Diffusion approximations via Stein's changes method and time

Mikołaj Kasprzak (PhD project supervised by Gesine Reinert)

Department of Statistics
University of Oxford
3 July 2017

Overview

Functional limit results

Speed of convergence estimates

Methodology - Stein's method

Conclusions

References

Functional limit results

Theorem (Donsker 1951)

Let X_{1}, X_{2}, \ldots be i.i.d. random variables, each with mean 0 and variance 1. Then, for:

$$
Y_{n}(t)=n^{-1 / 2} \sum_{i=1}^{\lfloor n t\rfloor} X_{i}
$$

$\left(Y_{n}(t), t \in[0,1]\right) \Rightarrow(B(t), t \in[0,1])$, with respect to the uniform topology, where B is a standard Brownian Motion.

Notable extension (Stroock and Varadhan 1969):
Weak convergence of scaled (continuous or discrete-time) Markov chains to diffusions (solutions of SDEs).

Functional limit results

Motivation

Look at the discrete model from a distance so that:

- it is easier to study (e.g. we can use stochastic analysis)
- it is more robust to changes in the local details

Speed of convergence in Donsker's Theorem (Barbour 1990) For any $g: D([0,1], \mathbb{R}) \rightarrow \mathbb{R}$, such that:

$$
\|g\|_{M}=\sup _{w \in D} \frac{|g(w)|}{1+\|w\|^{3}}+\sup _{w \in D} \frac{\|D g(w)\|}{1+\|w\|^{2}}+\sup _{w \in D} \frac{\left\|D^{2} g(w)\right\|}{1+\|w\|}+\sup _{w, h \in D} \frac{\left\|D^{2} g(w+h)-D^{2} g(w)\right\|}{\|h\|}<\infty,
$$

where $\|\cdot\|$ is the sup norm, there exists a constant C such that

$$
\left|\mathbb{E} g\left(Y_{n}\right)-\mathbb{E} g(B)\right| \leq C n^{-1 / 2}\|g\|_{M}\left(\sqrt{\log n}+\mathbb{E}\left|X_{1}\right|^{3}\right)
$$

Extension: time-changed random walk (K. 2017+)

Theorem
Let X_{1}, X_{2}, \ldots be i.i.d. with mean 0 , variance 1 and finite third moment. Let s : $[0,1] \rightarrow[0, \infty)$ be a strictly increasing, continuous function with $s(0)=0$. Define:

$$
Y_{n}(t)=n^{-1 / 2} \sum_{i=1}^{\lfloor n s(t)\rfloor} X_{i}, \quad t \in[0,1]
$$

and let $(Z(t), t \in[0,1])=(B(s(t)), t \in[0,1])$, where B is a standard Brownian Motion. Suppose that $g \in M$. Then:

$$
\begin{aligned}
& \left|\mathbb{E} g\left(Y_{n}\right)-\mathbb{E} g(Z)\right| \leq\|g\|_{M}\left\{(2133+63 s(1)) \frac{\sqrt{\log (2 s(1) n)}}{\sqrt{n}}\right. \\
& \left.+\left(s(1)+3 s(1)^{5 / 2}\right) \mathbb{E}\left|X_{1}\right|^{3} n^{-1 / 2}\right\} .
\end{aligned}
$$

Time-changed Poisson process (K. 2017+)

Theorem
Let P be a Poisson process with rate 1 and $s^{(n)}:[0,1] \rightarrow[0, \infty)$ and $s:[0,1] \rightarrow[0, \infty)$ increasing, continuous and 0 at the origin. Let $Z(t)=B(s(t)), t \in[0,1]$ where B is a standard Brownian Motion and $\tilde{Y}_{n}(t)=\frac{P\left(n s^{(n)}(t)\right)-n s^{(n)}(t)}{\sqrt{n}}$ for $t \in[0,1]$. Then, for all $g \in M$:

$$
\begin{aligned}
& \left|\mathbb{E} g\left(\tilde{Y}_{n}\right)-\mathbb{E} g(Z)\right| \leq\|g\|_{M}\left\{(2+11 s(1)) \sqrt{\left\|s-s^{(n)}\right\|}\right. \\
& \left.+\frac{27 \sqrt{2}}{2 \sqrt{\pi}}\left\|s-s^{(n)}\right\|^{3 / 2}+n^{-1 / 2}\left[C_{1}^{(n)} \sqrt{\log (2 s(1) n)}+C_{2}^{(n)}\right]\right\}
\end{aligned}
$$

for explicitly computable $C_{1}^{(n)}, C_{2}^{(n)}$ depending only on $s_{n}(1)$ and $s(1)$.

Moran model and W.-F. diffusion (K. 2017+)

Setup

Moran model with mutation:

- n individuals, two genes: (A and a).
- At exponential rate $\binom{n}{2}$ select two individuals uniformly at random: one randomly selected dies, the other one splits in two.
- In addition, every individual of type A changes its type independently at rate ν_{2} and every individual of type a changes its type independently at rate ν_{1}.
- Let $M_{n}(t)$ be the proportion of type a genes in the population at time $t \in[0,1]$ under this model. Let $(M(t), t \in[0,1])$ denote the Wright-Fisher diffusion given by:

$$
d M(t)=\left(\nu_{2}-\left(\nu_{1}+\nu_{2}\right) M(t)\right) d t+\sqrt{M(t)(1-M(t))} d B_{t}
$$

Theorem
Given the setup above, for any $g \in M$:

$$
\begin{aligned}
& \left|\mathbb{E} g\left(M_{n}\right)-\mathbb{E} g(M)\right| \leq\|g\|_{M}\left[C_{1}\left(\nu_{1}, \nu_{2}\right) n^{-1 / 4}\right. \\
& \left.+C_{2}\left(\nu_{1}, \nu_{2}\right) n^{-1} \sqrt{\log \left(n^{2} / 4+\nu_{2} n\right)}+C_{3}\left(\nu_{1}, \nu_{2}\right) n^{-1} \sqrt{\log \left(n^{2} / 4+\nu_{1} n\right)}\right]
\end{aligned}
$$

where C_{1}, C_{2}, C_{3} are explicitly computable.

Method of proof

Aim

Approximate the distance between a scaled time-changed random walk $Y_{n}(\cdot)=n^{-1 / 2} \sum_{i=1}^{\lfloor n s(\cdot)\rfloor} X_{i}$, (where X_{i} 's are i.i.d. with mean 0 , variance 1 and finite third moment) and time-changed Brownian Motion $B(s(t))$.

Idea
First approximate Y_{n} by $A_{n}(\cdot)=n^{-1 / 2} \sum_{i=1}^{\lfloor n s(\cdot)\rfloor} Z_{i}$, where Z_{i} 's are i.i.d. $\mathcal{N}(0,1)$, using Stein's method. Then bound the distance between A_{n} and $B \circ s$ using results about the modulus of continuity of Brownian Motion.

Methodology: Stein's method

- Step 1: Find a (Stein) operator \mathcal{A} acting on a class of real-valued functions, such that:

$$
\left(\forall f \in \operatorname{Domain}(\mathcal{A}) \quad \mathbb{E}_{\nu} \mathcal{A} f=0\right) \Longleftrightarrow \nu=\mathcal{L}\left(A_{n}\right)
$$

For example, find a Markov process whose stationary law is $\mathcal{L}\left(A_{n}\right)$ and let \mathcal{A} be its infinitesimal generator.

- Step 2: For a given function $g \in M$, find $f=f_{g}$, such that:

$$
\mathcal{A} f=g-\mathbb{E} g\left(A_{n}\right)
$$

- Step 3: Study the properties of f_{g} and estimate $\left|\mathbb{E} \mathcal{A} f_{g}\left(Y_{n}\right)\right|$ using Taylor's expansions.

Application to the Poisson process case

Step 1: Bound the distance between $\tilde{Y}_{n}(\cdot)=\frac{P\left(n s^{(n)}(\cdot)\right)-n s^{(n)}(\cdot)}{\sqrt{n}}$ and $\tilde{A}_{n}(\cdot)=n^{-1 / 2} \sum_{i=1}^{\left\lfloor n s^{(n)}(\cdot)\right\rfloor} Z_{i}$, where $Z_{i} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)$, using Stein's method, as in the random-walk case.

Step 2: Bound the distance between $\tilde{A}_{n}(\cdot)=n^{-1 / 2} \sum_{i=1}^{\left\lfloor n s^{(n)}(\cdot)\right\rfloor} Z_{i}$ and $A_{n}(\cdot)=n^{-1 / 2} \sum_{i=1}^{\lfloor n s(\cdot)\rfloor} Z_{i}$, where $Z_{i} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)$, using the Mean Value Theorem and properties of the space M.

Step 3: Bound the distance between $A_{n}(\cdot)=n^{-1 / 2} \sum_{i=1}^{\lfloor n s(\cdot)\rfloor} Z_{i}$ and a time-changed Brownian Motion $B \circ s$, using Brownian modulus of continuity results.

Application to Moran model and W.-F. diffusion

Step 1: Note that M_{n} jumps up by $\frac{1}{n}$ with intensity $\frac{1}{2} n^{2} M_{n}(t)\left(1-M_{n}(t)\right)+n \nu_{2}\left(1-M_{n}(t)\right)$ and down by $\frac{1}{n}$ with intensity $\frac{1}{2} n^{2} M_{n}(t)\left(1-M_{n}(t)\right)+n \nu_{1} M_{n}(t)$.

Step 2: Use an idea from [Kur12] and write:

$$
\begin{aligned}
M_{n}(t)= & \frac{P_{1}\left(n^{2} R_{1}^{n}(t)\right)-n^{2} R_{1}^{n}(t)}{n}-\frac{P_{-1}\left(n^{2} R_{-1}^{n}(t)\right)-n^{2} R_{-1}^{n}(t)}{n} \\
& +\int_{0}^{t}\left(\nu_{2}-\left(\nu_{1}+\nu_{2}\right) M_{n}(s)\right) d s,
\end{aligned}
$$

where P_{1}, P_{-1} are i.i.d. Poisson processes with rate 1 and

$$
\left\{\begin{array}{l}
R_{1}^{n}(t):=\int_{0}^{t}\left(\frac{1}{2} M_{n}(s)+\frac{\nu_{2}}{n}\right)\left(1-M_{n}(s)\right) d s \\
R_{-1}^{n}(t):=\int_{0}^{t}\left(\frac{1}{2}\left(1-M_{n}(s)\right)+\frac{\nu_{1}}{n}\right) M_{n}(s) d s
\end{array} \quad \text { for } t \in[0,1] .\right.
$$

Application to Moran model and W.-F. diffusion

Step 3: Use the method applied before to time-changed Poisson processes and a coupling between the Moran model and W.-F. diffusion to bound:

- distance between $\frac{P_{1}\left(n^{2} R_{1}^{n}(t)\right)-n^{2} R_{1}^{\eta}(t)}{n}$ and $B_{1} \circ R_{1}$
- distance between $\frac{P_{-1}\left(n^{2} R_{-1}^{n}(t)\right)-n^{2} R_{-1}^{n}(t)}{n}$ and $B_{-1} \circ R_{-1}$, where B_{1} and B_{-1} are i.i.d. Brownian Motions and $R_{1}(\cdot)=R_{-1}(\cdot)=\int_{0} \frac{1}{2} M(s)(1-M(s)) d s$.

Step 4: Use MVT and coupling to bound the distance between $\int_{0}^{\cdot}\left(\nu_{2}-\left(\nu_{1}+\nu_{2}\right) M_{n}(s)\right) d s$ and $\int_{0}^{\circ}\left(\nu_{2}-\left(\nu_{1}+\nu_{2}\right) M(s)\right) d s$.

Step 5: Obtain the final bound, upon noting that the diffusive part of the W.-F. diffusion (i.e. $\int_{0}^{\cdot} \sqrt{M(s)(1-M(s)} d B_{s}$) can be written as a time-changed BM: $B\left(\int_{0}^{0} M(s)(1-M(s) d s)\right.$.

Conclusions

- Stein's method can be used to put bounds on distances between inifite-dimensional distributions.
- Starting from bounds on the distance between a time-changed scaled random-walk and a time-changed Brownian Motion, we can bound the distance between various continuous-time Markov chains and diffusions.
- The method only works if the continuous-time Markov chain makes jumps of sizes coming from a finite set and if we have a way of coupling the chain and the diffusion at a fixed time point.
- There is no obvious way of extending this approach to scaled discrete-time Markov chains converging to diffusions or to multidimensional processes.
- The bounds in the diffusion approximation are most likely not sharp. Their order comes from a comparison of the time changes applied to the Poisson processes and the time changes applied to Brownian Motions.

References

A.D. Barbour.

Stein's Method for Diffusion Approximation.
Probability Theory and Related Fields, 84:297-322, 1990.
T
A.D. Barbour and S. Janson.

A functional combinatorial central limit theorem.
Electronic Journal of Probability, 14(81):2352-2370, 2009.
L. Coutin and L. Decreusefond.

Stein's method for Brownian Approximations.
Communications on Stochastic Analysis, 7(3):349-372, 2013.

M.J. Kasprzak.

Diffusion approximations via Stein's method and time changes.
arXiv:1701.07633, 2017.

M.J. Kasprzak, A. B. Duncan, and S.J. Vollmer.

Note on A. Barbour's paper on Stein's method for diffusion approximations.
Electron. Commun. Probab., 22(23):1-8, 2017.
T. Kurtz.

Time change equations for diffusion processes.
www.math.wisc.edu/~kurtz/Lectures/Chenai12.pdf, 2012.
Accessed on 19/05/2016.

