Scenery Reconstruction and Locally Biased Functions on the Hypercube

Uri Grupel
Warsaw Summer School in Probability 2017
Weizmann Institute of Science
Joint work with Renan Gross

Scenery Reconstruction

Suppose we are given a graph G,

Scenery Reconstruction

Suppose we are given a graph G,

Scenery Reconstruction

Suppose we are given a graph G, colored by some function $f(x)$.

Scenery reconstruction

> An agent performs a simple random walk S_{t} on the graph.

Scenery reconstruction

An agent performs a simple random walk S_{t} on the graph.

Reported scenery:
W

Scenery reconstruction

An agent performs a simple random walk S_{t} on the graph.

> Reported scenery: W B

Scenery reconstruction

An agent performs a simple random walk S_{t} on the graph.

> Reported scenery: W B W

Scenery reconstruction

An agent performs a simple random walk S_{t} on the graph.

Reported scenery: W B W B

Scenery reconstruction

An agent performs a simple random walk S_{t} on the graph.

Reported scenery: W B W B W

Scenery reconstruction

An agent performs a simple random walk S_{t} on the graph.

Reported scenery: W B W B W W

Scenery reconstruction

An agent performs a simple random walk S_{t} on the graph.

Reported scenery: W B W B W W B

Scenery reconstruction

An agent performs a simple random walk S_{t} on the graph.

Reported scenery: W B W B W W B B

Scenery Reconstruction

Question

Suppose we know G. Can we reconstruct the coloring f based only on the trace of the random walk $f\left(S_{t}\right)$?

Scenery Reconstruction

Question

Suppose we know G. Can we reconstruct the coloring f based only on the trace of the random walk $f\left(S_{t}\right)$?

Remarks:

- We are given an infinite random walk, hence the reconstruction should happen with probability 1.

Scenery Reconstruction

Question

Suppose we know G. Can we reconstruct the coloring f based only on the trace of the random walk $f\left(S_{t}\right)$?

Remarks:

- We are given an infinite random walk, hence the reconstruction should happen with probability 1.
- Up to isomorphisms of the graph.

Scenery Reconstruction

Some known results:

- When G is a cycle reconstruction is possible. (Benjamini and Kesten 96)

Scenery Reconstruction

Some known results:

- When G is a cycle reconstruction is possible. (Benjamini and Kesten 96)
- When $G=\mathbb{Z}$ reconstruction is impossible. (Lindenstrauss 99)

Scenery Reconstruction

Some known results:

- When G is a cycle reconstruction is possible. (Benjamini and Kesten 96)
- When $G=\mathbb{Z}$ reconstruction is impossible. (Lindenstrauss 99)
- When $G=\mathbb{Z}$ and f is a random function. Reconstruction inside a finite segment can be done after polynomial time in the length of the segment. (Matzinger and Rolles 2003)

Scenery Reconstruction

Some known results:

- When G is a cycle reconstruction is possible. (Benjamini and Kesten 96)
- When $G=\mathbb{Z}$ reconstruction is impossible. (Lindenstrauss 99)
- When $G=\mathbb{Z}$ and f is a random function. Reconstruction inside a finite segment can be done after polynomial time in the length of the segment. (Matzinger and Rolles 2003)

Scenery Reconstruction

Some known results:

- When G is a cycle reconstruction is possible. (Benjamini and Kesten 96)
- When $G=\mathbb{Z}$ reconstruction is impossible. (Lindenstrauss 99)
- When $G=\mathbb{Z}$ and f is a random function. Reconstruction inside a finite segment can be done after polynomial time in the length of the segment. (Matzinger and Rolles 2003)

Our starting point: Is reconstruction possible for $G=\{-1,1\}^{n}$?

Scenery Reconstruction

Some known results:

- When G is a cycle reconstruction is possible. (Benjamini and Kesten 96)
- When $G=\mathbb{Z}$ reconstruction is impossible. (Lindenstrauss 99)
- When $G=\mathbb{Z}$ and f is a random function. Reconstruction inside a finite segment can be done after polynomial time in the length of the segment. (Matzinger and Rolles 2003)

Our starting point: Is reconstruction possible for $G=\{-1,1\}^{n}$?
No.

Boolean Scenery

The way to do this is to show that there are two colorings which yield the same distribution of sceneries.

Example:

Boolean Scenery

The way to do this is to show that there are two colorings which yield the same distribution of sceneries.

Example:

The process $f\left(S_{t}\right)$ is Bernoulli IID with success probability $1 / 2$!

Locally Biased Functions

So we defined locally biased functions, and started investigating them in their own right.

Definition

Let G be a graph. A Boolean function $f: G \rightarrow\{-1,1\}$ is called locally p-biased, if for every vertex $x \in G$ we have

$$
\frac{|\{y \sim x ; f(y)=1\}|}{\operatorname{deg}(x)}=p .
$$

That is, f is locally p-biased if for every vertex x, f takes the value 1 on exactly a p-fraction of x 's neighbors.

Locally Biased Functions

So we defined locally biased functions, and started investigating them in their own right.

Definition

Let G be a graph. A Boolean function $f: G \rightarrow\{-1,1\}$ is called locally p-biased, if for every vertex $x \in G$ we have

$$
\frac{|\{y \sim x ; f(y)=1\}|}{\operatorname{deg}(x)}=p .
$$

That is, f is locally p-biased if for every vertex x, f takes the value 1 on exactly a p-fraction of x 's neighbors.

Existence of two non-isomorphic locally biased functions implies that the scenery reconstruction problem cannot be solved.

Locally Biased Functions

Locally biased functions can be defined for any graph.

Locally Biased Functions

Locally biased functions can be defined for any graph.

Theorem (characterization)

Let $n \in \mathbb{N}$ be a natural number and $p \in[0,1]$. There exists a locally p-biased function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ if and only if $p=b / 2^{k}$ for some integers $b \geq 0, k \geq 0$, and 2^{k} divides n.

Theorem (size)
Let $n \geq 4$ be even. Let $B_{1 / 2}^{n}$ be a maximal class of non-isomorphic locally $1 / 2$-biased functions, i.e every two functions in $B_{1 / 2}^{n}$ are non-isomorphic to each other. Then $\left|B_{1 / 2}^{n}\right| \geq C 2^{\sqrt{n}} / n^{1 / 4}$, where $C>0$ is a universal constant.

We also have lower bounds for some other values of p, and other classes of functions.

Proof of Theorem 1 (Necessary Condition)

Double counting argument:

- Let x be a uniformly random element of the cube. Then $f(x)=1$ with probability $\ell / 2^{n}$, where $\ell=\left|\left\{x \in\{-1,1\}^{n} ; f(x)=1\right\}\right|$
- Let y be a uniformly random neighbor of x. Then $f(y)=1$ with probability p by definition.
- Since both x and y are uniform random vertices,

$$
\mathbb{P}(f(x)=1)=\mathbb{P}(f(y)=1)
$$

- Denoting $p=m / n$ for some $m \in\{0,1, \ldots, n\}$, this gives

$$
p=\frac{\ell}{2^{n}}=\frac{m}{n}
$$

- Writing $n=c 2^{k}$ gives the desired result.

Proof of Theorem 1 (Sufficient Condition)

We start with locally $1 / n$-biased functions, for $n=2^{m}$. Our goal is to tile the hypercube by:

Proof of Theorem 1 (Sufficient Condition)

We start with locally $1 / n$-biased functions, for $n=2^{m}$. Our goal is to tile the hypercube by:

Proof of Theorem 1 (Sufficient Condition)

We start with locally $1 / n$-biased functions, for $n=2^{m}$. Our goal is to tile the hypercube by:

Proof of Theorem 1 (Sufficient Condition)

We start with locally $1 / n$-biased functions, for $n=2^{m}$. Our goal is to tile the hypercube by:

A tile for $n=4$.

Proof of Theorem 1 (Sufficient Condition)

We start with locally $1 / n$-biased functions, for $n=2^{m}$. Our goal is to tile the hypercube by:

A tile for $n=4$.

A tile for $n=8$.

Proof of Theorem 1 (Sufficient Condition)

How can we find such tilings?

Proof of Theorem 1 (Sufficient Condition)

How can we find such tilings? We start with finding a "half-tiling".

Proof of Theorem 1 (Sufficient Condition)

How can we find such tilings? We start with finding a "half-tiling".

Proof of Theorem 1 (Sufficient Condition)

How can we find such tilings? We start with finding a "half-tiling".

Proof of Theorem 1 (Sufficient Condition)

How can we find such tilings? We start with finding a "half-tiling".

Proof of Theorem 1 (Sufficient Condition)

How can we find such tilings? We start with finding a "half-tiling".

Proof of Theorem 1 (Sufficient Condition)

How can we find such tilings? We start with finding a "half-tiling".

We have a $1 / n$ tiling!

Proof of Theorem 1 (Sufficient Condition)

In order to find half tilings we use Hamming perfect codes.

- Let x be in our code (a node we will color).
- The coordinates with index 2^{ℓ} are the parity coordinates.
- In the other coordinates, we go over all possible values.
- We define:

$$
x_{i}=\bigoplus_{j: i \wedge j \neq 0} x_{j} \quad \forall i=2^{\ell}, \ell \geq 0
$$

Where $\oplus=$ xor and $\wedge=$ and .
Remark: a translation of this will produce disjoint tilings.

Proof of Theorem 1 (Sufficient Condition)

To get m / n instead of $1 / n$, combine several disjoint tilings.

Proof of Theorem 1 (Sufficient Condition)

Remark: for $n=2^{m}-1$ there are exponentially many perfect codes (Krotov and Avgustinovich 2008). This gives us exponentially many distinct $1 / 2^{k}$-locally biased function. Unfortunately, we do not know how to translate them into disjoint copies.

Proof of Theorem 1 (Sufficient Condition)

We need to generalize for any $n \geq 4$ and $p=m / 2^{k}$.
Proposition
Let $g:\{-1,1\}^{k} \rightarrow\{-1,1\}$ be an $m / 2^{k}$-biased function. Then

$$
f(x)=g\left(\prod_{j=0}^{c-1} x_{1+j n}, \ldots, \prod_{j=0}^{c-1} x_{n+j n}\right)
$$

is an $m / 2^{k}$-biased function on $\{-1,1\}^{c k}$.

Proof of Theorem 2

Proof of Theorem 2

$g\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{2}$

$h\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=$ $\frac{1}{2}\left(x_{1} x_{2}+x_{2} x_{3}-x_{3} x_{4}+x_{1} x_{4}\right)$

Proof of Theorem 2

$$
g\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{2}
$$

$$
g_{n}\left(x_{1}, \ldots, x_{n}\right)=x_{1} \cdots x_{n / 2}
$$

$$
\begin{gathered}
h\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= \\
\frac{1}{2}\left(x_{1} x_{2}+x_{2} x_{3}-x_{3} x_{4}+x_{1} x_{4}\right) \\
h_{k}= \\
h\left(\prod_{i=0}^{k-1} x_{1+4 i}, \ldots, \prod_{i=0}^{k-1} x_{4+4 i}\right)
\end{gathered}
$$

Proof of Theorem 2

Observation

Let $f_{i}:\{-1,1\}^{n_{i}} \rightarrow\{-1,1\}$ be locally $1 / 2$-biased functions for $i=1,2$ where $n_{1}+n_{2}=n$. Then

$$
f(x)=f_{1}\left(x_{1}, \ldots, x_{n_{1}}\right) f_{2}\left(x_{n_{1}+1}, \ldots, x_{n}\right)
$$

is a locally $1 / 2$-biased function on $\{-1,1\}^{n}$.
We can then build up locally $1 / 2$-biased functions from the building blocks h_{0}, h_{1}, \ldots and $g_{0}, g_{2}, g_{4}, \ldots$

Proof of Theorem 2

Observation

Let $f_{i}:\{-1,1\}^{n_{i}} \rightarrow\{-1,1\}$ be locally $1 / 2$-biased functions for $i=1,2$ where $n_{1}+n_{2}=n$. Then

$$
f(x)=f_{1}\left(x_{1}, \ldots, x_{n_{1}}\right) f_{2}\left(x_{n_{1}+1}, \ldots, x_{n}\right)
$$

is a locally $1 / 2$-biased function on $\{-1,1\}^{n}$.
We can then build up locally $1 / 2$-biased functions from the building blocks h_{0}, h_{1}, \ldots and $g_{0}, g_{2}, g_{4}, \ldots$

- Every time we pick h_{0}, we use 4 bits.

Proof of Theorem 2

Observation

Let $f_{i}:\{-1,1\}^{n_{i}} \rightarrow\{-1,1\}$ be locally $1 / 2$-biased functions for $i=1,2$ where $n_{1}+n_{2}=n$. Then

$$
f(x)=f_{1}\left(x_{1}, \ldots, x_{n_{1}}\right) f_{2}\left(x_{n_{1}+1}, \ldots, x_{n}\right)
$$

is a locally $1 / 2$-biased function on $\{-1,1\}^{n}$.
We can then build up locally $1 / 2$-biased functions from the building blocks h_{0}, h_{1}, \ldots and $g_{0}, g_{2}, g_{4}, \ldots$.

- Every time we pick h_{0}, we use 4 bits.
- Every time we pick h_{1}, we use 8 bits.

Proof of Theorem 2

Observation

Let $f_{i}:\{-1,1\}^{n_{i}} \rightarrow\{-1,1\}$ be locally $1 / 2$-biased functions for $i=1,2$ where $n_{1}+n_{2}=n$. Then

$$
f(x)=f_{1}\left(x_{1}, \ldots, x_{n_{1}}\right) f_{2}\left(x_{n_{1}+1}, \ldots, x_{n}\right)
$$

is a locally $1 / 2$-biased function on $\{-1,1\}^{n}$.
We can then build up locally $1 / 2$-biased functions from the building blocks h_{0}, h_{1}, \ldots and $g_{0}, g_{2}, g_{4}, \ldots$.

- Every time we pick h_{0}, we use 4 bits.
- Every time we pick h_{1}, we use 8 bits.
- Every time we pick h_{2}, we use 12 bits.

Proof of Theorem 2

Observation

Let $f_{i}:\{-1,1\}^{n_{i}} \rightarrow\{-1,1\}$ be locally $1 / 2$-biased functions for $i=1,2$ where $n_{1}+n_{2}=n$. Then

$$
f(x)=f_{1}\left(x_{1}, \ldots, x_{n_{1}}\right) f_{2}\left(x_{n_{1}+1}, \ldots, x_{n}\right)
$$

is a locally $1 / 2$-biased function on $\{-1,1\}^{n}$.
We can then build up locally $1 / 2$-biased functions from the building blocks h_{0}, h_{1}, \ldots and $g_{0}, g_{2}, g_{4}, \ldots$.

- Every time we pick h_{0}, we use 4 bits.
- Every time we pick h_{1}, we use 8 bits.
- Every time we pick h_{2}, we use 12 bits.
- ...

Proof of Theorem 2

Observation

Let $f_{i}:\{-1,1\}^{n_{i}} \rightarrow\{-1,1\}$ be locally $1 / 2$-biased functions for $i=1,2$ where $n_{1}+n_{2}=n$. Then

$$
f(x)=f_{1}\left(x_{1}, \ldots, x_{n_{1}}\right) f_{2}\left(x_{n_{1}+1}, \ldots, x_{n}\right)
$$

is a locally $1 / 2$-biased function on $\{-1,1\}^{n}$.
We can then build up locally $1 / 2$-biased functions from the building blocks h_{0}, h_{1}, \ldots and $g_{0}, g_{2}, g_{4}, \ldots$.

- Every time we pick h_{0}, we use 4 bits.
- Every time we pick h_{1}, we use 8 bits.
- Every time we pick h_{2}, we use 12 bits.
- The rest of the bits are filled with g_{k}.

Proof of Theorem 2

- Every time we pick h_{0}, we use 4 bits.
- Every time we pick h_{1}, we use 8 bits.
- Every time we pick h_{2}, we use 12 bits.
- The rest of the bits are filled with g_{k}.

The \# of different combinations is the same as the \# of solutions to:

$$
4 a_{1}+8 a_{2}+\cdots+4 k a_{k} \leq n
$$

which is at least

$$
C \cdot 2^{\sqrt{n}} / n^{1 / 4}
$$

for some constant C.

Proof of Theorem 2

- The automorphisms of the hypercube gives us sign changes and index permutations of the Fourier decomposition.

Proof of Theorem 2

- The automorphisms of the hypercube gives us sign changes and index permutations of the Fourier decomposition.
- By uniqueness of the Fourier structure, the functions we constructed are not isomorphic.

Open Questions

- Find asymptotics for the number of locally p-biased functions on $\{-1,1\}^{n}$.

Open Questions

- Find asymptotics for the number of locally p-biased functions on $\{-1,1\}^{n}$.
- Is reconstruction possible for random functions?

Open Questions

- Find asymptotics for the number of locally p-biased functions on $\{-1,1\}^{n}$.
- Is reconstruction possible for random functions?
- Existence of locally p-biased functions on other graphs.

Open Questions

- Find asymptotics for the number of locally p-biased functions on $\{-1,1\}^{n}$.
- Is reconstruction possible for random functions?
- Existence of locally p-biased functions on other graphs.
- What can we say about the spectrum of locally p-biased functions? (e.g, we know that for $p=1 / 2$ the Fourier weight at degree $n / 2$ is 1)

Open Questions

- Find asymptotics for the number of locally p-biased functions on $\{-1,1\}^{n}$.
- Is reconstruction possible for random functions?
- Existence of locally p-biased functions on other graphs.
- What can we say about the spectrum of locally p-biased functions? (e.g, we know that for $p=1 / 2$ the Fourier weight at degree $n / 2$ is 1)

Open Questions

- Find asymptotics for the number of locally p-biased functions on $\{-1,1\}^{n}$.
- Is reconstruction possible for random functions?
- Existence of locally p-biased functions on other graphs.
- What can we say about the spectrum of locally p-biased functions? (e.g, we know that for $p=1 / 2$ the Fourier weight at degree $n / 2$ is 1)

Remarks:

- We used the results for the hypercube to analyze \mathbb{Z}^{n}, but it does not cover all the options.

Open Questions

- Find asymptotics for the number of locally p-biased functions on $\{-1,1\}^{n}$.
- Is reconstruction possible for random functions?
- Existence of locally p-biased functions on other graphs.
- What can we say about the spectrum of locally p-biased functions? (e.g, we know that for $p=1 / 2$ the Fourier weight at degree $n / 2$ is 1)

Remarks:

- We used the results for the hypercube to analyze \mathbb{Z}^{n}, but it does not cover all the options.
- Using locally p-biased functions we showed another class of functions that produce indistinguishable sceneries.

Thank You!

