POISSON LIMIT OF THE NUMBER OF MONOCHROMATIC CLIQUES

Somabha Mukherjee¹ and Bhaswar B. Bhattacharya²

University of Pennsylvania

July 5, 2017

 $^{^{1}\}mbox{Department}$ of Statistics , University of Pennsylvania

²Department of Statistics, University of Pennsylvania 🔞 🕒 🗸 😩 🔻 💂 🔊 🤉

Outline

- Introduction
- Sketch of Proof
- 3 Conclusion
- 4 Bibliography

Our Setup

- Each of the vertices $\{1,...,n\}$ of a simple, undirected non-random graph G_n is colored independently of the others, using one of $c_n \ (\to \infty)$ different colors, chosen uniformly at random.
- We shall denote the color of vertex i by X_i .
- $T(K_m, G_n)$ (m fixed): Number of monochromatic m-cliques in G_n .
- Assumptions:

 - $\lim_{n\to\infty} \mathbb{V} T(K_m, G_n) = \lambda .$
- We proved:

$$T(K_m, G_n) \xrightarrow{d} \operatorname{Pois}(\lambda) \text{ as } n \to \infty.$$

• We could actually prove the same Poisson convergence result for $T(H, G_n)$: the number of copies of a fixed connected graph H on m vertices in G_n , under the same conditions on $\mathbb{E}T(H, G_n)$ and $\mathbb{V}T(H, G_n)$.

Existing Literature

- Bhattacharya, Diaconis and Mukherjee [1] showed that under the uniform coloring scheme, the number of monochromatic edges $T(K_2, G_n)$ of a random graph G_n (under any arbitrary probability distribution) converges weakly to $\operatorname{Pois}(\lambda)$, if we only assume that $\mathbb{E}(T(K_2, G_n)|G_n) \stackrel{d}{\to} \lambda$.
- Their result is more general, in the sense that they actually proved that if $\mathbb{E}(T(K_2,G_n)|G_n)$ converges weakly to a random variable Z, then $T(K_2,G_n)\stackrel{d}{\to} W$, where W is a Z-mixture of Poisson random variables, i.e.

$$\mathbb{P}(W=k)=\frac{1}{k!}\mathbb{E}(e^{-Z}Z^k).$$

- Bhattacharya and Mukherjee [2] established the Poisson convergence result for the number of monochromatic triangles and 2-stars, under the same setup, but with the first two moment assumptions same as ours.
- Our work provides a complete answer to their first open problem, where they ask whether the same phenomenon extends to other connected monochromatic subgraphs.

Outline

- Introduction
- Sketch of Proof
- 3 Conclusion
- 4 Bibliography

What do the Two Assumptions Imply?

- $T(K_m,G_n)=\sum_{H\in\Lambda_m(G_n)}1(H \text{ is monochromatic})$, where $\Lambda_m(G_n)$ is the set of all m-cliques in G_n .
- Let $N(K_m, G_n) = \text{number of } m\text{-cliques in } G_n = |\Lambda_m(G_n)|$.
- $\mathbb{E}T(K_m, G_n) = \frac{N(K_m, G_n)}{c_n^{m-1}}$,

$$VT(K_m, G_n) = \frac{1}{c_n^{m-1}} \left(1 - \frac{1}{c_n^{m-1}} \right) N(K_m, G_n) + \sum_{k=2}^{m-1} \frac{1}{c_n^{2m-k-1}} \left(1 - \frac{1}{c_n^{k-1}} \right) J_k,$$

where

$$J_k = \big| \{ (F,H) : F, H \in \Lambda_m(G_n) \text{ and } |V(F) \cap V(H)| = k \} \big|.$$

ullet Hence, $N(\mathcal{K}_m,\mathcal{G}_n)=\Theta(c_n^{m-1})$ and $J_k=o(c_n^{2m-k-1})$ $(2\leq k\leq m-1)$.

A Decomposition of the Number of Monochromatic *m*-cliques

- For evey $2 \le k \le m-1$ and every tuple $(i_1,...,i_k)$ of distinct vertices of G_n , let $\gamma_k(i_1,...,i_k)$ be the number of m-cliques having $i_1,...,i_k$ as vertices.
- For each $\epsilon > 0$, define: $A_{n,\epsilon} = \{H \in \Lambda_m(G_n) : \gamma_k(H_{i_1},...,H_{i_k}) \le \epsilon c_n^{m-k} \ \forall \ 2 \le k \le m-1, \ \forall \ 1 \le i_1 < ... < i_k \le m\},$ where for a graph H with m vertices, the vertices are ordered as $H_1 < ... < H_m$.
- Let $T_{1,\epsilon}(K_m,G_n)=\sum\limits_{H\in A_{n,\epsilon}}1(H ext{ is monochromatic})$ and

$$T_{2,\epsilon}(K_m,G_n)=T(K_m,G_n)-T_{1,\epsilon}(K_m,G_n).$$

• We will show that $T_{1,\epsilon}(K_m,G_n) \xrightarrow{d} \operatorname{Pois}(\lambda)$ and $T_{2,\epsilon}(K_m,G_n) \xrightarrow{P} 0$ as $n \to \infty$ followed by $\epsilon \to 0$.

$T_{2,\epsilon}(K_m,G_n)$ converges to 0 in L^1

To begin with, note that

$$T_{2,\epsilon}(K_m, G_n) \leq \sum_{i_1,...,i_m} \prod_{(k,l) \in \langle m \rangle} a_{i_k i_l}(G_n) \mathbf{1}(X_{i_1} = ... = X_{i_m}) \sum_{q=2}^{m-1} \mathbf{1}(\gamma_q(i_1,...,i_q) > \epsilon c_n^{m-q}).$$

- Let us introduce the notation $\langle m \rangle = \{(a,b) \in \{1,2,...,m\}^2 : a < b\}.$
- Hence, for sufficiently large n (for example, when $\epsilon c_n > 2$), we have:

$$\mathbb{E} T_{2,\epsilon}(K_{m},G_{n})$$

$$\leq \frac{1}{c_{n}^{m-1}} \sum_{i_{1},...,i_{m}} \prod_{(k,l) \in \langle m \rangle} a_{i_{k}i_{l}}(G_{n}) \sum_{q=2}^{m-1} \mathbf{1} \left(\gamma_{q}(i_{1},...,i_{q}) > \epsilon c_{n}^{m-q} \right)$$

$$\leq \frac{1}{c_{n}^{m-1}} \sum_{q=2}^{m-1} \sum_{i_{1},...,i_{q}} \prod_{(k,l) \in \langle q \rangle} a_{i_{k}i_{l}}(G_{n}) \frac{\gamma_{q}(i_{1},...,i_{q})}{\epsilon c_{n}^{m-q}} \mathbf{1} \left(\gamma_{q}(i_{1},...,i_{q}) > \epsilon c_{n}^{m-q} \right)$$

$$\sum_{i_{q+1},...,i_{m}} \prod_{(k,l) \in \langle m \rangle \setminus \langle q \rangle} a_{i_{k}i_{l}}(G_{n})$$

$$\lesssim \sum_{q=2}^{m-1} \sum_{i_1,\dots,i_q} \prod_{(k,l)\in\langle q\rangle} a_{i_k i_l} (G_n) \frac{\left[\gamma_q(i_1,\dots,i_q)\right]^2}{\epsilon c_n^{2m-q-1}} \mathbf{1} \left(\gamma_q(i_1,\dots,i_q) > \epsilon c_n^{m-q}\right)$$

$$\lesssim \sum_{q=2}^{m-1} \left[\frac{1}{\epsilon c_n^{2m-q-1}} \sum_{i_1,\dots,i_q} \prod_{(k,l)\in\langle q\rangle} a_{i_k i_l} \binom{\gamma_q(i_1,\dots,i_q)}{2} \right]$$

$$\lesssim \sum_{q=2}^{m-1} \left[\frac{1}{\epsilon c_n^{2m-q-1}} \sum_{t=q}^{m-1} J_t \right]$$

$$= \sum_{q=2}^{m-1} \frac{o\left(c_n^{2m-q-1}\right)}{\epsilon c_n^{2m-q-1}}$$

$$= o(1).$$

Binomial Approximation of $T_{1,\epsilon}(K_m, G_n)$

• Let $\{Z_{i_1,...,i_m}: i_1 < ... < i_m\}$ be a collection of i.i.d. $Ber(c_n^{1-m})$ random variables, and define

$$W_{m,\epsilon}(G_n) = \sum_{i_1 < i_2 < \dots < i_m \ (k,l) \in \langle m \rangle} a_{i_k i_l}(G_n) Z_{i_1,\dots,i_m}$$

$$\mathbf{1} \left(\gamma_q(i_1, \dots, i_q) \le \epsilon c_n^{m-q} \ \forall \ 2 \le q \le m-1, \ \forall \ 1 \le i_1 < \dots < i_q \le m \right)$$

- For any other permutation $(j_1,...,j_m)$ of $(i_1,...,i_m)$, set $Z_{j_1,...,j_m}=Z_{i_1,...,i_m}$.
- Our next target is to show that for every natural number r, the r^{th} moments of $T_{1,\epsilon}(K_m,G_n)$ and $W_{m,\epsilon}(G_n)$ are asymptotically close as $n\to\infty$ followed by $\epsilon\to 0$. But HOW DOES THIS HELP?
- Well, it is a simple method of moments argument! Observe that $W_{m,\epsilon}(G_n) \sim \text{Bin}(|A_{n,\epsilon}|,c_n^{1-m})$. We know that $N(K_m,G_n)c_n^{1-m} \to \lambda$.
- Now, $\frac{N(K_m,G_n)-|A_{n,\epsilon}|}{c_n^{m-1}}=\mathbb{E} T_{2,\epsilon}(K_m,G_n)\to 0.$ So, $|A_{n,\epsilon}|c_n^{1-m}\to \lambda.$
- Hence, $\mathbb{E}W_{m,\epsilon}(G_n)^r \to \mathbb{E}\mathsf{Pois}(\lambda)^r$ for every natural number r.

Expressions for r^{th} Moments

- $\bullet \ \mathbb{E} \, T_{1,\epsilon}(K_m,G_n)^r = \sum_{H^{(1)} \in A_{n,\epsilon}} ... \sum_{H^{(r)} \in A_{n,\epsilon}} \mathbb{E} \left(\prod_{i=1}^r \mathbf{1}(H^{(i)} \text{ is monochromatic}) \right).$
- $\bullet \ \mathbb{E} W_{m,\epsilon}(G_n)^r = \sum_{H^{(1)} \in A_{n,\epsilon}} ... \sum_{H^{(r)} \in A_{n,\epsilon}} \mathbb{E} \left(\prod_{i=1}^r Z_{H_1^{(i)},...,H_m^{(i)}} \right).$
- Let $\Gamma_r = \{(H^{(1)}, ..., H^{(r)}) : H^{(i)} \in A_{n,\epsilon} \ \forall \ 1 \le i \le r\}.$
- For each $A=(H^{(1)},...,H^{(r)})\in \Gamma_r$, let $H(A)=\bigcup_{i=1}^r H^{(i)}$ in the graph union sense, and let $a(A)=\left|\{H^{(1)},...,H^{(r)}\}\right|$, i.e. the number of distinct graphs among $H^{(1)},...,H^{(r)}$.
- Let $\nu(H)$ denotes the number of connected components of a graph H. In these notations, $\mathbb{E} T_{1,\epsilon}(K_m,G_n)^r = \sum_{A\in\Gamma_r} \left(\frac{1}{c_n}\right)^{\left|V(H(A))\right|-\nu(H(A))}$ and $\mathbb{E} W_{m,\epsilon}(G_n)^r = \sum_{A\subset\Gamma} \left(\frac{1}{c_n}\right)^{(m-1)a(A)}$.

Closeness of the rth Moments

• From the previous slide, we get that:

$$\left| \mathbb{E} T_{1,\epsilon} (K_m, G_n)^r - \mathbb{E} W_{m,\epsilon} (G_n)^r \right| \leq \sum_{A \in \Gamma_r} \left| \left(\frac{1}{c_n} \right)^{(m-1)a(A)} - \left(\frac{1}{c_n} \right)^{|V(H(A))| - \nu(H(A))} \right|.$$

• For any $A \in \Gamma_r$, it can be shown that:

$$(m-1)a(A) \geq |V(H(A))| - \nu(H(A)).$$

- We showed that the number of tuples $A \in \Gamma_r$ with |V(H(A))| = v and $\nu(H(A)) = \nu$, for which the above inequality is strict, is $\epsilon O(c_n^{\nu-\nu})$.
- Since v and ν can take only a bounded number of values, the r^{th} moment difference is seen to be $\epsilon |O_n(1) o_n(1)| = \epsilon O_n(1)$.
- This shows that $\mathbb{E} T_{1,\epsilon}(K_m, G_n)^r \mathbb{E} W_{m,\epsilon}(G_n)^r$ converge to 0, as $n \to \infty$, followed by $\epsilon \to 0$, thereby completing the proof.
- The details are sketched in the next few slides.

Further Details

• For each $1 \le a \le r, m \le v \le mr$ and $1 \le \nu \le r$, define

$$\Gamma_{\mathsf{a},\mathsf{v},\nu}^r = \Big\{ A \in \Gamma_r : \mathsf{a}(A) = \mathsf{a}, \big| V(H(A)) \big| = \mathsf{v} \text{ and } \nu(H(A)) = \nu \Big\}. \tag{1}$$

• Then, we have:

$$\begin{split} & \left| \mathbb{E} T_{1,\epsilon} (K_m, G_n)^r - \mathbb{E} W_{m,\epsilon} (G_n)^r \right| \\ \leq & \sum_{a=1}^r \sum_{\nu=m}^{mr} \sum_{\nu=1}^r \sum_{A \in \Gamma_{a,\nu,\nu}^r} \left| \left(\frac{1}{c_n} \right)^{(m-1)a} - \left(\frac{1}{c_n} \right)^{\nu-\nu} \right| \\ = & \sum_{a=1}^r \sum_{\nu=m}^{mr} \sum_{\nu=1}^r \left| \left(\frac{1}{c_n} \right)^{(m-1)a} - \left(\frac{1}{c_n} \right)^{\nu-\nu} \right| \left| \Gamma_{a,\nu,\nu}^r \right| \end{split}$$

• It thus suffices to show that for every fixed $1 \le a \le r, m \le v \le mr$ and $1 < \nu < r$.

$$\left| \left(\frac{1}{c_n} \right)^{(m-1)a} - \left(\frac{1}{c_n} \right)^{v-\nu} \right| \left| \Gamma_{a,v,\nu}^r \right| \to 0$$

as $n \to \infty$ followed by $\epsilon \to 0$.

A Useful Lemma

• **Lemma:** Let $A = (H^{(1)}, ..., H^{(s)}) \in \Gamma_s$ for some natural number s, and suppose that H(A) is connected. Then, one of the following two always holds: (1) There exists an ordering $(G^{(1)}, ..., G^{(s)})$ of $(H^{(1)}, ..., H^{(s)})$ such that for each $2 \le t \le s$, either

$$|V(G^{(t)}) \cap \cup_{u=1}^{t-1} V(G^{(u)})| = 1$$

or $G^{(t)}$ equals one of $G^{(1)}, ..., G^{(t-1)}$.

(2) There exists an ordering $(G^{(1)},...,G^{(s)})$ of $(H^{(1)},...,H^{(s)})$ such that

$$|V(G^{(t)}) \cap \bigcup_{u=1}^{t-1} V(G^{(u)})| \ge 1 \,\,\forall \,\, 2 \le t \le s \,\, \text{and}$$

$$2 \le \left|V(G^{(t)}) \cap \cup_{u=1}^{t-1} V(G^{(u)})\right| \le m-1 \text{ for some } 2 \le t \le s.$$

• Let $A = (G^{(1)}, ..., G^{(s)}) \in \Gamma_s \& |V(G^{(t)}) \cap \bigcup_{u=1}^{t-1} V(G^{(u)})| \ge 1 \ \forall \ 2 \le t \le s$. For each k = 1, 2, ..., m-1, define

$$s_k = \Big| \Big\{ 2 \leq t \leq s : \Big| V(G^{(t)}) \cap \cup_{u=1}^{t-1} V(G^{(u)}) \Big| = m - k \Big\} \Big|.$$

Also, define

$$s_0 = \left| \left\{ 2 \le t \le s : \left| V(G^{(t)}) \cap \cup_{u=1}^{t-1} V(G^{(u)}) \right| = m, G^{(t)} \notin \left\{ G^{(1)}, ..., G^{(t-1)} \right\} \right|.$$

Now, we have:

$$ig|V(H(G))ig|=m+\sum_{k=1}^{m-1}ks_k ext{ and}$$
 $a(G)=1+\sum_{k=0}^{m-1}s_k.$

Hence, we have:

$$|V(H(G))| \le m + (m-1) \sum_{k=0}^{m-1} s_k \le (m-1)a(G) + 1,$$

with equality holding if and only if $s_0 = s_1 = ... = s_{m-2} = 0$.

• If $\Gamma_{a,\nu,\nu}^r$ is empty, or contains an A with the property that each of the connected components $(H(A))_1,...,(H(A))_{\nu}$ of H(A), expressed as tuples $A_1,...,A_{\nu}$, satisfies case (1) of the lemma, then

$$\left| \left(\frac{1}{c_n} \right)^{(m-1)a} - \left(\frac{1}{c_n} \right)^{v-\nu} \right| \left| \Gamma_{a,v,\nu}^r \right| = 0.$$

- So, suppose that for every element A of $\Gamma_{a,\nu,\nu}^r$, there exists $1 \le i \le \nu$, such that A_i satisfies case (2) of the lemma.
- For each A_i $(1 \le i \le \nu)$, denote the quantities $s_0,...,s_{m-1}$ for A_i as $s_0^i,...,s_{m-1}^i$, respectively.
- So, for a fixed array of quantities $(s_j^i)_{0 \le j \le m-1, 1 \le i \le \nu}$, the number of elements of $\Gamma_{a,\nu,\nu}^r$ corresponding to these array, is \le (upto constant multiples):

$$\begin{split} & \prod_{k=1}^{\nu} N(K_{m}, G_{n})^{1+s_{m-1}^{k}} \prod_{u=1}^{m-2} (\epsilon C_{n}^{u})^{s_{u}^{k}} \\ & \lesssim & \epsilon^{\sum_{k=1}^{\nu} \sum_{u=1}^{m-2} s_{u}^{k}} c_{n}^{(m-1)(\nu + \sum_{k=1}^{\nu} s_{m-1}^{k})} c_{n}^{\sum_{k=1}^{\nu} \sum_{u=1}^{m-2} u s_{u}^{k}} \\ & \leq & \epsilon c_{n}^{\sum_{k=1}^{\nu} \sum_{u=1}^{m-1} u s_{u}^{k} + (m-1)\nu} \\ & = & \epsilon c_{n}^{\nu - \nu} . \end{split}$$

Completing the Calculation for $T_{1,\epsilon}$

• Since the array $(s_j^i)_{0 \le j \le m-1, 1 \le i \le \nu}$ is constrained within the **finite** set $\{0, ..., r\}^{m \times \nu}$, we conclude that

$$\left| \Gamma^r_{a,v,\nu} \right| \leq r m \nu \epsilon c_n^{v-\nu} \lesssim \epsilon c_n^{v-\nu} \ .$$

- Hence, $\left|\left(\frac{1}{c_n}\right)^{(m-1)a} \left(\frac{1}{c_n}\right)^{v-\nu}\right| \left|\Gamma_{a,v,\nu}^r\right| \lesssim \epsilon \left|1 c_n^{v-\nu-(m-1)a}\right|$.
- Clearly, the right hand side of the last inequality goes to 0 as $n \to \infty$ followed by $\epsilon \to 0$.
- This completes the entire proof!

Outline

- Introduction
- Sketch of Proof
- 3 Conclusion
- 4 Bibliography

Concluding Remarks

- The truncation we performed on the number of m-cliques supported by every tuple of distinct vertices of an m-clique in G_n , is crucial for the closeness of the moments of the main term $T_{1,\epsilon}(K_m,G_n)$ and the corresponding Binomial variable $W_{m,\epsilon}(G_n)$, and at the same time, ensures that the remainder term $T_{2,\epsilon}(K_m,G_n)$ is $o_{\mathbb{P}}(1)$.
- The proof for the Poisson limit of the number of monochromatic copies of an arbitrary fixed, connected graph is almost similar to the proof for cliques, barring a few technicalities.
- For example, in the general case, $W_{m,\epsilon}(G_n) = \sum_{F \in A_n, \epsilon} Z_{F_1, \dots, F_n}$ may not have a Binomial distribution, because of the possibility of the existence of more than one copy of the graph H with the same vertex set. This hampers independence of the summands.
- We dealt with this issue by splitting the above sum into a main term consisting of those copies of H whose vertex sets do not support any other copy, and a remainder term consisting of those copies of H whose vertex sets support at least another copy. We then showed that the remainer term converges to 0 in L^r for every natural number r.

Our Most General Result

• The following is the most general result proved by us: **General Result:** Let H_0 be a fixed, connected graph on m vertices and for each $1 \le k \le 2^{\binom{m}{2}}$, define:

$$R_k = \left| \{S \subseteq V(G_n) : |S| = m \text{ and } G_n[S] \text{ contains exactly } k \text{ copies of } H_0\} \right| \;.$$

Also, for $2 \le k \le m-1$, define J_k as the number of all ordered pairs of copies of H_0 in G_n , that have k vertices in common. Assume that the following two conditions hold:

Then,

$$T(H_0, G_n) \xrightarrow{d} \sum_{k=1}^{2^{\binom{m}{2}}} k \ Pois(\lambda_k) \ ,$$

where the Poisson random variables in the limit are all independent.

Outline

- Introduction
- Sketch of Proof
- 3 Conclusion
- 4 Bibliography

References

BHATTACHARYA, B. B., MUKHERJEE, S., Limit theorems for Monochromatic 2-stars and triangles, arXiv version, 2017.