(0):4(0)23D)

DEPARTMENT OF

STATISTICS

Diffusion approximations via

Stein's method and time
changes

Mikotaj Kasprzak
(PhD project supervised by Gesine Reinert)

Department of Statistics
University of Oxford

3 July 2017

u]
v
8
Wit
a
[\t
it

o>



Overview

Functional limit results

Speed of convergence estimates

Methodology - Stein's method

Conclusions

References

3 July 2017 Mikotaj Kasprzak (kasprzak@®stats.ox.ac.uk) 2



Functional limit results

STATISTICS

Theorem (Donsker 1951)
Let X1, X5, ... be i.i.d. random variables, each with mean 0 and
variance 1. Then, for:

Lnt]
Yn(t) = n_1/2 Z Xi,
i=1

(Ya(t),t €[0,1]) = (B(t), t € [0,1]), with respect to the uniform
topology, where B is a standard Brownian Motion.

Notable extension (Stroock and Varadhan 1969):

Weak convergence of scaled (continuous or discrete-time) Markov
chains to diffusions (solutions of SDEs).
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Functional limit results

STATISTICS

Motivation
Look at the discrete model from a distance so that:

> it is easier to study (e.g. we can use stochastic analysis)

» it is more robust to changes in the local details

Speed of convergence in Donsker's Theorem (Barbour 1990)
For any g : D([0,1],R) — R, such that:

W (0] 1Dg )l 1D%(w) |D%(w + ) — D%g(w)]|
weD 1+ |[w|3  wep 1+ [[w|?2  weDp 1+ |lwl]l  w,heD 1Al
where || - || is the sup norm, there exists a constant C such that

IEg(Yn) — Eg(B)| < Cn~*?||g||m(y/log n + E[X1|3).
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Extension: time-changed random walk (K. 2017+)

STATISTICS

Theorem
Let X1, Xo, ... be i.i.d. with mean 0, variance 1 and finite third
moment. Let s : [0,1] — [0,00) be a strictly increasing, continuous
function with s(0) = 0. Define:
Lns(t)]
Yat)=n""2 )" X, telo1]
i=1
and let (Z(t),t € [0,1]) = (B(s(t)),t € [0,1]), where B is a
standard Brownian Motion. Suppose that g € M. Then:

[Eg(Yn) — Eg(2)] < llgllm {(2133 1 63s(1)) 'Ogﬁ(l)”)

+ (s(l) + 35(1)5/2> E\le3n—1/2} .
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Time-changed Poisson process (K. 2017+)

STATISTICS

Theorem

Let P be a Poisson process with rate 1 and s(" : [0,1] — [0, c0)
and s : [0,1] — [0, 00) increasing, continuous and 0 at the origin.
Let Z(t) = B(s(t)),t € [0,1] where B is a standard Brownian

~ ns(n ns(n)
Motion and Y,(t) = A (t\)f)n ) fort e [0,1]. Then, for all
g€ M:

[Eg(Yn) —Eg(2)| < llglim {(2 +11s(1)) /lls — s]|

27\\[\\ s(”)H3/2 +n 12 [Cl(")\/log(2s(1)n) + Cz(")} }

for explicitly computable Cl("), C2(") depending only on s,(1) and
s(1).
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Moran model and W.-F. diffusion (K. 2017+)

STATISTICS

Setup
Moran model with mutation:

» n individuals, two genes: (A and a).

» At exponential rate ('2’) select two individuals uniformly at
random: one randomly selected dies, the other one splits in
two.

» In addition, every individual of type A changes its type
independently at rate v, and every individual of type a
changes its type independently at rate v;.

» Let M,(t) be the proportion of type a genes in the population
at time t € [0, 1] under this model. Let (M(t),t € [0, 1])
denote the Wright-Fisher diffusion given by:

dM(t) = (v2 — (v1 + v2)M(t))dt + /M(t)(1 — M(t))dB:;.
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Moran model and W.-F. diffusion (K. 2017+)

STATISTICS

Theorem
Given the setup above, for any g € M:

Eg(M,) — Eg(M)] < lgllm | Cu(vr, v2)n /4

+C2(V1,I/2 \/Iog n2/4—|—1/2n) + C3(1/1,V2 \/Iog n2/4+1/1n)] ,

where Ci, (;, C3 are explicitly computable.
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Method of proof

STATISTICS

Aim
Approximate the distance between a scaled time-changed random
walk Y,(-) = n~1/2 ZL"S WX, (where X;'s are i.i.d. with mean 0,

variance 1 and finite third moment) and time-changed Brownian
Motion B(s(t)).

Idea

First approximate Y, by A,(:) = n—1/2 Z,.Lfl('” Z;, where Z;'s are
i.i.d. M(0,1), using Stein's method. Then bound the distance
between A, and B o s using results about the modulus of
continuity of Brownian Motion.
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Methodology: Stein’'s method

STATISTICS

» Step 1: Find a (Stein) operator A acting on a class of
real-valued functions, such that:

(Vf € Domain(A) E,Af =0) <= v = L(Ap).

For example, find a Markov process whose stationary law is
L(Ap) and let A be its infinitesimal generator.

» Step 2: For a given function g € M, find f = f;, such that:
Af = g — Eg(A).

» Step 3: Study the properties of f; and estimate |EAf,(Y),)|
using Taylor's expansions.
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Application to the Poisson process case

STATISTICS

. ns(M () —ns()(.
Step 1: Bound the distance between Y/, ( ) = Pns (\)% =70) and

An() = n~1/? ZLHS N 7. where Z; )¢ N(0,1), using Stein's
method, as in the random-walk case.

Step 2: Bound the distance between A,(-) = n~1/2 Z,.Lfl(n)('” Z;

and A,(-) = n1/? Z,.Lfl('” Z;, where Z; & N(0,1), using the
Mean Value Theorem and properties of the space M.

Step 3: Bound the distance between A,(-) = n~1/2 Z,.Lf’l('H Z; and
a time-changed Brownian Motion B o s, using Brownian modulus
of continuity results.
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Application to Moran model and W.-F. diffusion

STATISTICS

Step 1: Note that M, jumps up by % with intensity
2P Mo(t)(1 = My(t)) + nva(1 — M,(t)) and down by 1 with
intensity 3% M,(t)(1 — Ma(t)) + nvy Mp(t).

Step 2: Use an idea from [Kurl2] and write:

Py (”2R"(t)) — m*RP(t) Py (n*RIy(t)) — n®RMy(t)

Mn(t) = p

/ (s — (1 + v2)M(s)) ds,
where P;, P_1 are i.i.d. Poisson processes with rate 1 and

{Rf(t = f; (iM ”)(1—M( ))ds

fo ( Ma(s)) + 22) My(s)ds for t € [0,1].
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Application to Moran model and W.-F. diffusion

STATISTICS

Step 3: Use the method applied before to time-changed Poisson
processes and a coupling between the Moran model and W.-F.
diffusion to bound:

Pu(mRi(0) - Ri(2) and By o Ry

1(n?R(t))—n?R" (1)

» distance between

. P_
» distance between and B_1 0 R_q,

where By and B_1 are i.i.d. Brownian Motions and
Ri() = Roa() = fo 3M(s)(1 — M(s))ds.

Step 4: Use MVT and coupling to bound the distance between
Jo (2 = (v1 + v2)My(s)) ds and [, (v2 — (v1 + v2)M(s)) ds.

Step 5: Obtain the final bound, upon noting that the diffusive part

of the W.-F. diffusion (i.e. f; /M 1 — M(s)dBs) can be

written as a time- changed BM: B (fo (1 — M(s)ds).
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Conclusions

STATISTICS

>

Stein's method can be used to put bounds on distances between
inifite-dimensional distributions.

Starting from bounds on the distance between a time-changed
scaled random-walk and a time-changed Brownian Motion, we can
bound the distance between various continuous-time Markov chains
and diffusions.

The method only works if the continuous-time Markov chain makes
jumps of sizes coming from a finite set and if we have a way of
coupling the chain and the diffusion at a fixed time point.

There is no obvious way of extending this approach to scaled
discrete-time Markov chains converging to diffusions or to
multidimensional processes.

The bounds in the diffusion approximation are most likely not sharp.
Their order comes from a comparison of the time changes applied
to the Poisson processes and the time changes applied to Brownian
Motions.
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