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Introduction
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Condensation
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Example: Zero-Range Processes (ZRP)

Generator [Spitzer, 1970]

Lf (η) =
∑
x ,y∈Λ

u(ηx)p(x , y) (f (ηx ,y )− f (η))
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Example: Misanthrope Processes (MP)

Generator [Cocozza-Thivent, 1985]

Lf (η) =
∑
x ,y∈Λ

r(ηx , ηy )p(x , y) (f (ηx ,y )− f (η))
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Example: Generalised Zero-Range Processes (gZRP)

Generator [Evans et al., 2004]

Lf (η) =
∑
x ,y∈Λ

ηx∑
k=1

αk(ηx)p(x , y)
(
f (ηx ,(k)y )− f (η)

)
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Example: Chipping Processes

Generator [Rajesh and Majumdar, 2001]

Lf (η) =
∑
x,y∈Λ

w1(ηx > 0)p(x , y) (f (ηx,y )− f (η))

+
∑
x,y∈Λ

1(ηx > 0)p(x , y) (f (η + ηx(δy − δx))− f (η))
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Example: Chipping Processes

Link to gZRP

αk(n) =


w if k = 1 and n ≥ 1 ,

1 if k = n and n ≥ 1 ,

0 otherwise .
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Background and definitions

Stochastic particle system

State space ΩL = NL.

Lf (η) =
∑
ξ 6=η

c(η, ξ)(f (ξ)− f (η)) .

Conserves particle number F (η) =
∑L

x=1 ηx = N, i.e. LF = 0.

Irreducible on the state space ΩL,N = {η ∈ ΩL :
∑L

x=1 ηx = N}.
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Background and definitions

A family of stationary product measures (SPM)

Single site marginal νφ[n] = φnw(n)
z(φ) .

Fugacity φ ∈ [0, φc ] where φc = limn→∞
w(n−1)
w(n) .

νLφ[η] =
∏L

i=1 νφ[ηx ] satisfies

νLφ(Lf ) = 0 for all f ∈ C (ΩL) .

Density ρ(φ) =
∑∞

n=1 n νφ[n].

Canonical measure
πL,N [η] = νLφ[η|

∑L
x=1 ηx = N] =

∏L
x=1 w(ηx)Z−1

L,N .

Review: [Chleboun and Grosskinsky, 2013]
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Examples
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Background and definitions

Condensation [Ferrari et al., 2007]

For η ∈ NL let ML(η) = max1≤x≤L{ηx} then we have condensation if

lim
K→∞

lim
N→∞

πL,N [ML ≥ N − K ] = 1 .
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Condensation and sub-exponential tails

Proposition: T-R, P. Chleboun and S. Grosskinsky

Consider a stochastic particle system with stationary product measures
with the regularity assumption

lim
n→∞

w(n − 1)

w(n)
= φc ∈ (0,∞] .

Then the process exhibits condensation if and only if φc <∞, the
grand-canonical partition function satisfies z(φc) <∞, and

lim
N→∞

ZL,N

w(N)
∈ (0,∞) exists .

i.e. for fixed n1, . . . nL−1

πL,N [η1 = n1, . . . , ηL−1 = nL−1|ML = ηL]→
L−1∏
k=1

νφc [ηk = nk ] as N →∞ .
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Examples of condensation

What is sub-exponential [Goldie and Klüppelberg, 1998]

Ratio-test limn→∞
w(n−1)
w(n) = φc <∞.

limN→∞
νφ[

∑L
i=1 ηi=N]

νφ[max1≤i≤L=N] exist and is finite.

Existence of critical measure z(φc) <∞.

Examples

Power law weights w(n) ∼ n−b where b > 1.

Stretched exponential weights w(n) ∼ exp{−nγ} where γ ∈ (0, 1).

Log-normal weights w(n) ∼ exp{− 1
2σ2 (log(n)− µ)2} where µ, σ ∈ R.

Almost exponential weights w(n) ∼ exp
{
− n

log(n)β

}
where β > 0.
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Stochastic monotonicity

Configurations η, ξ ∈ NL then η ≤ ξ if ηx ≤ ξx for all x ∈ {1, . . . L}.

f : NL → R is increasing if η ≤ ξ implies that f (η) ≤ f (ξ).

Then µL ≤ µ′L if for all increasing function f : NL → R we have
µL(f ) ≤ µ′L(f ).
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Monotone processes

A process is called monotone if for all ordered initial conditions η ≤ ξ and
all increasing test function f : NL → R we have

Eη [f (η(t))] ≤ Eξ [f (η(t))] for all t ≥ 0 .

This implies canonical measures satisfy

πL,N ≤ πL,N+1 for all N ∈ N .

Misanthrope processes are monotone if and only if

r(n,m) ≤ r(n + 1,m) i.e. increasing in n,

r(n,m) ≥ r(n,m + 1) i.e. decreasing in m.

[Cocozza-Thivent, 1985, Gobron and Saada, 2010].
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Monotonicity and convexity of the entropy

The canonical entropy s(ρ) := limN,L→∞
N/L→ρ

1
L logZL,N .

Equivalence of ensembles implies s(ρ) is the (logarithmic) Legendre
transform of the pressure p(φ) := log z(φ) [Grosskinsky et al., 2003].

Assume stochastic monotonicity of πL,N and w(n−1)
w(n) is monotone

increasing then

πL,N

w(ηx − 1)

w(ηx)︸ ︷︷ ︸
=u(ηx )

 =
ZL,N−1

ZL,N
is increasing in N .

Discrete derivative of logZL,N we have

∆ (logZL,N) = logZL,N+1 − logZL,N = log

(
ZL,N+1

ZL,N

)
≤ 0 .

Implies convexity of N 7→ 1
L logZL,N .
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Condensing processes with SPM are not monotone

Theorem: T-R, P. Chleboun and S. Grosskinsky

Consider a spatially homogeneous stochastic particle system which exhibits
condensation and has stationary product measures, and has finite
critical density

ρc = ρ(φc) =
∞∑
n=1

n νφc [n] <∞ .

Then the canonical measures (πL,N) are not ordered in N and the process
is necessarily non-monotone.

The same is true if the weights are of the form w(n) ∼ n−b with
b ∈ (3/2, 2].
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Outline of proof

Pick a monotone (decreasing) test function f : NL → R,

f (η) = 1 (η1 = . . . = ηL−1 = 0) .

Take expectations of f with respect to πL,N ,

πL,N(f ) =
∑

η∈ΩL,N

πL,N [η]f (η) =
w(0)L−1w(N)

ZL,N
.

If the process is monotone then
ZL,N+1

w(N+1) ≥
ZL,N

w(N) .

Condensation implies
ZL,N

w(N) → Lz(φc)L−1 as N →∞ for all L ≥ 2.

Show convergence of
ZL,N

w(N) is from above.
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Numerics: Expected value of test function

HL(N) :=
1

Lz(φc)L−1

ZL,N

w(N)
.

(Left) Power law weights w(n) = n−b on two sites L = 2.

(Right) Log-normal weights w(n) = exp{−(log(n))2}.
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Numerics: Background density

Rbg
L (N) :=

1

L− 1
πL,N (N −ML) .

(Left) Power law weights w(n) = n−b with b = 5.

(Right) Log-normal weights w(n) = exp{−(log(n))2}.
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Examples: Non-monotone ZRP and condensation

ZRP with jump rates u(k) = 1 + b
k and b = 5 [Evans, 2000].

Rbg
L (N) := 1

L−1πL,N (N −ML).

ρc = ρ(φc) =
∑∞

n=1 n νφ[n].
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Examples: Monotone chipping processes and condensation

Chipping process with L = 2.

Rbg
L (N) := 1

L−1πL,N (N −ML).

ρc(w) ∼
√
w [Rajesh and Majumdar, 2001].
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Implications of non-monotonicity

Non-monotonicity of the canonical current and metastability in a
condensing ZRP [Chleboun and Grosskinsky, 2010].

The canonical current defined as πL,N (u(ηx)) =
ZL,N−1

ZL,N
.

ZRP with jump rates u(k) = 1 + b
kγ .

(Left top) Position of the maximum. (Left bottom) Metastability of
the canonical current.
(Right) Numerics of the canonical current exhibiting non-monotone
behaviour.
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Conclusions

Non-monotonicity linked with metastability of processes.

Strong hydrodynamic limits for monotone Misanthrope processes
[Gobron and Saada, 2010].

Couplings are a powerful tool for studying relaxation times of
processes [Nagahata, 2010].

Condensation is equivalent to the stationary weights being
sub-exponential.

Extended known results on condensation in finite systems
[Ferrari et al., 2007].

Condensing stochastic particle systems with SPM and finite critical
density are always non-monotone.

For infinite critical density processes are non-monotone if stationary
weights are power laws w(n) ∼ n−b with b ∈ (3/2, 2].

Possible monotone example for b ∈ (1, 3/2].
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Critical density in the Chipping Process

Consider the Chipping Process on two sites (L = 2) with N particles.

ρc(w) ∼
√
w .

Process is a random walk with resetting.

After resetting processes diffuses.

Processes reaches a typical distance of
√
w from either boundary.
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