, \ldots, X_n are independent random vectors such that for any $q \ge 2$:

$$\|X_i\|_{2q} \leqslant \alpha \|X_i\|_q,\tag{2}$$

then (1) holds for all $p \ge 1$ and $T \subset \mathbb{R}^n$ with C_1, C_2 depending only on α .

Theorem [Latała, S., 2016]

Assume X_1, X_2, \ldots are i.i.d. and satisfy (1) for any $n \ge 1$, $p \ge 1$ and $T = \{\pm e_1, \ldots, \pm e_n\}$. Then X_1 satisfies (2) with α depending on C_1, C_2 .

Marta Strzelecka (University of Warsaw) Comparison of weak and strong moments

Corollaries

Main theorem

$$\|X_i\|_{2q} \leqslant \alpha \|X_i\|_q, \quad \text{for all } q \ge 2 \tag{3}$$

implies that for all $p \ge 1$ and $T \subset \mathbb{R}^n$ we have

$$\left(\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{1/p} \leq C_{1}(\alpha)\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right| + C_{2}(\alpha)\sup_{t\in\mathcal{T}}\left(\mathbb{E}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{1/p}$$

Corollary 1 – tail estimate

(3) implies that for all $u \ge 0$ we have

$$\mathbb{P}\left(\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right| \geq C_{3}(\alpha)\left[u+\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|\right]\right)$$
$$\leq C_{4}(\alpha)\sup_{t\in\mathcal{T}}\mathbb{P}\left(\left|\sum_{i=1}^{n}t_{i}X_{i}\right| \geq u\right),$$

Corollaries

Main theorem

$$\|X_i\|_{2q} \leqslant \alpha \|X_i\|_q, \quad \text{for all } q \ge 2 \tag{4}$$

implies that for all $p \ge 1$ and $\mathcal{T} \subset \mathbb{R}^n$ we have

$$\left(\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{1/p} \leq C_{1}(\alpha)\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right| + C_{2}(\alpha)\sup_{t\in\mathcal{T}}\left(\mathbb{E}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{1/p}\right)$$

Corollary 2 – Khintchine-Kahane-type inequalities

(4) implies that for all $p \ge q \ge 2$ and any non-empty set T in \mathbb{R}^n we have,

$$\left(\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{1/p} \leqslant C_{5}(\alpha)\left(\frac{p}{q}\right)^{\max\{1/2,\log_{2}\alpha\}}\left(\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{q}\right)^{1/q}$$

Corollaries

Main theorem

$$\|X_i\|_{2q} \leqslant \alpha \|X_i\|_q, \quad \text{for all } q \ge 2 \tag{4}$$

implies that for all $p \ge 1$ and $\mathcal{T} \subset \mathbb{R}^n$ we have

$$\left(\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{1/p} \leq C_{1}(\alpha)\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right| + C_{2}(\alpha)\sup_{t\in\mathcal{T}}\left(\mathbb{E}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{1/p}\right)$$

Corollary 2 - Khintchine-Kahane-type inequalities

(4) implies that for all $p \ge q \ge 2$ and any non-empty set T in \mathbb{R}^n we have,

$$\left(\mathbb{E}\sup_{t\in T}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{1/p} \leqslant C_{5}(\alpha)\left(\frac{p}{q}\right)^{\max\{1/2,\log_{2}\alpha\}} \left(\mathbb{E}\sup_{t\in T}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{q}\right)^{1/q}$$

The exponent $\max\{1/2, \log_2 \alpha\}$ is optimal.

Question

$$\left(\mathbb{E}\sup_{t\in\mathcal{T}}|\sum_{i=1}^{n}t_{i}X_{i}|^{p}\right)^{1/p} \leq C_{1}\mathbb{E}\sup_{t\in\mathcal{T}}|\sum_{i=1}^{n}t_{i}X_{i}| + C_{2}\sup_{t\in\mathcal{T}}\left(\mathbb{E}|\sum_{i=1}^{n}t_{i}X_{i}|^{p}\right)^{1/p}?$$

Question

For which (reasonable) class of vectors in \mathbb{R}^n holds the following: for any X of this class, set $T \subset \mathbb{R}^n$, and $p \ge 1$ we have

$$\left(\mathbb{E}\sup_{t\in T} |\sum_{i=1}^{n} t_{i}X_{i}|^{p}\right)^{1/p} \leq C_{1}\mathbb{E}\sup_{t\in T} |\sum_{i=1}^{n} t_{i}X_{i}| + C_{2}\sup_{t\in T} \left(\mathbb{E}|\sum_{i=1}^{n} t_{i}X_{i}|^{p}\right)^{1/p}?$$

• What happens if the coordinates of X are not independent?

Question

$$\left(\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{1/p} \leqslant C_{1}\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right| + C_{2}\sup_{t\in\mathcal{T}}\left(\mathbb{E}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{1/p}?$$

- What happens if the coordinates of X are not independent?
- Does the comparison hold for all log-concave X for the general T?

Question

$$\left(\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{1/p} \leq C_{1}\mathbb{E}\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}t_{i}X_{i}\right| + C_{2}\sup_{t\in\mathcal{T}}\left(\mathbb{E}\left|\sum_{i=1}^{n}t_{i}X_{i}\right|^{p}\right)^{1/p}?$$

- What happens if the coordinates of X are not independent?
- Does the comparison hold for all log-concave X for the general T?
- Assume again X_1, \ldots, X_n are independent. When does the comparison hold with $C_1 = 1$?