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Moving towards an “unexpected configuration”

Back in 1932, Schrödinger described the following experiment

At time t = 0 consider N Brownian particles on the sphere
(X i

t )t≤1,i≤N arranged according to µ,

µ =
1

N

N

i=1

δX i
0
.

Let each particle move independently for a unit of time and
look at their configuration ν at time 1,

ν =
1

N

N

i=1

δX i
1

Assume that ν is an unexpected configuration, i.e. ν ∕≈ vol.

What was the most likely evolution of the particle system
towards ν?

Giovanni Conforti Schrödinger bridges



Moving towards an “unexpected configuration”

Back in 1932, Schrödinger described the following experiment

At time t = 0 consider N Brownian particles on the sphere
(X i

t )t≤1,i≤N arranged according to µ,

µ =
1

N

N

i=1

δX i
0
.

Let each particle move independently for a unit of time and
look at their configuration ν at time 1,

ν =
1

N

N

i=1

δX i
1

Assume that ν is an unexpected configuration, i.e. ν ∕≈ vol.

What was the most likely evolution of the particle system
towards ν?

Giovanni Conforti Schrödinger bridges



Moving towards an “unexpected configuration”

Back in 1932, Schrödinger described the following experiment

At time t = 0 consider N Brownian particles on the sphere
(X i

t )t≤1,i≤N arranged according to µ,

µ =
1

N

N

i=1

δX i
0
.

Let each particle move independently for a unit of time and
look at their configuration ν at time 1,

ν =
1

N

N

i=1

δX i
1

Assume that ν is an unexpected configuration, i.e. ν ∕≈ vol.

What was the most likely evolution of the particle system
towards ν?

Giovanni Conforti Schrödinger bridges



Moving towards an “unexpected configuration”

Back in 1932, Schrödinger described the following experiment

At time t = 0 consider N Brownian particles on the sphere
(X i

t )t≤1,i≤N arranged according to µ,

µ =
1

N

N

i=1

δX i
0
.

Let each particle move independently for a unit of time and
look at their configuration ν at time 1,

ν =
1

N

N

i=1

δX i
1

Assume that ν is an unexpected configuration, i.e. ν ∕≈ vol.

What was the most likely evolution of the particle system
towards ν?

Giovanni Conforti Schrödinger bridges



Schrödinger problem: Large Deviations formulation

P = stationary process for generator L

L =
1

2
∆−∇U ·∇

µ, ν initial and final configurations

H (·|P) = Relative entropy on path space

Schrödinger problem (SP)

minH (Q|P), X0#Q = µ,X1#Q = ν

The optimal value TH (µ, ν) of the Schrödinger problem is
called entropic transportation cost.

The optimal solution of SP is the Schrödinger bridge (SB)
between µ and ν.
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SB dynamics: sketch

The SB models a particle system that

has to minimize entropy⇒ particles are willing to arrange
theirselves according to the equilibrium configuration m.

has to reach un unexpected final configuration, which looks
very different from m

Thus we expect the dynamics to be divided into two phases.

1 Entropy minimization dominates: SB relaxes to m

2 the influence of the final configuration prevails: particles start
arranging according to ν and drifts away from m.

At any given time t, how far is µt from m ?

Goal of the talk: answer this question.
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Finding an equation for the Schrödinger bridge

We call (µt) the marginal flow of SB, and (vt) its “speed”

Quickest way to minimize entropy: gradient flow of the
entropy

vt = −∇H (µt)

But if particles go along the gradient flow they don’t reach
the “unexpected configuration” ν

Cheap trick: differentiate in time the gradient flows

D

dt
vt = −∇2H (µt)vt = ∇2H (µt)∇H (µt)
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The Riemannian manifold of Optimal transport

To make sense of the calculations above we need to choose
some metric structure on the space of probability measures

The theory of optimal transport can be used to construct
one such structure.

The continuity equation gives the notion of speed for a curve

∂tµ+∇ · (µtvt) = 0

The convective derivative can be used to make sense of the
covariant derivative.

∂tvt +
1

2
∇|vt |2

The concepts of gradient and Hessian of a function are also
well defined
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A second order equation

Our heuristic can be rigorously justified within this structure!

Theorem (C.’ 17)

The marginal flow (µt) of the Schrödinger bridge solves

D

dt
vt =

1

8
∇WIU(µt)

where
D
dt is the covariant derivative

vt is the velocity field of (µt)

IU is the modified Fisher information.

∇W is the gradient in the OT sense.
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A bound for the marginal entropy

At any given time t, how far µt from m ?

Theorem (C. ’17)

Let M be compact and (mut) be the entropic interpolation
between µ and ν. The Bakry Émery condition

Ric+∇∇U ≥ λ

implies the following bound for all µ, ν ∈ P(M)

HU(µt) ≤
1− exp(−α(1− t))

1− exp(−α)
HU(µ) +

1− exp(−αt)

1− exp(−α)
HU(ν)

−
cosh(α2 )− cosh(α(t − 1

2))

sinh(α2 )
TH (µ, ν)
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Evolution of the marginal entropy
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A new functional inequality

Theorem (C.’17)

Let m be the invariant measure associated with L . Then

THU
(µ,m) ≤ 1

1− exp(−α
2 )

HU(µ)

A priori bound on the entropic transportation cost

The entropic cost grows at most linearly with the marginal
entropies

Upper bound for the distance between the Schrödinger bridge
and the target law P

Partial converse to the fact that joint entropies dominate
marginal entropies
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Connections with OT

If we consider the SB constructed with

L ε =
ε

2
∆

Theorem ( Mikami ’04, Léonard ’12 )

The following limits hold as ε ↓ 0.

Schrödinger bridge → displacement interpolation

and

ε T ε
HU

(µ, ν) → 1

2
W 2

2 (µ, ν)

Using this, we can recover displacement convexity of the
entropy Talagrand’s entropy transportation inequality from
our results
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Fisher information and reciprocal characteristic

Reciprocal characteristic

For a given potential U, it is the vector field

∇U , where U =
1

2
|∇U|2 − 1

2
∆U

In the flat case M = Rd we obtained the following

Theorem (C.’17)

Let (µt) be the marginal flow of (SB). If U is convex and µt is a
log-concave law for all t, then

t → IU(µt) is convex

Convexity points of IU=log concave measures?
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Grazie!
beginframeSchrödinger ’33

“ Imaginez que vous observez un système de particules en
diffusion, qui soient en équilibre thermodynamique. Admettons
qu’ à un instant donné 0 vous les ayez trouvées en répartition à

peu près uniforme et que à 1 vous ayez trouvé un écart
spontané et considérable par rapport à cette uniformité. On
vous demande de quelle manière cet écart sest produit. Quelle en

est la manière la plus probable ? ”
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