
Martingale transport and pricing-hedging duality
for American options

Anna Aksamit

based on joint work with

Shuoqing Deng, Jan Ob lój and Xiaolu Tan
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MOT set-up

• Price process S = (St)
T
t=1 on Ω = {ω0} × RT

+ is

St : Ω→ R St(ω0, ..., ωT ) = ωt t = 1, ...,T

and F := (Ft)t=0,1,...,T is the natural filtration of S

• From the prices of (St − K )+ for each K ∈ R+ and each
t ∈ {1, ...,T} we deduce µ = (µ1, ..., µT ) ∈ P1(R+)T such
that St ∼ µt

• Looking for the bounds on the price of g(S1, ...,ST )

inf
Q∈Mµ

EQ[g ] and sup
Q∈Mµ

EQ[g ]

Mµ :=
{
Q ∈ P(Ω) : LQ(St) = µt ∀t and S is an (Q,F)-martingale

}
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MOT set up

• Denote by Λ1 the set of Lipschitz functions λ : R→ R and
define Λ = ΛT

1 and by H the set of all F-predictable R-valued
processes.

• Then the final payoff of semi-static trading strategy
(H, λ) ∈ (H,Λ)

(H ◦ S)T + λ(S) =
T∑
t=1

Ht∆St +
T∑
t=1

λt(St)

• The superhedging price of an option which pays off g at time
T :

πEµ (g) := inf{µ(λ) : ∃ (H, λ) s.t. (H ◦ S)T + λ(S) ≥ g on Ω}

where µ(λ) =
∑T

t=1 µt(λt)
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Duality for European option

Theorem (Beiglböck, Henry-Labordère, Penkner (2013))

Suppose that g : Ω→ R is bounded from above and upper
semicontinuous. Then there exists an optimal measure Q∗ ∈Mµ

and the pricing duality holds:

πEµ (g) = sup
Q∈Mµ

EQ[g ] = EQ∗ [g ].

Weak duality: for Q ∈Mµ and (H, λ) ∈ (H,Λ) which superhedges
g we have

EQ[g ] ≤ EQ[(H ◦ S)T + λ(S)] = µ(λ)
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Classical vs robust approach

• Model-specific approach: the price process of the underlying
assets (St)t≤T is modelled by a parametric family of
stochastic processes.

• Model-independent/robust approach: many possible models,
weaker economic assumptions
• Quasi-sure approach considers a large set of measures Q

(Super-)hedging is required Q-q.s. (Q-a.s. ∀Q ∈ Q)
• Pathwise approach requires hedging property to hold for each

path ω in the path space Ω

Acciaio, Bayraktar, Beiglböck, Biagini, Bouchard, Brown, Burzoni, Cheridito, Cox,

Davis, Denis, Dolinsky, Dupire, Frittelli, Galichon, Gassiat, Guo, Henry-Labordère,

Hobson, Hou, Huesmann, Källblad, Kardaras, Klimmek, Kupper, Maggis, Martini,

Mykland, Nadtochiy, Neuberger, Neufeld, Nutz, Ob lój, Penker, Perkowski, Possamäı,

Prömel, Raval, Riedel, Rogers, Schachermayer, Soner, Spoida, Tan, Tangpi, Temme,

Touzi, Wang ...
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Robust pricing and hedging

sup
Q∈MA

EQ(g) = inf{P(X ) : ∃ (X ,H) s.t. X+H◦ST ≥ g pathwise on A}

• traded assets: static trading in options X , dynamic trading in
stock S

• P(X ) prices of of statically traded options X at time 0

• trading dates: discrete time vs continuous time

• regularity of the payoff

• quasi sure vs pathwise

• pathspace restriction – beliefs

• information used to choose trading strategies
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Superhedging of American options

• An American option may be exercised at any time
t ∈ T := {1, · · · ,T}

• It is described by its payoff function ξ = (ξt)1≤t≤T , where
ξt : Ω→ R belongs to Υ and is the payoff, delivered at time T , if
the option is exercised at time t

The superhedging cost of the American option ξ using semi–static
strategies is given by

πA
µ(ξ) = inf

{
µ(λ) :∃(H1, ...,HT ) ∈ HT s.t. H t

i = Hn
i ∀i ≤ t ≤ n

and λ ∈ Λ satisfying (H t ◦ S)T + λ(S) ≥ ξt on Ω ∀t ∈ T
}

• Dynamic trading strategy H t might be adjusted after disclosure of
whether the exercise of American option took place or not

• Consistency: H t
i = Hn

i whenever i ≤ n ≤ t, H t is F-predictable

• Asymmetry: there is no way to adjust the static trading strategy
due to its nature
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Does duality for American option hold ?

Classically, pricing of an American option is recast as an optimal
stopping problem and a natural extension of duality for European
option would be

πAµ (ξ)
?
= sup

τ∈T (F)
sup

Q∈Mµ

EQ[ξτ ],

where T (F) denotes the set of F-stopping times. The “numerical”
reason is that the RHS may be too small since the set T (F) is too
small. Our aim here is to understand fundamental reasons why the
duality fails and hence discuss how and why the right hand side
should be modified to obtain equality.

Hobson and A. Neuberger (2016a, 2016b), E. Bayraktar, Y. Huang
and Z. Zhou (2015), E. Bayraktar and Z. Zhou (2016)
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Enlarged space Ω

• Let Ω := Ω× T with T := {1, ...,T} with ω := (ω, θ)
Extension of S from Ω to Ω as S(ω) = S(ω).

• The canonical time Θ : Ω→ T is given by Θ(ω) := θ
The filtration F := (F t)t=0,1,...,T with F t = Ft ⊗ ϑt and
ϑt = σ(Θ ∧ (t + 1)), and the σ-field F = F ⊗ ϑT
Θ is an F-stopping time

Mµ = {Q ∈ P(Ω) : LawQ(St) = µt , EQ[∆St |F t−1] = 0 ∀t ∈ T}
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Reformulation of a superhedging of an American option

We identify an American option ξ on Ω with a European option on Ω via

ξ(ω) = ξθ(ω)

The superhedging cost of the option ξ on Ω

πE
µ(ξ) := inf{µ(λ) : ∃ (H, λ) ∈ H × Λ s.t. (H ◦ S)T + λ(S) ≥ ξ }

where H is the class of F-predictable processes

Theorem

Suppose that ξ : Ω→ R is bounded from above and upper
semicontinuous. Then there exists an optimal measure Q∗ ∈Mµ and the
pricing duality holds:

πA
µ(ξ) = πE

µ(ξ) = sup
Q∈Mµ

EQ[ξ] = EQ∗
[ξ].
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What models are in Mµ?

• Instead of stopping times relative to F, it allows us to consider
any random time which can be made into a stopping time
under some calibrated martingale measure

• Comparing with formulation on Ω:

sup
τ :random time

sup
Q∈Mµ(Fτ )

EQ[ξτ ] = sup
Q∈Mµ

EQ[ξ]

• Mµ is equivalent to weak formulation

• Is there a minimal way of enlarging a space which is
equivalent to Mµ?
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Embedding into a larger space Ω̂

• Presence of statically traded options unables/breaks dynamic
programming principle

• Embed the market into a fictitious larger one where both S
and all the options λ ∈ Λ, are traded dynamically

• Let us denote by Ŝ = (S ,Y ) which will now correspond to
dynamically traded assets.

• One marginal µ = µT
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Ω̂ is a dynamic extension of Ω

• The canonical space for the measure-valued processes

Ω̂ := {µ} × (P1(R+))T

and X̂ = (X̂t)0≤t≤T the canonical process on Ω̂

X̂t(f ) =

∫
R
f (x)X̂t(dx)

• Define i : Ω̂→ Ω by i(ω̂) = X̂T (id)(ω̂)

St(ω̂) = St(i(ω̂)) = X̂t(id)(ω̂)

• Define a family of processes Y = (Y λ)λ∈Λ by Y λ
t = X̂t(λ) for

t ≤ T . Note that Y λ
0 = µ(λ) and Y λ

T = λ(X̂T (id)).
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MVM measures

Definition

• A probability measure Q̂ on (Ω̂, F̂) is called a measure-valued

martingale measure (MVM measure) if the process (X̂t(f ))0≤t≤T is

a (Q̂, F̂)-martingale for all f ∈ C1.

• A MVM measure Q̂ is terminating if
X̂T ∈ ∆ := {η ∈ P(R) : η = δx , x ∈ R}, Q̂-a.s.

Let us denote by

M̂µ = {Q̂ ∈ P(Ω̂} : Q̂ is terminating MVM measure}.
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Embedding into a larger space Ω̂

• Note that for any Q ∈Mµ there exists Q̂ ∈ M̂µ such that

LQ(S ,Y Q) = LQ̂(S ,Y )

where Y λ,Q = (EQ[λ(ST )|Ft ])t≤T

• For any Q̂ ∈ M̂ let I(Q̂) = Q̂ ◦ i−1 ∈Mµ. And conversely, from a

given Q ∈Mµ we may recover its “parent” measure Q̂ ∈ M̂µ.

• Then the correspondence between M̂µ and Mµ yields to

sup
Q∈M̂µ

EQ [g ] = sup
Q∈Mµ

EQ [g ] for any g ∈ Υ.

• The enlargement techniques on space Ω̂ to obtain M̂ allow to
conclude:

sup
Q∈M̂µ

EQ [ξ] = sup
Q∈Mµ

EQ [ξ] for any ξ ∈ Υ
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Duality for an American option on Ω̂

Theorem

For all upper bounded from above and upper semicontinuous functionals
ξ : Ω→ RN

πA
µ(ξ) = π̂A(ξ) = sup

Q̂∈M̂
sup

τ∈T (F̂)

EQ̂[ξτ ].

The F̂-stopping time

τ̂∗(ω̂) := inf

{
t ≥ 1 : Êt (ξ(·, t)) (ω̂) = Ê

t

(ξ)(ω̂, t)

}
provides the optimal exercise policy for ξ:

sup
Q̂∈M̂

EQ̂[ξ] = sup
Q̂∈M̂

sup
τ∈T (F̂)

EQ̂[ξτ ] = sup
Q̂∈M̂

EQ̂ [ξτ∗ ] = Ê
0

(ξ).

Follows by

πE
µ(ξ) = πA

µ(ξ) ≥ π̂A(ξ) = π̂
E

(ξ) ≥ sup
Q∈M̂

EQ [ξ] = sup
Q∈Mφ

EQ [ξ] .
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Conclusions

• Recovering duality for American options
• Solution 1: American option rendered European option

Ω̄ = Ω× {1, ...,T} and ξ(ω, t) = ξt(ω)
• Solution 2: Presence of statically traded options

unables/breaks dynamic programming principle. We allow
dynamic trading in these options by enlarging the probability
space to Ω̂.

• Application to Bouchard & Nutz set-up and MOT set-up
using measure-valued martingale of Cox & Kälblad
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THANK YOU!
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