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Functional limit results

Theorem (Donsker 1951)

Let X1,X2, ... be i.i.d. random variables, each with mean 0 and
variance 1. Then, for:

Yn(t) = n−1/2

bntc∑
i=1

Xi ,

(Yn(t), t ∈ [0, 1])⇒ (B(t), t ∈ [0, 1]), with respect to the uniform
topology, where B is a standard Brownian Motion.

Notable extension (Stroock and Varadhan 1969):

Weak convergence of scaled (continuous or discrete-time) Markov
chains to diffusions (solutions of SDEs).
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Functional limit results

Motivation
Look at the discrete model from a distance so that:

I it is easier to study (e.g. we can use stochastic analysis)

I it is more robust to changes in the local details

Speed of convergence in Donsker’s Theorem (Barbour 1990)
For any g : D([0, 1],R)→ R, such that:

‖g‖M = sup
w∈D

|g(w)|
1 + ‖w‖3

+ sup
w∈D

‖Dg(w)‖
1 + ‖w‖2

+ sup
w∈D

‖D2g(w)‖
1 + ‖w‖

+ sup
w,h∈D

‖D2g(w + h)− D2g(w)‖
‖h‖

<∞,

where ‖ · ‖ is the sup norm, there exists a constant C such that

|Eg(Yn)− Eg(B)| ≤ Cn−1/2‖g‖M(
√

log n + E|X1|3).
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Extension: time-changed random walk (K. 2017+)

Theorem
Let X1,X2, ... be i.i.d. with mean 0, variance 1 and finite third
moment. Let s : [0, 1]→ [0,∞) be a strictly increasing, continuous
function with s(0) = 0. Define:

Yn(t) = n−1/2

bns(t)c∑
i=1

Xi , t ∈ [0, 1]

and let (Z (t), t ∈ [0, 1]) = (B(s(t)), t ∈ [0, 1]), where B is a
standard Brownian Motion. Suppose that g ∈ M. Then:

|Eg(Yn)− Eg(Z )| ≤ ‖g‖M

{
(2133 + 63s(1))

√
log(2s(1)n)√

n

+
(
s(1) + 3s(1)5/2

)
E|X1|3n−1/2

}
.
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Time-changed Poisson process (K. 2017+)

Theorem
Let P be a Poisson process with rate 1 and s(n) : [0, 1]→ [0,∞)
and s : [0, 1]→ [0,∞) increasing, continuous and 0 at the origin.
Let Z (t) = B(s(t)), t ∈ [0, 1] where B is a standard Brownian

Motion and Ỹn(t) =
P(ns(n)(t))−ns(n)(t)

√
n

for t ∈ [0, 1]. Then, for all

g ∈ M:

|Eg(Ỹn)− Eg(Z )| ≤ ‖g‖M
{

(2 + 11s(1))
√
‖s − s(n)‖

+
27
√

2

2
√
π
‖s − s(n)‖3/2 + n−1/2

[
C

(n)
1

√
log(2s(1)n) + C

(n)
2

]}

for explicitly computable C
(n)
1 ,C

(n)
2 depending only on sn(1) and

s(1).
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Moran model and W.-F. diffusion (K. 2017+)

Setup

Moran model with mutation:

I n individuals, two genes: (A and a).

I At exponential rate
(n

2

)
select two individuals uniformly at

random: one randomly selected dies, the other one splits in
two.

I In addition, every individual of type A changes its type
independently at rate ν2 and every individual of type a
changes its type independently at rate ν1.

I Let Mn(t) be the proportion of type a genes in the population
at time t ∈ [0, 1] under this model. Let (M(t), t ∈ [0, 1])
denote the Wright-Fisher diffusion given by:

dM(t) = (ν2 − (ν1 + ν2)M(t))dt +
√

M(t)(1−M(t))dBt .
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Moran model and W.-F. diffusion (K. 2017+)

Theorem
Given the setup above, for any g ∈ M:

|Eg(Mn)− Eg(M)| ≤ ‖g‖M
[
C1(ν1, ν2)n−1/4

+C2(ν1, ν2)n−1
√

log (n2/4 + ν2n) + C3(ν1, ν2)n−1
√

log (n2/4 + ν1n)

]
,

where C1,C2,C3 are explicitly computable.
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Method of proof

Aim
Approximate the distance between a scaled time-changed random

walk Yn(·) = n−1/2
∑bns(·)c

i=1 Xi , (where Xi ’s are i.i.d. with mean 0,
variance 1 and finite third moment) and time-changed Brownian
Motion B(s(t)).

Idea
First approximate Yn by An(·) = n−1/2

∑bns(·)c
i=1 Zi , where Zi ’s are

i.i.d. N (0, 1), using Stein’s method. Then bound the distance
between An and B ◦ s using results about the modulus of
continuity of Brownian Motion.
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Methodology: Stein’s method

I Step 1: Find a (Stein) operator A acting on a class of
real-valued functions, such that:

(∀f ∈ Domain(A) EνAf = 0)⇐⇒ ν = L(An).

For example, find a Markov process whose stationary law is
L(An) and let A be its infinitesimal generator.

I Step 2: For a given function g ∈ M, find f = fg , such that:

Af = g − Eg(An).

I Step 3: Study the properties of fg and estimate |EAfg (Yn)|
using Taylor’s expansions.
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Application to the Poisson process case

Step 1 : Bound the distance between Ỹn(·) =
P(ns(n)(·))−ns(n)(·)

√
n

and

Ãn(·) = n−1/2
∑bns(n)(·)c

i=1 Zi , where Zi
i.i.d.∼ N (0, 1), using Stein’s

method, as in the random-walk case.

Step 2 : Bound the distance between Ãn(·) = n−1/2
∑bns(n)(·)c

i=1 Zi

and An(·) = n−1/2
∑bns(·)c

i=1 Zi , where Zi
i.i.d.∼ N (0, 1), using the

Mean Value Theorem and properties of the space M.

Step 3 : Bound the distance between An(·) = n−1/2
∑bns(·)c

i=1 Zi and
a time-changed Brownian Motion B ◦ s, using Brownian modulus
of continuity results.
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Application to Moran model and W.-F. diffusion

Step 1 : Note that Mn jumps up by 1
n with intensity

1
2n

2Mn(t)(1−Mn(t)) + nν2(1−Mn(t)) and down by 1
n with

intensity 1
2n

2Mn(t)(1−Mn(t)) + nν1Mn(t).

Step 2 : Use an idea from [Kur12] and write:

Mn(t) =
P1

(
n2Rn

1 (t)
)
− n2Rn

1 (t)

n
−

P−1

(
n2Rn

−1(t)
)
− n2Rn

−1(t)

n

+

∫ t

0
(ν2 − (ν1 + ν2)Mn(s)) ds,

where P1,P−1 are i.i.d. Poisson processes with rate 1 and{
Rn

1 (t) :=
∫ t

0

(
1
2Mn(s) + ν2

n

)
(1−Mn(s))ds

Rn
−1(t) :=

∫ t
0

(
1
2 (1−Mn(s)) + ν1

n

)
Mn(s)ds

for t ∈ [0, 1].
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Application to Moran model and W.-F. diffusion

Step 3 : Use the method applied before to time-changed Poisson
processes and a coupling between the Moran model and W.-F.
diffusion to bound:

I distance between
P1(n2Rn

1 (t))−n2Rn
1 (t)

n and B1 ◦ R1

I distance between
P−1(n2Rn

−1(t))−n2Rn
−1(t)

n and B−1 ◦ R−1,

where B1 and B−1 are i.i.d. Brownian Motions and
R1(·) = R−1(·) =

∫ ·
0

1
2M(s)(1−M(s))ds.

Step 4 : Use MVT and coupling to bound the distance between∫ ·
0 (ν2 − (ν1 + ν2)Mn(s)) ds and

∫ ·
0 (ν2 − (ν1 + ν2)M(s)) ds.

Step 5 : Obtain the final bound, upon noting that the diffusive part
of the W.-F. diffusion (i.e.

∫ ·
0

√
M(s)(1−M(s)dBs) can be

written as a time-changed BM: B
(∫ ·

0 M(s)(1−M(s)ds
)
.
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Conclusions

I Stein’s method can be used to put bounds on distances between
inifite-dimensional distributions.

I Starting from bounds on the distance between a time-changed
scaled random-walk and a time-changed Brownian Motion, we can
bound the distance between various continuous-time Markov chains
and diffusions.

I The method only works if the continuous-time Markov chain makes
jumps of sizes coming from a finite set and if we have a way of
coupling the chain and the diffusion at a fixed time point.

I There is no obvious way of extending this approach to scaled
discrete-time Markov chains converging to diffusions or to
multidimensional processes.

I The bounds in the diffusion approximation are most likely not sharp.
Their order comes from a comparison of the time changes applied
to the Poisson processes and the time changes applied to Brownian
Motions.
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