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Log-concave vectors

Definition
We say that a random vector X in Rn is log-concave if for any compact
subsets A,B of Rn and any λ ∈ (0, 1) we have

P(X ∈ A)λP(X ∈ B)1−λ ¬ P(X ∈ λA+ (1− λ)B).

If X has a log-concave density (i.e. of a form e−ψ, where the function
ψ : Rn → R ∪ {∞} is convex), then X is log-concave.
If X is log-concave and its support is not contained in a nontrivial linear
subspace of Rn, then X has a log-concave density.

Proposition
If X is a log-concave vector, ‖ · ‖ seminorm on Rn and 1 ¬ p ¬ q, then

(E‖X‖p)1/p ­ C
p

q
(E‖X‖q)1/q.
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Examples

Vectors uniformly distributed on convex bodies,

Vectors with density cpe
−‖x‖pp for p ­ 1,

Affine transformations of log-concave vectors,

Gaussian vectors,

Vectors with log-concave independent coordinates,

Weak limits of log-concave vectors.

Log-concavity = vectors uniformly distributed on convex bodies
+ affine transformations + weak limits.
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The Paouris inequality

Theorem [Paouris, 2006]

For a log-concave vector X in Rn and any p ­ 1 we have(
E‖X‖p2

)1/p ¬ C (E‖X‖2 + σX (p)) ,

where σX (p) is the p-th weak moment of X defined by

σX (p) :=

(
sup
‖t‖2=1

E |〈t,X 〉|p
)1/p

.

By Chebyshev’s inequality this implies the large deviation inequality

P (‖X‖2 ­ 2CtE‖X‖2) ¬ exp
(
−σ−1X (tE‖X‖2)

)
for t ­ 1.

For a simpler proof see R. Adamczak, R. Latała, A. E. Litvak,
K. Oleszkiewicz, A. Pajor, and N. Tomczak-Jaegermann, 2014.
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Comparison of weak and strong moments conjecture

Conjecture
For any log-concave vector X in a separable Banach space (F , ‖ · ‖) and
p ­ 1 we have

(E‖X‖p)1/p ¬ C
(
E‖X‖+ σX ,‖·‖(p)

)
,

where σX ,‖·‖(p) is a weak p-th moment associated to norm ‖ · ‖, namely

σX ,‖·‖(p) := sup
‖ϕ‖∗¬1

(E‖ϕ(X )‖p)1/p .

Unconditional case with a factor log n at E‖X‖,
Unconditional case in spaces of nontrivial cotype q with a cotype
constant bounded by β; then C depends on q and β,

i.i.d case.
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The main result

Conjecture
For any log-concave vector X in a separable Banach space (F , ‖ · ‖) and
p ­ 1 we have

(E‖X‖p)1/p ¬ C
(
E‖X‖+ σX ,‖·‖(p)

)
.

Theorem [Latała, S., 2015]

The conjecture holds for spaces which may be isometrically embeded in lr
for r ­ 2 with constant Cr .

It suffices to prove the theorem in the case of lr .

It suffices to prove the theorem in the case of (Rn, ‖ · ‖r ).
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Modified Paouris inequality

Theorem [Latała 2014]

For a log-concave isotropic vector X in Rn and p ­ 1 we have

E
(

n∑
i=1

X 2i 1{|Xi |­t}

)p

¬ (CσX (p))
2p for t ­ C log

(
n

σX (p)2

)
. (1)

The proof uses the Paouris inequality, but (1) is formally stronger than the
Paouris inequality.

Question

Can one improve the threshold C log
(

n
σX (p)2

)
in (1)?

In i.i.d. case the best threshold is Cσ−1X

(
log
(

nt2

σX (p)2

))
.
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Generalization of the modified Paouris inequality

Theorem [Latała 2014]

For a log-concave isotropic vector X in Rn and p ­ 1 we have

E
(

n∑
i=1

X 2i 1{|Xi |­t}

)p

¬ (CσX (p))
2p for t ­ C log

(
n

σX (p)2

)
.

Theorem [Latała, S. 2015]

For a log-concave vector X in Rn, p ­ 1 and r ­ 2 we have

E
(

n∑
i=1

|Xi |r1{|Xi |­tdi}

)p/r

¬ (CrσX ,r (p))
p for t ­ C log

(
d

σX ,r (p)

)
.
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Generalization of the modified Paouris inequality II

Theorem [Latała, S. 2015]

For a log-concave vector X in Rn, p ­ 1 and r ­ 2 we have

E
(

n∑
i=1

|Xi |r1{|Xi |­tdi}

)p/r

¬ (CrσX ,r (p))
p for t ­ C log

(
d

σX ,r (p)

)
,

where

di := (EX 2i )1/2, d :=

(
n∑

i=1

d r
i

)1/r
and

σX ,r (p) := sup
‖t‖r′¬1

(E|〈t,X 〉|p)1/p .
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The modified Paouris inequality implies the theorem

E
(

n∑
i=1

|Xi |r1{|Xi |­tdi}

)p/r

¬ (CrσX ,r (p))
p for t ­ C log

(
d

σX ,r (p)

)
,

di := (EX 2i )1/2, d :=

(
n∑

i=1

d r
i

)1/r
.

Take p̃ := inf{q ­ p : σX ,r (q) ­ d} and apply the previous theorem with
p := p̃ and t := 0. Then

(E‖X‖pr )1/p ¬ (E‖X‖p̃r )1/p̃

¬ Crσr ,X (p̃) = Cr max{d , σr ,X (p)}
¬ Cr(E‖X‖r + σr ,X (p)).

This gives the main theorem in the case of (Rn, ‖ · ‖r ).

Marta Strzelecka (University of Warsaw) Comparison of weak and strong moments Warsaw, June 1, 2015 10 / 13



The modified Paouris inequality implies the theorem

E
(

n∑
i=1

|Xi |r1{|Xi |­tdi}

)p/r

¬ (CrσX ,r (p))
p for t ­ C log

(
d

σX ,r (p)

)
,

di := (EX 2i )1/2, d :=

(
n∑

i=1

d r
i

)1/r
.

Take p̃ := inf{q ­ p : σX ,r (q) ­ d} and apply the previous theorem with
p := p̃ and t := 0.

Then

(E‖X‖pr )1/p ¬ (E‖X‖p̃r )1/p̃

¬ Crσr ,X (p̃) = Cr max{d , σr ,X (p)}
¬ Cr(E‖X‖r + σr ,X (p)).

This gives the main theorem in the case of (Rn, ‖ · ‖r ).

Marta Strzelecka (University of Warsaw) Comparison of weak and strong moments Warsaw, June 1, 2015 10 / 13



The modified Paouris inequality implies the theorem

E
(

n∑
i=1

|Xi |r1{|Xi |­tdi}

)p/r

¬ (CrσX ,r (p))
p for t ­ C log

(
d

σX ,r (p)

)
,

di := (EX 2i )1/2, d :=

(
n∑

i=1

d r
i

)1/r
.

Take p̃ := inf{q ­ p : σX ,r (q) ­ d} and apply the previous theorem with
p := p̃ and t := 0. Then

(E‖X‖pr )1/p ¬ (E‖X‖p̃r )1/p̃

¬ Crσr ,X (p̃) = Cr max{d , σr ,X (p)}
¬ Cr(E‖X‖r + σr ,X (p)).

This gives the main theorem in the case of (Rn, ‖ · ‖r ).

Marta Strzelecka (University of Warsaw) Comparison of weak and strong moments Warsaw, June 1, 2015 10 / 13



The modified Paouris inequality implies the theorem

E
(

n∑
i=1

|Xi |r1{|Xi |­tdi}

)p/r

¬ (CrσX ,r (p))
p for t ­ C log

(
d

σX ,r (p)

)
,

di := (EX 2i )1/2, d :=

(
n∑

i=1

d r
i

)1/r
.

Take p̃ := inf{q ­ p : σX ,r (q) ­ d} and apply the previous theorem with
p := p̃ and t := 0. Then

(E‖X‖pr )1/p ¬ (E‖X‖p̃r )1/p̃ ¬ Crσr ,X (p̃)

= Cr max{d , σr ,X (p)}
¬ Cr(E‖X‖r + σr ,X (p)).

This gives the main theorem in the case of (Rn, ‖ · ‖r ).

Marta Strzelecka (University of Warsaw) Comparison of weak and strong moments Warsaw, June 1, 2015 10 / 13



The modified Paouris inequality implies the theorem

E
(

n∑
i=1

|Xi |r1{|Xi |­tdi}

)p/r

¬ (CrσX ,r (p))
p for t ­ C log

(
d

σX ,r (p)

)
,

di := (EX 2i )1/2, d :=

(
n∑

i=1

d r
i

)1/r
.

Take p̃ := inf{q ­ p : σX ,r (q) ­ d} and apply the previous theorem with
p := p̃ and t := 0. Then

(E‖X‖pr )1/p ¬ (E‖X‖p̃r )1/p̃ ¬ Crσr ,X (p̃) = Cr max{d , σr ,X (p)}

¬ Cr(E‖X‖r + σr ,X (p)).

This gives the main theorem in the case of (Rn, ‖ · ‖r ).

Marta Strzelecka (University of Warsaw) Comparison of weak and strong moments Warsaw, June 1, 2015 10 / 13



The modified Paouris inequality implies the theorem

E
(

n∑
i=1

|Xi |r1{|Xi |­tdi}

)p/r

¬ (CrσX ,r (p))
p for t ­ C log

(
d

σX ,r (p)

)
,

di := (EX 2i )1/2, d :=

(
n∑

i=1

d r
i

)1/r
.

Take p̃ := inf{q ­ p : σX ,r (q) ­ d} and apply the previous theorem with
p := p̃ and t := 0. Then

(E‖X‖pr )1/p ¬ (E‖X‖p̃r )1/p̃ ¬ Crσr ,X (p̃) = Cr max{d , σr ,X (p)}
¬ Cr(E‖X‖r + σr ,X (p)).

This gives the main theorem in the case of (Rn, ‖ · ‖r ).

Marta Strzelecka (University of Warsaw) Comparison of weak and strong moments Warsaw, June 1, 2015 10 / 13



The modified Paouris inequality implies the theorem

E
(

n∑
i=1

|Xi |r1{|Xi |­tdi}

)p/r

¬ (CrσX ,r (p))
p for t ­ C log

(
d

σX ,r (p)

)
,

di := (EX 2i )1/2, d :=

(
n∑

i=1

d r
i

)1/r
.

Take p̃ := inf{q ­ p : σX ,r (q) ­ d} and apply the previous theorem with
p := p̃ and t := 0. Then

(E‖X‖pr )1/p ¬ (E‖X‖p̃r )1/p̃ ¬ Crσr ,X (p̃) = Cr max{d , σr ,X (p)}
¬ Cr(E‖X‖r + σr ,X (p)).

This gives the main theorem in the case of (Rn, ‖ · ‖r ).

Marta Strzelecka (University of Warsaw) Comparison of weak and strong moments Warsaw, June 1, 2015 10 / 13



Some ideas of the proof

We may assume that t ­ Cr and p
r = l is an integer.

Then

E
(

n∑
i=1

X r
i 1{Xi­tdi}

)l

¬ E
(

n∑
i=1

∞∑
k=0

2(k+1)r (tdi )
r1{Xi­2k tdi}

)l

= (2t)rl
n∑

i1,...,il=1

∞∑
k1,...,kl=0

2(k1+...+kl )rd r
i1 . . . d

r
il
P(Bi1,k1...,il ,kl ),

where
Bi1,k1...,il ,kl := {Xi1 ­ 2k1tdi1 , . . . ,Xil ­ 2kl tdil}.

We divide the sum into several parts. Define sets

I0 :=
{
(i1, k1, . . . , il , kl) : P(Bi1,k1,...,il ,kl ) > e−rl

}
,

Ij :=
{
(i1, k1, . . . , il , kl) : P(Bi1,k1,...,il ,kl ) ∈ (e−rl2

j
, e−rl2

j−1
]
}
.

Marta Strzelecka (University of Warsaw) Comparison of weak and strong moments Warsaw, June 1, 2015 11 / 13



Some ideas of the proof
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r = l is an integer. Then
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Crucial proposition

Proposition

Let X , r , di and d be as before and A := {X ∈ K}, where K is a convex
set in Rn satisfying 0 < P(A) ¬ 1/e. Then
(i) for every t ­ r ,

n∑
i=1

E|Xi |r1A∩{Xi­tdi} ¬ C rP(A)
(
r rσrr ,X (− log(P(A))) + (dt)re−t/C

)
,

(ii) for every t > 0, u ­ 1,

∞∑
k=0

2kr
n∑

i=1

d r
i 1{P(A∩{Xi­2k tdi})­e−uP(A)}

¬ (Cu)r

tr

(
σrr ,X (− log(P(A))) + d r1{t¬uC}

)
.
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Thank you
for your attention!
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