Weak and strong moments of I_{r}-norms of log-concave vectors

Marta Strzelecka
(based on joint work with Rafał Latała)
University of Warsaw
Warsaw, June 1, 2015

Log-concave vectors

Definition

We say that a random vector X in \mathbb{R}^{n} is log-concave if for any compact subsets A, B of \mathbb{R}^{n} and any $\lambda \in(0,1)$ we have

$$
\mathbb{P}(X \in A)^{\lambda} \mathbb{P}(X \in B)^{1-\lambda} \leqslant \mathbb{P}(X \in \lambda A+(1-\lambda) B)
$$

Log-concave vectors

Definition

We say that a random vector X in \mathbb{R}^{n} is log-concave if for any compact subsets A, B of \mathbb{R}^{n} and any $\lambda \in(0,1)$ we have

$$
\mathbb{P}(X \in A)^{\lambda} \mathbb{P}(X \in B)^{1-\lambda} \leqslant \mathbb{P}(X \in \lambda A+(1-\lambda) B)
$$

If X has a log-concave density (i.e. of a form $e^{-\psi}$, where the function $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is convex), then X is log-concave. If X is log-concave and its support is not contained in a nontrivial linear subspace of \mathbb{R}^{n}, then X has a log-concave density.

Log-concave vectors

Definition

We say that a random vector X in \mathbb{R}^{n} is log-concave if for any compact subsets A, B of \mathbb{R}^{n} and any $\lambda \in(0,1)$ we have

$$
\mathbb{P}(X \in A)^{\lambda} \mathbb{P}(X \in B)^{1-\lambda} \leqslant \mathbb{P}(X \in \lambda A+(1-\lambda) B)
$$

If X has a log-concave density (i.e. of a form $e^{-\psi}$, where the function $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is convex), then X is log-concave.
If X is log-concave and its support is not contained in a nontrivial linear subspace of \mathbb{R}^{n}, then X has a log-concave density.

Proposition

If X is a log-concave vector, $\|\cdot\|$ seminorm on \mathbb{R}^{n} and $1 \leqslant p \leqslant q$, then

$$
\left(\mathbb{E}\|X\|^{p}\right)^{1 / p} \geqslant C \frac{p}{q}\left(\mathbb{E}\|X\|^{q}\right)^{1 / q}
$$

Examples

- Vectors uniformly distributed on convex bodies,

Examples

- Vectors uniformly distributed on convex bodies,
- Vectors with density $c_{p} e^{-\|x\|_{p}^{p}}$ for $p \geqslant 1$,

Examples

- Vectors uniformly distributed on convex bodies,
- Vectors with density $c_{p} e^{-\|x\|_{p}^{p}}$ for $p \geqslant 1$,
- Affine transformations of log-concave vectors,

Examples

- Vectors uniformly distributed on convex bodies,
- Vectors with density $c_{p} e^{-\|x\|_{p}^{p}}$ for $p \geqslant 1$,
- Affine transformations of log-concave vectors,
- Gaussian vectors,

Examples

- Vectors uniformly distributed on convex bodies,
- Vectors with density $c_{p} e^{-\|x\|_{p}^{p}}$ for $p \geqslant 1$,
- Affine transformations of log-concave vectors,
- Gaussian vectors,
- Vectors with log-concave independent coordinates,

Examples

- Vectors uniformly distributed on convex bodies,
- Vectors with density $c_{p} e^{-\|x\|_{p}^{p}}$ for $p \geqslant 1$,
- Affine transformations of log-concave vectors,
- Gaussian vectors,
- Vectors with log-concave independent coordinates,
- Weak limits of log-concave vectors.

Examples

- Vectors uniformly distributed on convex bodies,
- Vectors with density $c_{p} e^{-\|x\|_{p}^{p}}$ for $p \geqslant 1$,
- Affine transformations of log-concave vectors,
- Gaussian vectors,
- Vectors with log-concave independent coordinates,
- Weak limits of log-concave vectors.

Log-concavity $=$ vectors uniformly distributed on convex bodies + affine transformations + weak limits.

The Paouris inequality

Theorem [Paouris, 2006]

For a log-concave vector X in \mathbb{R}^{n} and any $p \geqslant 1$ we have

$$
\left(\mathbb{E}\|X\|_{2}^{p}\right)^{1 / p} \leqslant C\left(\mathbb{E}\|X\|_{2}+\sigma_{X}(p)\right)
$$

where $\sigma_{X}(p)$ is the p-th weak moment of X defined by

$$
\sigma_{X}(p):=\left(\sup _{\|t\|_{2}=1} \mathbb{E}|\langle t, X\rangle|^{p}\right)^{1 / p}
$$

The Paouris inequality

Theorem [Paouris, 2006]

For a log-concave vector X in \mathbb{R}^{n} and any $p \geqslant 1$ we have

$$
\left(\mathbb{E}\|X\|_{2}^{p}\right)^{1 / p} \leqslant C\left(\mathbb{E}\|X\|_{2}+\sigma_{X}(p)\right)
$$

where $\sigma_{X}(p)$ is the p-th weak moment of X defined by

$$
\sigma_{X}(p):=\left(\sup _{\|t\|_{2}=1} \mathbb{E}|\langle t, X\rangle|^{p}\right)^{1 / p}
$$

By Chebyshev's inequality this implies the large deviation inequality

$$
\mathbb{P}\left(\|X\|_{2} \geqslant 2 C t \mathbb{E}\|X\|_{2}\right) \leqslant \exp \left(-\sigma_{X}^{-1}\left(t \mathbb{E}\|X\|_{2}\right)\right) \quad \text { for } t \geqslant 1
$$

The Paouris inequality

Theorem [Paouris, 2006]

For a log-concave vector X in \mathbb{R}^{n} and any $p \geqslant 1$ we have

$$
\left(\mathbb{E}\|X\|_{2}^{p}\right)^{1 / p} \leqslant C\left(\mathbb{E}\|X\|_{2}+\sigma_{X}(p)\right)
$$

where $\sigma_{X}(p)$ is the p-th weak moment of X defined by

$$
\sigma_{X}(p):=\left(\sup _{\|t\|_{2}=1} \mathbb{E}|\langle t, X\rangle|^{p}\right)^{1 / p} .
$$

By Chebyshev's inequality this implies the large deviation inequality

$$
\mathbb{P}\left(\|X\|_{2} \geqslant 2 C t \mathbb{E}\|X\|_{2}\right) \leqslant \exp \left(-\sigma_{X}^{-1}\left(t \mathbb{E}\|X\|_{2}\right)\right) \quad \text { for } \mathrm{t} \geqslant 1 .
$$

For a simpler proof see R. Adamczak, R. Latała, A. E. Litvak, K. Oleszkiewicz, A. Pajor, and N. Tomczak-Jaegermann, 2014.

Comparison of weak and strong moments conjecture

Conjecture

For any log-concave vector X in a separable Banach space $(F,\|\cdot\|)$ and $p \geqslant 1$ we have

$$
\left(\mathbb{E}\|X\|^{p}\right)^{1 / p} \leqslant C\left(\mathbb{E}\|X\|+\sigma_{X,\|\cdot\|}(p)\right)
$$

where $\sigma_{X,\|\cdot\|}(p)$ is a weak p-th moment associated to norm $\|\cdot\|$, namely

$$
\sigma_{X,\|\cdot\|}(p):=\sup _{\|\varphi\|_{*} \leqslant 1}\left(\mathbb{E}\|\varphi(X)\|^{p}\right)^{1 / p}
$$

Comparison of weak and strong moments conjecture

Conjecture

For any log-concave vector X in a separable Banach space $(F,\|\cdot\|)$ and $p \geqslant 1$ we have

$$
\left(\mathbb{E}\|X\|^{p}\right)^{1 / p} \leqslant C\left(\mathbb{E}\|X\|+\sigma_{X,\|\cdot\|}(p)\right)
$$

where $\sigma_{X,\|\cdot\|}(p)$ is a weak p-th moment associated to norm $\|\cdot\|$, namely

$$
\sigma_{X,\|\cdot\|}(p):=\sup _{\|\varphi\|_{*} \leqslant 1}\left(\mathbb{E}\|\varphi(X)\|^{p}\right)^{1 / p}
$$

- Unconditional case with a factor $\log n$ at $\mathbb{E}\|X\|$,

Comparison of weak and strong moments conjecture

Conjecture

For any log-concave vector X in a separable Banach space $(F,\|\cdot\|)$ and $p \geqslant 1$ we have

$$
\left(\mathbb{E}\|X\|^{p}\right)^{1 / p} \leqslant C\left(\mathbb{E}\|X\|+\sigma_{X,\|\cdot\|}(p)\right)
$$

where $\sigma_{X,\|\cdot\|}(p)$ is a weak p-th moment associated to norm $\|\cdot\|$, namely

$$
\sigma_{X,\| \| \|}(p):=\sup _{\|\varphi\|_{*} \leqslant 1}\left(\mathbb{E}\|\varphi(X)\|^{p}\right)^{1 / p} .
$$

- Unconditional case with a factor $\log n$ at $\mathbb{E}\|X\|$,
- Unconditional case in spaces of nontrivial cotype q with a cotype constant bounded by β; then C depends on q and β,

Comparison of weak and strong moments conjecture

Conjecture

For any log-concave vector X in a separable Banach space $(F,\|\cdot\|)$ and $p \geqslant 1$ we have

$$
\left(\mathbb{E}\|X\|^{p}\right)^{1 / p} \leqslant C\left(\mathbb{E}\|X\|+\sigma_{X,\|\cdot\|}(p)\right)
$$

where $\sigma_{X,\|\cdot\|}(p)$ is a weak p-th moment associated to norm $\|\cdot\|$, namely

$$
\sigma_{X,\| \| \|}(p):=\sup _{\|\varphi\|_{*} \leqslant 1}\left(\mathbb{E}\|\varphi(X)\|^{p}\right)^{1 / p} .
$$

- Unconditional case with a factor $\log n$ at $\mathbb{E}\|X\|$,
- Unconditional case in spaces of nontrivial cotype q with a cotype constant bounded by β; then C depends on q and β,
- i.i.d case.

The main result

Conjecture

For any log-concave vector X in a separable Banach space $(F,\|\cdot\|)$ and $p \geqslant 1$ we have

$$
\left(\mathbb{E}\|X\|^{p}\right)^{1 / p} \leqslant C\left(\mathbb{E}\|X\|+\sigma_{X,\|\cdot\|}(p)\right)
$$

Theorem [Latała, S., 2015]

The conjecture holds for spaces which may be isometrically embeded in I_{r} for $r \geqslant 2$ with constant Cr .

The main result

Conjecture

For any log-concave vector X in a separable Banach space $(F,\|\cdot\|)$ and $p \geqslant 1$ we have

$$
\left(\mathbb{E}\|X\|^{p}\right)^{1 / p} \leqslant C\left(\mathbb{E}\|X\|+\sigma_{X,\|\cdot\|}(p)\right)
$$

Theorem [Latała, S., 2015]

The conjecture holds for spaces which may be isometrically embeded in I_{r} for $r \geqslant 2$ with constant Cr .

- It suffices to prove the theorem in the case of I_{r}.

The main result

Conjecture

For any log-concave vector X in a separable Banach space $(F,\|\cdot\|)$ and $p \geqslant 1$ we have

$$
\left(\mathbb{E}\|X\|^{p}\right)^{1 / p} \leqslant C\left(\mathbb{E}\|X\|+\sigma_{X,\|\cdot\|}(p)\right)
$$

Theorem [Latała, S., 2015]

The conjecture holds for spaces which may be isometrically embeded in I_{r} for $r \geqslant 2$ with constant Cr .

- It suffices to prove the theorem in the case of I_{r}.
- It suffices to prove the theorem in the case of $\left(\mathbb{R}^{n},\|\cdot\|_{r}\right)$.

Modified Paouris inequality

Theorem [Latała 2014]

For a log-concave isotropic vector X in \mathbb{R}^{n} and $p \geqslant 1$ we have

$$
\begin{equation*}
\mathbb{E}\left(\sum_{i=1}^{n} X_{i}^{2} \mathbf{1}_{\left\{\left|X_{i}\right| \geqslant t\right\}}\right)^{p} \leqslant\left(C \sigma_{X}(p)\right)^{2 p} \quad \text { for } t \geqslant C \log \left(\frac{n}{\sigma_{X}(p)^{2}}\right) . \tag{1}
\end{equation*}
$$

Modified Paouris inequality

Theorem [Latała 2014]

For a log-concave isotropic vector X in \mathbb{R}^{n} and $p \geqslant 1$ we have

$$
\begin{equation*}
\mathbb{E}\left(\sum_{i=1}^{n} X_{i}^{2} \mathbf{1}_{\left\{\left|X_{i}\right| \geqslant t\right\}}\right)^{p} \leqslant\left(C \sigma_{X}(p)\right)^{2 p} \quad \text { for } t \geqslant C \log \left(\frac{n}{\sigma_{X}(p)^{2}}\right) . \tag{1}
\end{equation*}
$$

The proof uses the Paouris inequality, but (1) is formally stronger than the Paouris inequality.

Modified Paouris inequality

Theorem [Latała 2014]

For a log-concave isotropic vector X in \mathbb{R}^{n} and $p \geqslant 1$ we have

$$
\begin{equation*}
\mathbb{E}\left(\sum_{i=1}^{n} X_{i}^{2} \mathbf{1}_{\left\{\left|X_{i}\right| \geqslant t\right\}}\right)^{p} \leqslant\left(C \sigma_{X}(p)\right)^{2 p} \quad \text { for } t \geqslant C \log \left(\frac{n}{\sigma_{X}(p)^{2}}\right) . \tag{1}
\end{equation*}
$$

The proof uses the Paouris inequality, but (1) is formally stronger than the Paouris inequality.

Question

Can one improve the threshold $C \log \left(\frac{n}{\sigma_{X}(\rho)^{2}}\right)$ in (1)?

Modified Paouris inequality

Theorem [Latała 2014]

For a log-concave isotropic vector X in \mathbb{R}^{n} and $p \geqslant 1$ we have

$$
\begin{equation*}
\mathbb{E}\left(\sum_{i=1}^{n} X_{i}^{2} \mathbf{1}_{\left\{\left|X_{i}\right| \geqslant t\right\}}\right)^{p} \leqslant\left(C \sigma_{X}(p)\right)^{2 p} \quad \text { for } t \geqslant C \log \left(\frac{n}{\sigma_{X}(p)^{2}}\right) . \tag{1}
\end{equation*}
$$

The proof uses the Paouris inequality, but (1) is formally stronger than the Paouris inequality.

Question

Can one improve the threshold $C \log \left(\frac{n}{\sigma_{X}(p)^{2}}\right)$ in (1)? In i.i.d. case the best threshold is $C \sigma_{X}^{-1}\left(\log \left(\frac{n t^{2}}{\sigma_{X}(p)^{2}}\right)\right)$.

Generalization of the modified Paouris inequality

Theorem [Latała 2014]

For a log-concave isotropic vector X in \mathbb{R}^{n} and $p \geqslant 1$ we have

$$
\mathbb{E}\left(\sum_{i=1}^{n} X_{i}^{2} \mathbf{1}_{\left\{\left|X_{i}\right| \geqslant t\right\}}\right)^{p} \leqslant\left(C \sigma_{X}(p)\right)^{2 p} \quad \text { for } t \geqslant C \log \left(\frac{n}{\sigma_{X}(p)^{2}}\right) .
$$

Theorem [Latała, S. 2015]

For a log-concave vector X in $\mathbb{R}^{n}, p \geqslant 1$ and $r \geqslant 2$ we have

$$
\mathbb{E}\left(\sum_{i=1}^{n}\left|X_{i}\right|^{r} \mathbf{1}_{\left\{\left|X_{i}\right| \geqslant t d_{i}\right\}}\right)^{p / r} \leqslant\left(\operatorname{Cr} \sigma_{X, r}(p)\right)^{p} \quad \text { for } t \geqslant C \log \left(\frac{d}{\sigma_{X, r}(p)}\right)
$$

Generalization of the modified Paouris inequality II

Theorem [Latała, S. 2015]

For a log-concave vector X in $\mathbb{R}^{n}, p \geqslant 1$ and $r \geqslant 2$ we have

$$
\mathbb{E}\left(\sum_{i=1}^{n}\left|X_{i}\right|^{r} \mathbf{1}_{\left\{\left|X_{i}\right| \geqslant t d_{i}\right\}}\right)^{p / r} \leqslant\left(\operatorname{Cr} \sigma_{X, r}(p)\right)^{p} \quad \text { for } t \geqslant C \log \left(\frac{d}{\sigma_{X, r}(p)}\right)
$$

where

$$
d_{i}:=\left(\mathbb{E} X_{i}^{2}\right)^{1 / 2}, \quad d:=\left(\sum_{i=1}^{n} d_{i}^{r}\right)^{1 / r}
$$

and

$$
\sigma_{X, r}(p):=\sup _{\|t\|_{r^{\prime}} \leqslant 1}\left(\mathbb{E}|\langle t, X\rangle|^{p}\right)^{1 / p}
$$

The modified Paouris inequality implies the theorem

$$
\begin{gathered}
\mathbb{E}\left(\sum_{i=1}^{n}\left|X_{i}\right|^{r} \mathbf{1}_{\left\{\left|X_{i}\right| \geq d d\right\}}\right)^{p / r} \leqslant\left(C_{r} \sigma_{X, r}(p)\right)^{p} \quad \text { for } t \geqslant C \log \left(\frac{d}{\sigma_{X, r}(p)}\right), \\
d_{i}:=\left(\mathbb{E} X_{i}^{2}\right)^{1 / 2}, \quad d:=\left(\sum_{i=1}^{n} d_{i}^{f}\right)^{1 / r} .
\end{gathered}
$$

The modified Paouris inequality implies the theorem

$$
\mathbb{E}\left(\sum_{i=1}^{n}\left|X_{i}\right|^{r} \mathbf{1}_{\left\{\left|X_{i}\right| \geqslant t d_{i}\right\}}\right)^{p / r} \leqslant\left(C r \sigma_{X, r}(p)\right)^{p} \quad \text { for } t \geqslant C \log \left(\frac{d}{\sigma_{X, r}(p)}\right),
$$

$$
d_{i}:=\left(\mathbb{E} X_{i}^{2}\right)^{1 / 2}, \quad d:=\left(\sum_{i=1}^{n} d_{i}^{r}\right)^{1 / r} .
$$

Take $\widetilde{p}:=\inf \left\{q \geqslant p: \sigma_{X, r}(q) \geqslant d\right\}$ and apply the previous theorem with $p:=\widetilde{p}$ and $t:=0$.

The modified Paouris inequality implies the theorem

$$
\begin{gathered}
\mathbb{E}\left(\sum_{i=1}^{n}\left|X_{i}\right|^{r} \mathbf{1}_{\left\{\left|X_{i}\right| \geq t d_{\}}\right\}}\right)^{p / r} \leqslant\left(C r \sigma_{X, r}(p)\right)^{p} \quad \text { for } t \geqslant C \log \left(\frac{d}{\sigma_{X, r}(p)}\right), \\
d_{i}:=\left(\mathbb{E} X_{i}^{2}\right)^{1 / 2}, \quad d:=\left(\sum_{i=1}^{n} d_{i}^{r}\right)^{1 / r} .
\end{gathered}
$$

Take $\widetilde{p}:=\inf \left\{q \geqslant p: \sigma_{X, r}(q) \geqslant d\right\}$ and apply the previous theorem with $p:=\widetilde{p}$ and $t:=0$. Then

$$
\left(\mathbb{E}\|X\|_{r}^{p}\right)^{1 / p} \leqslant\left(\mathbb{E}\|X\|_{r}^{\tilde{\rho}}\right)^{1 / \tilde{p}}
$$

The modified Paouris inequality implies the theorem

$$
\begin{gathered}
\mathbb{E}\left(\sum_{i=1}^{n}\left|X_{i}\right|^{r} \mathbf{1}_{\left\{\left|X_{i}\right| \geq d d_{\}}\right\}}\right)^{p / r} \leqslant\left(\operatorname{Cr} \sigma_{X, r}(p)\right)^{p} \quad \text { for } t \geqslant C \log \left(\frac{d}{\sigma_{X, r}(p)}\right), \\
d_{i}:=\left(\mathbb{E} X_{i}^{2}\right)^{1 / 2}, \quad d:=\left(\sum_{i=1}^{n} d_{i}^{r}\right)^{1 / r} .
\end{gathered}
$$

Take $\widetilde{p}:=\inf \left\{q \geqslant p: \sigma_{X, r}(q) \geqslant d\right\}$ and apply the previous theorem with $p:=\widetilde{p}$ and $t:=0$. Then

$$
\left(\mathbb{E}\|X\|_{r}^{p}\right)^{1 / p} \leqslant\left(\mathbb{E}\|X\|_{r}^{\tilde{\rho}}\right)^{1 / \tilde{p}} \leqslant \operatorname{Cr} \sigma_{r, X}(\widetilde{p})
$$

The modified Paouris inequality implies the theorem

$$
\begin{gathered}
\mathbb{E}\left(\sum_{i=1}^{n}\left|X_{i}\right|^{r} \mathbf{1}_{\left\{\left|X_{i}\right| \geq d d_{\}}\right\}}\right)^{p / r} \leqslant\left(\operatorname{Cr} \sigma_{X, r}(p)\right)^{p} \quad \text { for } t \geqslant C \log \left(\frac{d}{\sigma_{X, r}(p)}\right), \\
d_{i}:=\left(\mathbb{E} X_{i}^{2}\right)^{1 / 2}, \quad d:=\left(\sum_{i=1}^{n} d_{i}^{r}\right)^{1 / r} .
\end{gathered}
$$

Take $\widetilde{p}:=\inf \left\{q \geqslant p: \sigma_{X, r}(q) \geqslant d\right\}$ and apply the previous theorem with $p:=\widetilde{p}$ and $t:=0$. Then

$$
\left(\mathbb{E}\|X\|_{r}^{p}\right)^{1 / p} \leqslant\left(\mathbb{E}\|X\|_{r}^{\tilde{p}}\right)^{1 / \tilde{p}} \leqslant \operatorname{Cr} \sigma_{r, X}(\widetilde{p})=\operatorname{Cr} \max \left\{d, \sigma_{r, X}(p)\right\}
$$

The modified Paouris inequality implies the theorem

$$
\begin{gathered}
\mathbb{E}\left(\sum_{i=1}^{n}\left|X_{i}\right|^{r} \mathbf{1}_{\left\{\left|X_{i}\right| \geq d d_{\}}\right\}}\right)^{p / r} \leqslant\left(\operatorname{Cr} \sigma_{X, r}(p)\right)^{p} \quad \text { for } t \geqslant C \log \left(\frac{d}{\sigma_{X, r}(p)}\right), \\
d_{i}:=\left(\mathbb{E} X_{i}^{2}\right)^{1 / 2}, \quad d:=\left(\sum_{i=1}^{n} d_{i}^{r}\right)^{1 / r} .
\end{gathered}
$$

Take $\widetilde{p}:=\inf \left\{q \geqslant p: \sigma_{X, r}(q) \geqslant d\right\}$ and apply the previous theorem with $p:=\widetilde{p}$ and $t:=0$. Then

$$
\begin{aligned}
\left(\mathbb{E}\|X\|_{r}^{p}\right)^{1 / p} & \leqslant\left(\mathbb{E}\|X\|_{r}^{\tilde{p}}\right)^{1 / \tilde{p}} \leqslant \operatorname{Cr} \sigma_{r, X}(\widetilde{p})=\operatorname{Cr} \max \left\{d, \sigma_{r, X}(p)\right\} \\
& \leqslant \operatorname{Cr}\left(\mathbb{E}\|X\|_{r}+\sigma_{r, X}(p)\right)
\end{aligned}
$$

The modified Paouris inequality implies the theorem

$$
\begin{gathered}
\mathbb{E}\left(\sum_{i=1}^{n}\left|X_{i}\right|^{r} \mathbf{1}_{\left\{\left|\left|X_{i}\right| \geq t d_{i}\right\}\right.}\right)^{p / r} \leqslant\left(C_{r} \sigma_{X, r}(p)\right)^{p} \quad \text { for } t \geqslant C \log \left(\frac{d}{\sigma_{X, r}(p)}\right), \\
d_{i}:=\left(\mathbb{E} X_{i}^{2}\right)^{1 / 2}, \quad d:=\left(\sum_{i=1}^{n} d_{i}^{r}\right)^{1 / r} .
\end{gathered}
$$

Take $\widetilde{p}:=\inf \left\{q \geqslant p: \sigma_{X, r}(q) \geqslant d\right\}$ and apply the previous theorem with $p:=\widetilde{p}$ and $t:=0$. Then

$$
\begin{aligned}
\left(\mathbb{E}\|X\|_{r}^{p}\right)^{1 / p} & \leqslant\left(\mathbb{E}\|X\|_{r}^{\tilde{p}}\right)^{1 / \tilde{p}} \leqslant \operatorname{Cr} \sigma_{r, X}(\widetilde{p})=\operatorname{Cr} \max \left\{d, \sigma_{r, X}(p)\right\} \\
& \leqslant \operatorname{Cr}\left(\mathbb{E}\|X\|_{r}+\sigma_{r, X}(p)\right)
\end{aligned}
$$

This gives the main theorem in the case of $\left(\mathbb{R}^{n},\|\cdot\|_{r}\right)$.

Some ideas of the proof

We may assume that $t \geqslant C r$ and $\frac{p}{r}=l$ is an integer.

Some ideas of the proof

We may assume that $t \geqslant C r$ and $\frac{p}{r}=l$ is an integer. Then

$$
\mathbb{E}\left(\sum_{i=1}^{n} X_{i}^{r} \mathbf{1}_{\left\{X_{i} \geqslant t d_{i}\right\}}\right)^{\prime} \leqslant \mathbb{E}\left(\sum_{i=1}^{n} \sum_{k=0}^{\infty} 2^{(k+1) r}\left(t d_{i}\right)^{r} \mathbf{1}_{\left\{X_{i} \geqslant 2^{k} t d_{i}\right\}}\right)^{\prime}
$$

Some ideas of the proof

We may assume that $t \geqslant C r$ and $\frac{p}{r}=l$ is an integer. Then

$$
\begin{aligned}
\mathbb{E}\left(\sum_{i=1}^{n} X_{i}^{r} \mathbf{1}_{\left\{X_{i} \geqslant t d_{i}\right\}}\right)^{\prime} \leqslant \mathbb{E}\left(\sum_{i=1}^{n} \sum_{k=0}^{\infty} 2^{(k+1) r}\left(t d_{i}\right)^{r} \mathbf{1}_{\left\{X_{i} \geqslant 2^{k} t d_{i}\right\}}\right)^{\prime} \\
=(2 t)^{r l} \sum_{i_{1}, \ldots, i_{l}=1}^{n} \sum_{k_{1}, \ldots, k_{l}=0}^{\infty} 2^{\left(k_{1}+\ldots+k_{l}\right) r} d_{i_{1}}^{r} \ldots d_{i_{l}}^{r} \mathbb{P}\left(B_{i_{1}, k_{1} \ldots, i_{l}, k_{l}}\right)
\end{aligned}
$$

Some ideas of the proof

We may assume that $t \geqslant C r$ and $\frac{p}{r}=l$ is an integer. Then

$$
\begin{aligned}
\mathbb{E}\left(\sum_{i=1}^{n} X_{i}^{r} \mathbf{1}_{\left\{X_{i} \geqslant t d_{i}\right\}}\right)^{\prime} \leqslant \mathbb{E}\left(\sum_{i=1}^{n} \sum_{k=0}^{\infty} 2^{(k+1) r}\left(t d_{i}\right)^{r} \mathbf{1}_{\left\{X_{i} \geqslant 2^{k} t d_{i}\right\}}\right)^{\prime} \\
=(2 t)^{r l} \sum_{i_{1}, \ldots, i_{l}=1}^{n} \sum_{k_{1}, \ldots, k_{l}=0}^{\infty} 2^{\left(k_{1}+\ldots+k_{l}\right) r} d_{i_{1}}^{r} \ldots d_{i_{l}}^{r} \mathbb{P}\left(B_{i_{1}, k_{1} \ldots, i_{l}, k_{l}}\right)
\end{aligned}
$$

where

$$
B_{i_{1}, k_{1} \ldots, i_{l}, k_{l}}:=\left\{X_{i_{1}} \geqslant 2^{k_{1}} t d_{i_{1}}, \ldots, X_{i_{l}} \geqslant 2^{k_{l}} t d_{i_{1}}\right\} .
$$

Some ideas of the proof

We may assume that $t \geqslant C r$ and $\frac{p}{r}=l$ is an integer. Then

$$
\begin{aligned}
\mathbb{E}\left(\sum_{i=1}^{n} X_{i}^{r} \mathbf{1}_{\left\{X_{i} \geqslant t d_{i}\right\}}\right)^{\prime} \leqslant \mathbb{E}\left(\sum_{i=1}^{n} \sum_{k=0}^{\infty} 2^{(k+1) r}\left(t d_{i}\right)^{r} \mathbf{1}_{\left\{X_{i} \geqslant 2^{k} t d_{i}\right\}}\right)^{\prime} \\
=(2 t)^{r l} \sum_{i_{1}, \ldots, i_{l}=1}^{n} \sum_{k_{1}, \ldots, k_{l}=0}^{\infty} 2^{\left(k_{1}+\ldots+k_{l}\right) r} d_{i_{1}}^{r} \ldots d_{i_{l}}^{r} \mathbb{P}\left(B_{i_{1}, k_{1} \ldots, i_{l}, k_{l}}\right)
\end{aligned}
$$

where

$$
B_{i_{1}, k_{1} \ldots, i_{l}, k_{1}}:=\left\{X_{i_{1}} \geqslant 2^{k_{1}} t d_{i_{1}}, \ldots, X_{i_{l}} \geqslant 2^{k_{l}} t d_{i_{l}}\right\}
$$

We divide the sum into several parts. Define sets

$$
\begin{gathered}
I_{0}:=\left\{\left(i_{1}, k_{1}, \ldots, i_{l}, k_{l}\right): \mathbb{P}\left(B_{i_{1}, k_{1}, \ldots, i_{l}, k_{l}}\right)>e^{-r l}\right\} \\
I_{j}:=\left\{\left(i_{1}, k_{1}, \ldots, i_{l}, k_{l}\right): \mathbb{P}\left(B_{i_{1}, k_{1}, \ldots, i_{l}, k_{l}}\right) \in\left(e^{-r / 2^{j}}, e^{-r / 2^{j-1}}\right]\right\} .
\end{gathered}
$$

Crucial proposition

Proposition

Let X, r, d_{i} and d be as before and $A:=\{X \in K\}$, where K is a convex set in \mathbb{R}^{n} satisfying $0<\mathbb{P}(A) \leqslant 1 / e$. Then
(i) for every $t \geqslant r$,

$$
\sum_{i=1}^{n} \mathbb{E}\left|X_{i}\right|^{r} \mathbf{1}_{A \cap\left\{X_{i} \geqslant t d_{i}\right\}} \leqslant C^{r} \mathbb{P}(A)\left(r^{r} \sigma_{r, X}^{r}(-\log (\mathbb{P}(A)))+(d t)^{r} e^{-t / C}\right)
$$

(ii) for every $t>0, u \geqslant 1$,

$$
\begin{aligned}
\sum_{k=0}^{\infty} 2^{k r} \sum_{i=1}^{n} d_{i}^{r} & \mathbf{1}_{\left\{\mathbb{P}\left(A \cap\left\{X_{i} \geqslant 2^{k} t d_{i}\right\}\right) \geqslant e^{-u \mathbb{P}}(A)\right\}} \\
& \leqslant \frac{(C u)^{r}}{t^{r}}\left(\sigma_{r, X}^{r}(-\log (\mathbb{P}(A)))+d^{r} \mathbf{1}_{\{t \leqslant u C\}}\right)
\end{aligned}
$$

Thank you

for your attention!

