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Scenery Reconstruction

Suppose we are given a graph G ,

colored by some function f (x).
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Scenery Reconstruction

Question

Suppose we know G . Can we reconstruct the coloring f based only

on the trace of the random walk f (St)?

Remarks:

• We are given an infinite random walk, hence the

reconstruction should happen with probability 1.

• Up to isomorphisms of the graph.
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Scenery Reconstruction

Some known results:

• When G is a cycle reconstruction is possible. (Benjamini and

Kesten 96)

• When G = Z reconstruction is impossible. (Lindenstrauss 99)

• When G = Z and f is a random function. Reconstruction

inside a finite segment can be done after polynomial time in

the length of the segment. (Matzinger and Rolles 2003)

Our starting point: Is reconstruction possible for G = {−1, 1}n?

No.
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Boolean Scenery

The way to do this is to show that there are two colorings which

yield the same distribution of sceneries.

Example:

The process f (St) is Bernoulli IID with success probability 1/2!
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Locally Biased Functions

So we defined locally biased functions, and started investigating

them in their own right.

Definition

Let G be a graph. A Boolean function f : G → {−1, 1} is called

locally p-biased, if for every vertex x ∈ G we have

|{y ∼ x ; f (y) = 1}|
deg(x)

= p.

That is, f is locally p-biased if for every vertex x , f takes the value

1 on exactly a p-fraction of x ’s neighbors.

Existence of two non-isomorphic locally biased functions implies

that the scenery reconstruction problem cannot be solved.
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Locally Biased Functions

Locally biased functions can be defined for any graph.
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Theorems

Theorem (characterization)

Let n ∈ N be a natural number and p ∈ [0, 1]. There exists a

locally p-biased function f : {−1, 1}n → {−1, 1} if and only if

p = b/2k for some integers b ≥ 0, k ≥ 0, and 2k divides n.

Theorem (size)

Let n ≥ 4 be even. Let Bn
1/2 be a maximal class of non-isomorphic

locally 1/2-biased functions, i.e every two functions in Bn
1/2 are

non-isomorphic to each other. Then
∣∣∣Bn

1/2

∣∣∣ ≥ C2
√
n/n1/4, where

C > 0 is a universal constant.

We also have lower bounds for some other values of p, and other

classes of functions.
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Proof of Theorem 1 (Necessary Condition)

Double counting argument:

• Let x be a uniformly random element of the cube. Then

f (x) = 1 with probability `/2n, where

` = |{x ∈ {−1, 1}n ; f (x) = 1}|
• Let y be a uniformly random neighbor of x . Then f (y) = 1

with probability p by definition.

• Since both x and y are uniform random vertices,

P(f (x) = 1) = P(f (y) = 1)

• Denoting p = m/n for some m ∈ {0, 1, . . . , n}, this gives

p =
`

2n
=

m

n
.

• Writing n = c2k gives the desired result.
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Proof of Theorem 1 (Sufficient Condition)

We start with locally 1/n-biased functions, for n = 2m. Our goal is

to tile the hypercube by:

A tile for n = 4.

A tile for n = 8.
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Proof of Theorem 1 (Sufficient Condition)

How can we find such tilings?

We start with finding a “half-tiling”.

We have a 1/n tiling!
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Proof of Theorem 1 (Sufficient Condition)

In order to find half tilings we use Hamming perfect codes.

• Let x be in our code (a node we will color).

• The coordinates with index 2` are the parity coordinates.

• In the other coordinates, we go over all possible values.

• We define:

xi =
⊕

j :i∧j 6=0

xj ∀i = 2`, ` ≥ 0

Where ⊕=xor and ∧=and.

Remark: a translation of this will produce disjoint tilings.
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Proof of Theorem 1 (Sufficient Condition)

To get m/n instead of 1/n, combine several disjoint tilings.
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Proof of Theorem 1 (Sufficient Condition)

Remark: for n = 2m− 1 there are exponentially many perfect codes

(Krotov and Avgustinovich 2008). This gives us exponentially

many distinct 1/2k -locally biased function. Unfortunately, we do

not know how to translate them into disjoint copies.
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Proof of Theorem 1 (Sufficient Condition)

We need to generalize for any n ≥ 4 and p = m/2k .

Proposition

Let g : {−1, 1}k → {−1, 1} be an m/2k -biased function. Then

f (x) = g

c−1∏
j=0

x1+jn, . . . ,

c−1∏
j=0

xn+jn


is an m/2k -biased function on {−1, 1}ck .
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Proof of Theorem 2

g(x1, x2, x3, x4) = x1x2

gn(x1, . . . , xn) = x1 · · · xn/2

h(x1, x2, x3, x4) =
1
2 (x1x2 + x2x3 − x3x4 + x1x4)

hk =

h
(∏k−1

i=0 x1+4i , . . . ,
∏k−1

i=0 x4+4i

)

16



Proof of Theorem 2

g(x1, x2, x3, x4) = x1x2

gn(x1, . . . , xn) = x1 · · · xn/2

h(x1, x2, x3, x4) =
1
2 (x1x2 + x2x3 − x3x4 + x1x4)

hk =

h
(∏k−1

i=0 x1+4i , . . . ,
∏k−1

i=0 x4+4i

)

16



Proof of Theorem 2

g(x1, x2, x3, x4) = x1x2

gn(x1, . . . , xn) = x1 · · · xn/2

h(x1, x2, x3, x4) =
1
2 (x1x2 + x2x3 − x3x4 + x1x4)

hk =

h
(∏k−1

i=0 x1+4i , . . . ,
∏k−1

i=0 x4+4i

)
16



Proof of Theorem 2

Observation

Let fi : {−1, 1}ni → {−1, 1} be locally 1/2-biased functions for

i = 1, 2 where n1 + n2 = n. Then

f (x) = f1(x1, ..., xn1)f2(xn1+1, ..., xn)

is a locally 1/2-biased function on {−1, 1}n.

We can then build up locally 1/2-biased functions from the

building blocks h0, h1, . . . and g0, g2, g4, . . ..

• Every time we pick h0, we use 4 bits.

• Every time we pick h1, we use 8 bits.

• Every time we pick h2, we use 12 bits.

• . . .

• The rest of the bits are filled with gk .
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Proof of Theorem 2

• Every time we pick h0, we use 4 bits.

• Every time we pick h1, we use 8 bits.

• Every time we pick h2, we use 12 bits.

• . . .

• The rest of the bits are filled with gk .

The # of different combinations is the same as the # of solutions

to:

4a1 + 8a2 + · · ·+ 4kak ≤ n

which is at least

C · 2
√
n/n1/4

for some constant C .
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Proof of Theorem 2

• The automorphisms of the hypercube gives us sign changes

and index permutations of the Fourier decomposition.

• By uniqueness of the Fourier structure, the functions we

constructed are not isomorphic.
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Open Questions

• Find asymptotics for the number of locally p-biased functions

on {−1, 1}n.

• Is reconstruction possible for random functions?

• Existence of locally p-biased functions on other graphs.

• What can we say about the spectrum of locally p-biased

functions? (e.g, we know that for p = 1/2 the Fourier weight

at degree n/2 is 1)

Remarks:

• We used the results for the hypercube to analyze Zn, but it

does not cover all the options.

• Using locally p-biased functions we showed another class of

functions that produce indistinguishable sceneries.
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Thank You!
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