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Introduction
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Example: Zero-Range Processes (ZRP)

Generator [Spitzer, 1970]

LE(n) = Y uln)p(x:y) (F(7™) = £(n))

X,y €N

u(n2)p(2,3)

Y

u(ns)p(5,4)




Example: Misanthrope Processes (MP)

Generator [Cocozza-Thivent, 1985]

LE() = D r(memy)p0x,y) (Fr™) = f(n))

X,y EN

r(n2,n3)p(2,3)

Y

r(ns,N4)p(5,4)




Example: Generalised Zero-Range Processes (gZRP)

Generator [Evans et al., 2004]

£in) = Y S anlndpley) (Fr”) — F(n)

X, yEN k=1

ay(n2)p(2,3)

[y

az(ns)p(5,4)

rvY vy vy




Example: Chipping Processes

w p(2,3)

1 p(5.4)

Generator [Rajesh and Majumdar, 2001]

Lf(n) =Y wi(n > 0)p(x,y) (F(Y) — f(n))

X, yEN

+ > L > 0)p(x, y) (F(n + nx(8y = 8x)) — F(n))

x,yE€N




Example: Chipping Processes

w p(2,3)

Y

1 p(5,4)

w ifk=1landn>1,
ar(n)=<1 ifk=nandn>1,

0 otherwise .




Background and definitions

Stochastic particle system
@ State space ; = NL,

Lf(n) = c(n,&)(F(€) - f(n)) -
E#n

o Conserves particle number F(n) = Zizl nx =N, ie LF=0.

@ Irreducible on the state space Q; y = {n € Q; : Z)l;:l nx = N}.




Background and definitions

A family of stationary product measures (SPM)

o Single site marginal vy[n] = ¢:‘€/¢§)n)

w(n—1)

e Fugacity ¢ € [0, ¢c] where ¢ = limp_, w(n)

vh] = TTiy vslnx satisfies

I/(zL)([,f) =0 forall feC(Q).

Density p(¢) = > =1 nvg[n].
Canonical measure

L L -
WL,N["7] = I/é[?ﬂ Zx:l Mx = N] = Hx:l W(nX)ZL,I]\-I'

Review: [Chleboun and Grosskinsky, 2013]




1 h(n-k)
Weights w(n) = H If ax(n) = g(k) then w(n) = h(n)
k= 1u(k) h(n)
u(n2)p(2,3) as(n2)p(2,3)
N u(ns)p(5,4) az(ns)p(5,4)
1 2 3 4 5 A 5 A
r(n2,n3)p(2,3) w p(2,3)
O r(ns,n4)p(5,4) 1p(54)
1 2 3 4 5 A 5 A
r(1,n-1)
Weights w(n) = HM _ Never has SPM



Background and definitions

Condensation [Ferrari et al., 2007]

For n € Nt let My(n) = maxi<x<1{7x} then we have condensation if

lim lim 7, y[M,>N-K]=1.

K—o00o N—oo

M, (n)
Condensate

Fluid Phase
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Condensation and sub-exponential tails

Proposition: T-R, P. Chleboun and S. Grosskinsky

Consider a stochastic particle system with stationary product measures
with the regularity assumption

lim —W(n —1)
n—oo  w(n)

= ¢ € (0,00] .
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Condensation and sub-exponential tails

Proposition: T-R, P. Chleboun and S. Grosskinsky

Consider a stochastic particle system with stationary product measures
with the regularity assumption

jim (1 =1)
n—oo  w(n)

= ¢ € (0,00] .

Then the process exhibits condensation if and only if ¢, < oo, the
grand-canonical partition function satisfies z(¢.) < oo, and

lim ZLn
N—oo W(N)

€ (0,00) exists .

i.e. for fixed ny,...n 1
L-1

TN [7]1 =N1,...,N—1= nL,1|I\/lL = 77L] — H V¢>C[7lk = nk] as N — oo .
k=1




Condensation and sub-exponential tails

Proposition: T-R, P. Chleboun and S. Grosskinsky

Consider a stochastic particle system with stationary product measures
with the regularity assumption

lim 7‘”(” — 1)
n—o0o W(n)

= ¢ € (0,00] .

Then the process exhibits condensation if and only if ¢. < oo, the
grand-canonical partition function satisfies z(¢.) < oo, and

L
lim vg[> i mi = N]
N—oo V¢[max1§;§L = N]

€ (0,00) exists .

i.e. for fixed ny,...n _1
L—1

mnm =0, =M =] — H Vo [k = ni] as N — oo .
k=1




Examples of condensation

What is sub-exponential [Goldie and Kliippelberg, 1998]

@ Ratio-test lim,— o0 % = ¢ < 00.

L
v[Doimy ni=N]
V¢[max1S,-§L:N]

e Existence of critical measure z(¢.) < 0.

o limy_o exist and is finite.




Examples of condensation

What is sub-exponential [Goldie and Kliippelberg, 1998]

@ Ratio-test lim,— o0 % = ¢ < 00.

L
v[Doimy ni=N]
V¢[max1§,-SL:N]

e Existence of critical measure z(¢.) < 0.

o limy_o exist and is finite.

v

o Power law weights w(n) ~ n=? where b > 1.

@ Stretched exponential weights w(n) ~ exp{—n?} where v € (0, 1).
o Log-normal weights w(n) ~ exp{—%2 (log(n) — )?} where 11,0 € R.

@ Almost exponential weights w(n) ~ exp{ — W} where 3 > 0.




Stochastic monotonicity

Configurations 1, ¢ € NE then np < € if g < &, forall x € {1,.

Mm
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Stochastic monotonicity

Configurations 1, ¢ € NE then np < € if g < &, forall x € {1,.

Mm

f : Nt — R is increasing if < ¢ implies that f(n

(PREETIE (M)

Then py < p) if for all increasing function f : NL — R we have
p(f) < pi(F).



Monotone processes

A process is called monotone if for all ordered initial conditions 1 < £ and
all increasing test function f : Nt — R we have

E, [F(n(£))] < Ee [F(n(t))] for all £20.
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This implies canonical measures satisfy
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Monotone processes

A process is called monotone if for all ordered initial conditions 1 < £ and
all increasing test function f : Nt — R we have

E, [F(n(0)] < B [F(n(t))] forall ¢>0.
This implies canonical measures satisfy
Ty <mnyr forall NeN.
Misanthrope processes are monotone if and only if

r(n,m) <r(n+1,m) ie increasing in n,

r(n,m) > r(n,m+1) ie decreasing in m.

[Cocozza-Thivent, 1985, Gobron and Saada, 2010].



Monotonicity and convexity of the entropy

e The canonical entropy s(p) := limy ;00 % log Z; n-
N/L—p
e Equivalence of ensembles implies s(p) is the (logarithmic) Legendre
transform of the pressure p(¢) := log z(¢) [Grosskinsky et al., 2003].
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Monotonicity and convexity of the entropy

e The canonical entropy s(p) := limy ;00 % log Z; n-
N/L—p
e Equivalence of ensembles implies s(p) is the (logarithmic) Legendre
transform of the pressure p(¢) := log z(¢) [Grosskinsky et al., 2003].

e Assume stochastic monotonicity of 7, y and W‘EV'Z;)I) is monotone

increasing then

w(nx — 1) _ Zin
w(nx) ZINn
————

TLN is increasing in N .

=u(nx)
@ Discrete derivative of log Z; y we have

Zi Nt1
A(log Z n) = log Zy n+1 — log Zi v = log <ZL;; <0.

@ Implies convexity of N +— %Iog ZiN-



Condensing processes with SPM are not monotone

Theorem: T-R, P. Chleboun and S. Grosskinsky

Consider a spatially homogeneous stochastic particle system which exhibits
condensation and has stationary product measures, and has finite
critical density

pc = p(dc) = Z”Vaﬁc[”] <oo.
n=1

Then the canonical measures (7 ) are not ordered in N and the process
is necessarily non-monotone.




Condensing processes with SPM are not monotone

Theorem: T-R, P. Chleboun and S. Grosskinsky

Consider a spatially homogeneous stochastic particle system which exhibits
condensation and has stationary product measures, and has finite
critical density

pc = p(dc) = Z”%c[”] <oo.
n=1

Then the canonical measures (7 ) are not ordered in N and the process
is necessarily non-monotone.

The same is true if the weights are of the form w(n) ~ n with
be(3/2,2].




Outline of proof

@ Pick a monotone (decreasing) test function f : Nt — R,

f(mM=1(m=...=n-1=0) .

Take expectations of f with respect to m p,

w L_1W
7TL7N(f) = Z WL,N[n]f(n) — (O)ZLN(N) )

neQ N

Zi N1 > Zin
(N+1) = w(N)"

If the process is monotone then

e Condensation implies Zé i Lz(¢pc)t as N — oo for all L > 2.
L,

Z
@ Show convergence of (/\I/V) is from above.




Numerics: Expected value of test function

HL(N) = — R
Lz(pc)t w(N)
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o (Left) Power law weights w(n) = n~” on two sites L = 2.

o (Right) Log-normal weights w(n) = exp{—(log(n))?}.



Numerics: Background density
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o (Left) Power law weights w(n) = n~? with b = 5.
o (Right) Log-normal weights w(n) = exp{—(log(n))?}.



Examples: Non-monotone ZRP and condensation

o ZRP with jump rates u(k) = 1+ 2 and b = 5 [Evans, 2000]

o RE(N):= 2omin (N — My).
= Z?f:l ”V¢[”]-

° pc = p(¢c)
0.6 ; :’...o..o........
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04F
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Density p = N/L



Examples: Monotone chipping processes and condensation

o Chipping process with L = 2.
o RE(N) := 2omin (N — My).
e pc(w) ~ /w [Rajesh and Majumdar, 2001].

T
1
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) 1
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Density p = N/L



Implications of non-monotonicity

@ Non-monotonicity of the canonical current and metastability in a
condensing ZRP [Chleboun and Grosskinsky, 2010].

. . Zi N—
@ The canonical current defined as 7, n (u(7x)) = ZNNI.
S - b ’
o ZRP with jump rates u(k) = 1+ %.
1000 P Py (1000)
800) 2 T T
600
= 400 sl P
200 z / . S
L] . L" -
15 -] 1+ ] e e —10
e 14 § —-—-L=1200
Eus ~ / .
5 12 e/ ——%’;u'zzgggvnm(Lmnl
11 / -
e R P R 0 03 I 5
Time. t Density p

o (Left top) Position of the maximum. (Left bottom) Metastability of
the canonical current.

o (Right) Numerics of the canonical current exhibiting non-monotone
behaviour.



Conclusions

@ Non-monotonicity linked with metastability of processes.

@ Strong hydrodynamic limits for monotone Misanthrope processes
[Gobron and Saada, 2010].

@ Couplings are a powerful tool for studying relaxation times of
processes [Nagahata, 2010].

e Condensation is equivalent to the stationary weights being
sub-exponential.

@ Extended known results on condensation in finite systems
[Ferrari et al., 2007].

@ Condensing stochastic particle systems with SPM and finite critical
density are always non-monotone.

@ For infinite critical density processes are non-monotone if stationary
weights are power laws w(n) ~ n=2 with b € (3/2,2].

@ Possible monotone example for b € (1,3/2].



Critical density in the Chipping Process

e Consider the Chipping Process on two sites (L = 2) with N particles.

o pe(w) ~Vw.

w w
¥ \/ Y
; t | J t t eoe i
1 1

@ Process is a random walk with resetting.
@ After resetting processes diffuses.

@ Processes reaches a typical distance of \/w from either boundary.
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