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The original motivation for this work came from stochastic control,
wherein:

e The typical example of an informational flow, as modeled through
the medium of a filtration, is the (possibly completed) natural
filtration of a controlled (stochastic) process.

e In particular, such a flow depends on the control chosen.

e However, a kind of informational consistency, appears crucial:

If two controls agree up to a certain time, then what we
have observed up to that time should agree also.

o At the level of random (stopping) times, this ‘obvious’ requirement

becomes surprisingly non-trivial (at least in continuous time).

(More on these stochastic control aspects: Part | of the arXiv preprint: “On the
informational structure in optimal dynamic stochastic control” (with S. D. Jacka).)
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More generally, and further to this, there appear indeed two different
equally good candidates for what the information of a process up to a
stopping time ought to be:

e The (possibly completed) natural filtration generated by the process,
taken at said stopping time? OR

e The sigma-field generated by the stopped process (possibly
completed)?

e Or should these two not be the same, anyway!?
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We already know . ..

... the inclusion o(X®) C F& (under reasonably innocusous
conditions).

e What is essentially required, however, is a kind-of Galmarino's test,
demonstrating that one has, in fact, the equality: o(X®) = FX.

e In literature this is available for coordinate processes on canonical
spaces.

o However, coordinate processes are quite restrictive (e.g. not
pertinent to stochastic control).
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Informal statement of results . ..

., i.e. what is herewith being added to knowledge.

o A generalization of (a part of) Galmarino's test to a non-canonical
space setting is proved, although full generality could not be
achieved.

o Several corollaries and related findings are given, which in particular
shed light on the theme of ‘informational consistency’ (at random
/stopping/ times).
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® Let G = (Gt)teT be a filtration. Then a time S : Q2 — T U {oo} is a stopping
time, if {S <t} € G; forall t € T. In such a case we define
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FX if and only if it is a stopping time of FX°. When so, then
FX = o(X%). In particular, if X and'Y are two processes, and
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then S is a stopping time of FX and FY both, and
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Is it true always/ “can it be proved”?

In parts, maybe (so basically, | don't know). Can be proved if
(imprecisely) “the underlying space is Blackwell, and the space

1

in which the processes live is also ‘nice enough’ .

What about if one “completes everything”? Then it's trickier . ..
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Blackwell’s Theorem. Let (2, F) be a Blackwell space, G a
sub-o-field of F and S a separable sub-o-field of F. Then

G C S, if and only if every atom of G is a union of atoms of S.
In particular, a F-measurable real function g is S-measurable, if
and only if g is constant on every atom of S.
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Blackwell’s Theorem. Let (2, F) be a Blackwell space, G a
sub-o-field of F and S a separable sub-o-field of F. Then

G C S, if and only if every atom of G is a union of atoms of S.
In particular, a F-measurable real function g is S-measurable, if
and only if g is constant on every atom of S.

Lemma (Key lemma)

Let X be a process (on ), with time domain T € {Ny, [0,00)} and
values in (E,£)), S an FX-stopping time, A € F&. If X;(w) = X;(w')
for allt € T with t < S(w) A S(w'), then S(w) = S(w’),

X5 (w) = X¥(w') and 14(w) = 14(w").
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The measure-theoretic case

Stopping times

Key results — stopping times

Theorem (Stopping times)

Let X be a process (on ), with time domain T € {Ny, [0,00)} and
values in (E,E)), S:Q — T U{oco} a time. If T = Ny, or else if the
conditions:

1) 0(X|i0.¢) and o(X5™) are separable, (ImX| 4, E®0H) and
%] 0.1
(ImX SNt €8T\ vsne) Hausdorff for each t € [0, 00).

(2) X® and X are both measurable with respect to a Blackwell o-field G
on €.

are met, then the following statements are equivalent:
(i) S is an FX-stopping time.
(i) S isan FX° _stopping time.
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The measure-theoretic case

Key results — Galmarino's test
Theorem (Generalized Galmarino's test)

Let X be a process (on 2, with time domain T € {Ny, [0,00)} and values
in (E,£)), S an FX-stopping time. If T = Ny, then o(X%) = F&.
Moreover, if X° is F& /E9T -measurable (in particular, if it is adapted to
the stopped filtration (F;g)ier) and either one of the conditions:

(1) ImX*® C ImX.

(2) (a) (92,G) is Blackwell for some o-field G O Fz.
(b) o(X®) is separable.
(c) (ImX*® 9T\, vs) is HausdorfF.

is met, then the following statements are equivalent:
(i) Ae FE¥.
(i) 14 is constant on every set on which X is constant and A € FX.

(iii) A€ o(X5).
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The measure-theoretic case

nal consistency

Key results — informational consistency

Corollary (Observational consistency)

Let X and Y be two processes (on ), with time domain
T € {No, [0,00)} and values in (E,£)), S an FX and an FY -stopping
time. Suppose furthermore X° = Y°. If any one of the conditions

(1) T = No.

(2) ImX =ImY.

(3) (a) (2,G) (resp. (2, H)) is Blackwell for some o-field G O F25 (resp.
H DO FL).

(b) o(X¥) (resp. o(Y®)) is separable and contained in F& (resp. F¥ ).
(c) (ImX3 97|, +s) (resp. (ImY S, E®T |, 1 s)) is Hausdorff.

is met, then F& = F¥.
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The measure-theoretic case

Monotonicity of information

Key results — monotonicity of information

Proposition (Monotonicity of information)

Let Z be a process (on 2, with time domain T € {Ny, [0, 00)} and values
in (E,£)), U <V two stopping times of FZ. If either T = Ny or else
the conditions:

® (2, G) is Blackwell for some o-field G © o(ZV) Vv o (ZY).
® (ImZV, 97T |y, ,v) is Hausdorft.
© o(ZV) is separable.

are met, then o(ZY) C o(ZV).
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Case with completions
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Similarities and differences. . .

@ Unclear how to extend directly the ‘measure-theoretic’ approach (for
one, completions of ‘nice’ spaces, aren't /the same kind of/ ‘nice’).
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Case with completions
o
Similarities and differences

Similarities and differences. . .

@ Unclear how to extend directly the ‘measure-theoretic’ approach (for
one, completions of ‘nice’ spaces, aren't /the same kind of/ ‘nice’).

® Grantedly, everything still ‘goes through’ if the temporal domain is
denumerable (unsurprising; measure theory works well when
everything is at most countable).
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Case with completions
o
Similarities and differences

Similarities and differences. . .

@ Unclear how to extend directly the ‘measure-theoretic’ approach (for
one, completions of ‘nice’ spaces, aren't /the same kind of/ ‘nice’).

® Grantedly, everything still ‘goes through’ if the temporal domain is
denumerable (unsurprising; measure theory works well when
everything is at most countable).

© But, in the continuous case, things just aren't true anymore (even if
everything is ‘extremely nice') — counter-examples!
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Case with completions

Similarities and differences

Similarities and differences. . .

@ Unclear how to extend directly the ‘measure-theoretic’ approach (for
one, completions of ‘nice’ spaces, aren't /the same kind of/ ‘nice’).

® Grantedly, everything still ‘goes through’ if the temporal domain is
denumerable (unsurprising; measure theory works well when
everything is at most countable).

© But, in the continuous case, things just aren't true anymore (even if
everything is ‘extremely nice') — counter-examples!

O Are true, if the stopping times are predictable ...
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A counter-example
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Case with completions

A counter-example

Example

Let 2 = (0,00) x {—2,—1,0} be endowed with the law

P = Exp(1) x Unif({—2,—1,0}), defined on the tensor product of the
Lebesgue o-field on (0, 00) and the power set of {—2,—1,0}. Denote by
e, respectively I, the projection onto the first, respectively second,
coordinate. Define the process X; := I(t — e)lg4(e) , t € [0,00), and
the process Y; := (—1)(t — e)l,(e)1j—1,—2y o I, t € [0,00). The
completed natural filtrations of X and Y are already right-continuous.
The first entrance time S of X into (—o0,0) is equal to the first entrance

time of Y into (—o0,0), and this is a stopping time of fTP as it is of
77 (but not of X and not of FY). Moreover, X* = 0 = Y. Finally,
consider the event A := {I = —1}. Then A € ﬁg however,

Aé¢ FE. o
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In discrete time. ..
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Discrete time

In discrete time. ..

...one can (essentially) reduce to the measure-theoretic case via:
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Case with completions
(]

Discrete time

In discrete time. ..

...one can (essentially) reduce to the measure-theoretic case via:

Lemma
Let T = Ng, G a filtration on §2. Let furthermore P be a complete

probability measure on ), whose domain includes G..; S a ap—stopping
time. Then S is P-a.s. equal to a stopping time S’ of G; and for any

G-stopping time U, P-a.s. equal to S, G = Cg Moreover, if U is

another random time, P-a.s equal to S, then it is a Cp-stopping time,
—P =P

and Gg = Gy.
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Handling the predictable case (in continuous time)
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The predictable case (in continuous time)

Handling the predictable case (in continuous time)

Similarly:
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Case with completions

The predictable case (in continuous time)

Handling the predictable case (in continuous time)

Similarly:

Proposition

Let T =[0,00), G be a filtration on Q). Let furthermore P be a complete
probability measure on (), whose domain includes G..; S a predictable

. . . —P . .
stopping time relative to G . Then S is P-a.s. equal to a predictable
stopping time P of G. Moreover, if U is any G-stopping time, P-a.s.
equal to S, then CZ = %P. Finally, if S’ is another random time, P-a.s

.. =P . . —P =P
equal to S, then it is a G -stopping time, and Gg = G, .
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Further work?

e Try and relax/drop the Blackwell-ian assumption.
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Further work?

e Try and relax/drop the Blackwell-ian assumption.
o Alternatively (or in addition) find relevant counter-examples!
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P V.

(Interested in the details/proofs? Part Il of the arXiv preprint.)
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