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Motivation and History Nuclear Physics

Wigner’s Nuclear Physics

Experimental data for scattering energies of neutrons bouncing off a heavy
nucleus:

Question: How to understand the spacing between peaks in the above
data?

Structure of large nuclei is very complicated

Not feasible to compute these energies either theoretically or
numerically

Wigner’s idea: the Hamiltonian can be modeled by a very large
random matrix
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Motivation and History Nuclear Physics

Data for spacing between energies with eigenvalue spacing overlaid:

Definition

Let h be a probability distribution on C. A Wigner matrix is a N × N
matrix that is:

Hermitian,

entries are iid complex random variables with distribution h,

mean 0 and variance 1/N.

The variance is chosen so the spectrum has compact support.
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Motivation and History Universality

Universality

Consider a Wigner matrix (Hermitian N × N matrix with iid entries drawn
from any distribution h). Let

N [a; b] = number of eigenvalues in the interval [a; b]

ρsc is a probability density on R

ρsc(E ) =

{
1
2π

√
1− E2

4 , if |E | ≤ 2

0 if |E | > 2
.

Wigner’s key result – universality:
For δ > 0 and all a, b, Wigner proved that

lim
N→∞

P
(∣∣∣∣ N [a; b]

N(b − a)
− 1

(b − a)

∫ b

a
ρsc(s)d s

∣∣∣∣ ≥ δ) = 0
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Motivation and History Universality

Universality - the big picture

Want to derive macroscopic properties of large systems with unknown
or random interactions of their constituents.
Examples:

laws of thermodynamics
law of large numbers

Random matrices model various physical systems
quantum and wave chaos
many particle systems
scattering energies of large atoms

For random matrices, universality can be defined and proved
A lot done for Wigner matrices
Still many open problems for other ensembles, such as non-Hermitian
matrices
Universality of fluctuations?

Universality in random matrices suggests a mechanism of
universality in physical systems
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Zooming in

Zooming in

Counting number of eigenvalues of Wigner matrices in short intervals:

In Wigner’ work, interval [a, b] independent of N

What if we take [a(N), b(N)] with b(N)− a(N)→ 0 as N →∞?
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Zooming in

Local Laws

Erdös-Schlein-Yau 2008, 2009, 2010. Let δ > 0 and E away from
spectral edge. There exists a constant Kδ such that with η = Kδ/N,

P
(∣∣∣∣N (E − η,E + η)

2Nη
− ρsc(E )

∣∣∣∣ > δ

)
< Ce−cδ

2
√
Nη

Scale (interval size) is optimal – cannot zoom in further.

– Why?

Question: How small can δ be so the RHS still decays in Nη? That’s
the fluctuation.

Also, probability to find an eigenvalue in an interval of size ε
N is

proportional to ε, and to find k eigenvalues is proportional to εk
2
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Zooming in

Convergence in Expectation on Arbitrarily Small Intervals

Want to zoom in to smaller intervals!

False in probability (as there may be no eigenvalues), but

we can take expectation!

Theorem 1 (M.-Schlein 2011)

For any sequence η(N)→ 0

lim
N→∞

∣∣∣∣E N [E − η(N),E + η(N)]

2Nη(N)
− ρsc(E )

∣∣∣∣ = 0

Need: Gaussian decay, two derivatives, and
∫ ( f ′(x)

f (x)

)2
f (x)dx <∞.
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Zooming in Rigidity

Fluctuations of Individual Eigenvalues

Let γα be the location of αth eigenvalue as predicted by the semicircle law.

Theorem 2

[Cacciapuoti -M. - Schlein 2014] For α = 1, . . . ,N, let
α̂ = min{α,N + 1− α}. Then there exist constants C , c ,N0, ε > 0 such
that

P

(
|λα − γα| ≥

K logN

N

(
N

α̂

) 1
3

)
≤ (Cq)cq

2

Kq
(2.1)

for all N > N0,K > 0, q ∈ N with q ≤ Nε.

Eigenvalues are expected to fluctuate on the scale
√

logN/N
(Gustavson for GUE)

Improved from (logN)log N

N (up to constants) in prior work of
Erdös-Yau-Yin

Anna Maltsev (University of Bristol) Local Laws in RMT June 2, 2015 9 / 15



Zooming in Rigidity

Fluctuations of Individual Eigenvalues

Let γα be the location of αth eigenvalue as predicted by the semicircle law.

Theorem 2

[Cacciapuoti -M. - Schlein 2014] For α = 1, . . . ,N, let
α̂ = min{α,N + 1− α}. Then there exist constants C , c ,N0, ε > 0 such
that

P

(
|λα − γα| ≥

K logN

N

(
N

α̂

) 1
3

)
≤ (Cq)cq

2

Kq
(2.1)

for all N > N0,K > 0, q ∈ N with q ≤ Nε.

Eigenvalues are expected to fluctuate on the scale
√

logN/N
(Gustavson for GUE)

Improved from (logN)log N

N (up to constants) in prior work of
Erdös-Yau-Yin

Anna Maltsev (University of Bristol) Local Laws in RMT June 2, 2015 9 / 15



Zooming in Rigidity

Fluctuations of Individual Eigenvalues

Let γα be the location of αth eigenvalue as predicted by the semicircle law.

Theorem 2

[Cacciapuoti -M. - Schlein 2014] For α = 1, . . . ,N, let
α̂ = min{α,N + 1− α}. Then there exist constants C , c ,N0, ε > 0 such
that

P

(
|λα − γα| ≥

K logN

N

(
N

α̂

) 1
3

)
≤ (Cq)cq

2

Kq
(2.1)

for all N > N0,K > 0, q ∈ N with q ≤ Nε.

Eigenvalues are expected to fluctuate on the scale
√

logN/N
(Gustavson for GUE)

Improved from (logN)log N

N (up to constants) in prior work of
Erdös-Yau-Yin

Anna Maltsev (University of Bristol) Local Laws in RMT June 2, 2015 9 / 15



Zooming in Rigidity

Fluctuations of Individual Eigenvalues

Let γα be the location of αth eigenvalue as predicted by the semicircle law.

Theorem 2

[Cacciapuoti -M. - Schlein 2014] For α = 1, . . . ,N, let
α̂ = min{α,N + 1− α}. Then there exist constants C , c ,N0, ε > 0 such
that

P

(
|λα − γα| ≥

K logN

N

(
N

α̂

) 1
3

)
≤ (Cq)cq

2

Kq
(2.1)

for all N > N0,K > 0, q ∈ N with q ≤ Nε.

Eigenvalues are expected to fluctuate on the scale
√

logN/N
(Gustavson for GUE)

Improved from (logN)log N

N (up to constants) in prior work of
Erdös-Yau-Yin

Anna Maltsev (University of Bristol) Local Laws in RMT June 2, 2015 9 / 15



Usefulness

Application: Dyson Universality Conjecture

2-pt correlation function:

p(2)(λ1, λ2) :=

∫
RN−2

pN(λ1, λ2, λ3, . . . , λN)dλ3 . . . dλN ,

where pN is the joint probability distribution of the eigenvalues;

1

ρ(E )
p(2)

(
E +

x1
ρ(E )N

,E +
x2

ρ(E )N

)
→ det

(
1−

(
sin(πx1 − πx2)

πx1 − πx2

)2
)
.

Dyson (60’s) proved for GUE, and conjectured for Wigner.
Johannson proved for matrices of the form W + aG where W is
Wigner and G is from GUE, and a is finite real.
Erdos, Schlein, Yau, Ramirez, Peche (2010 - onwards) could take
a = a(N)→ 0 in N to prove it for Wigner (with some smoothness
assumptions). Local laws were a crucial input for the improvement
over Johannson.
Tao - Vu used a moment method to prove it for Wigner

Anna Maltsev (University of Bristol) Local Laws in RMT June 2, 2015 10 / 15



Usefulness

Application: Dyson Universality Conjecture

2-pt correlation function:

p(2)(λ1, λ2) :=

∫
RN−2

pN(λ1, λ2, λ3, . . . , λN)dλ3 . . . dλN ,

where pN is the joint probability distribution of the eigenvalues;

1

ρ(E )
p(2)

(
E +

x1
ρ(E )N

,E +
x2

ρ(E )N

)
→ det

(
1−

(
sin(πx1 − πx2)

πx1 − πx2

)2
)
.

Dyson (60’s) proved for GUE, and conjectured for Wigner.
Johannson proved for matrices of the form W + aG where W is
Wigner and G is from GUE, and a is finite real.
Erdos, Schlein, Yau, Ramirez, Peche (2010 - onwards) could take
a = a(N)→ 0 in N to prove it for Wigner (with some smoothness
assumptions). Local laws were a crucial input for the improvement
over Johannson.
Tao - Vu used a moment method to prove it for Wigner

Anna Maltsev (University of Bristol) Local Laws in RMT June 2, 2015 10 / 15



Usefulness

Application: Dyson Universality Conjecture

2-pt correlation function:

p(2)(λ1, λ2) :=

∫
RN−2

pN(λ1, λ2, λ3, . . . , λN)dλ3 . . . dλN ,

where pN is the joint probability distribution of the eigenvalues;

1

ρ(E )
p(2)

(
E +

x1
ρ(E )N

,E +
x2

ρ(E )N

)
→ det

(
1−

(
sin(πx1 − πx2)

πx1 − πx2

)2
)
.

Dyson (60’s) proved for GUE, and conjectured for Wigner.

Johannson proved for matrices of the form W + aG where W is
Wigner and G is from GUE, and a is finite real.
Erdos, Schlein, Yau, Ramirez, Peche (2010 - onwards) could take
a = a(N)→ 0 in N to prove it for Wigner (with some smoothness
assumptions). Local laws were a crucial input for the improvement
over Johannson.
Tao - Vu used a moment method to prove it for Wigner

Anna Maltsev (University of Bristol) Local Laws in RMT June 2, 2015 10 / 15



Usefulness

Application: Dyson Universality Conjecture

2-pt correlation function:

p(2)(λ1, λ2) :=

∫
RN−2

pN(λ1, λ2, λ3, . . . , λN)dλ3 . . . dλN ,

where pN is the joint probability distribution of the eigenvalues;

1

ρ(E )
p(2)

(
E +

x1
ρ(E )N

,E +
x2

ρ(E )N

)
→ det

(
1−

(
sin(πx1 − πx2)

πx1 − πx2

)2
)
.

Dyson (60’s) proved for GUE, and conjectured for Wigner.
Johannson proved for matrices of the form W + aG where W is
Wigner and G is from GUE, and a is finite real.

Erdos, Schlein, Yau, Ramirez, Peche (2010 - onwards) could take
a = a(N)→ 0 in N to prove it for Wigner (with some smoothness
assumptions). Local laws were a crucial input for the improvement
over Johannson.
Tao - Vu used a moment method to prove it for Wigner

Anna Maltsev (University of Bristol) Local Laws in RMT June 2, 2015 10 / 15



Usefulness

Application: Dyson Universality Conjecture

2-pt correlation function:

p(2)(λ1, λ2) :=

∫
RN−2

pN(λ1, λ2, λ3, . . . , λN)dλ3 . . . dλN ,

where pN is the joint probability distribution of the eigenvalues;

1

ρ(E )
p(2)

(
E +

x1
ρ(E )N

,E +
x2

ρ(E )N

)
→ det

(
1−

(
sin(πx1 − πx2)

πx1 − πx2

)2
)
.

Dyson (60’s) proved for GUE, and conjectured for Wigner.
Johannson proved for matrices of the form W + aG where W is
Wigner and G is from GUE, and a is finite real.
Erdos, Schlein, Yau, Ramirez, Peche (2010 - onwards) could take
a = a(N)→ 0 in N to prove it for Wigner (with some smoothness
assumptions). Local laws were a crucial input for the improvement
over Johannson.

Tao - Vu used a moment method to prove it for Wigner

Anna Maltsev (University of Bristol) Local Laws in RMT June 2, 2015 10 / 15



Usefulness

Application: Dyson Universality Conjecture

2-pt correlation function:

p(2)(λ1, λ2) :=

∫
RN−2

pN(λ1, λ2, λ3, . . . , λN)dλ3 . . . dλN ,

where pN is the joint probability distribution of the eigenvalues;

1

ρ(E )
p(2)

(
E +

x1
ρ(E )N

,E +
x2

ρ(E )N

)
→ det

(
1−

(
sin(πx1 − πx2)

πx1 − πx2

)2
)
.

Dyson (60’s) proved for GUE, and conjectured for Wigner.
Johannson proved for matrices of the form W + aG where W is
Wigner and G is from GUE, and a is finite real.
Erdos, Schlein, Yau, Ramirez, Peche (2010 - onwards) could take
a = a(N)→ 0 in N to prove it for Wigner (with some smoothness
assumptions). Local laws were a crucial input for the improvement
over Johannson.
Tao - Vu used a moment method to prove it for Wigner

Anna Maltsev (University of Bristol) Local Laws in RMT June 2, 2015 10 / 15



Notes

Other problems solved and unsolved

Local laws in other ensembles

Covariance matrices - mostly solved!

Non-Hermitian iid matrices - somewhat solved

Sparse - somewhat solved

Heavy-tailed and heavier-tailed Wigner - a little bit of work done but
mostly open
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Technicalities

Technicalities
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Technicalities

Gjj =
1

hjj − z − a∗j G
(j)aj

(5.1)

Let Λ = m −msc , then

Gjj = − 1

msc + z + Λ + Υj
(5.2)

where

Υj = −hjj −
1

N
Gjj −

1

N

∑
k 6=j

(Gkk − G
(j)
kk ) + (I − Ej)a∗j G

(j)aj

where Ej denotes the expectation with respect to aj .
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Technicalities

Solve for the fluctuation

We set R = 1
N

∑
j Υj Gjj , then so that Eq. (5.2) reads

mscΛ2 + (m2
sc − 1)Λ + mscR = 0 . (5.3)

We solve the equation for Λ and choose the correct solution

Λ =
−(m2

sc − 1) +
√

(m2
sc − 1)2 − 4m2

scR

2msc
.

|Λ| ≤ C
|msc ||R|√

|m2
sc − 1|2 + 4|msc |2|R|

≤ C min

{
|R|

|m2
sc − 1|

,
√
|R|
}
. (5.4)
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Technicalities

Hanson & Wright: fluctuations of quadratic forms

For j = 1, . . . ,N let xj = Re xj + i Im xj , where {Re xj , Im xj}Nj=1 is a sequence of 2N real iid random variables, whose

common distribution ν has subgaussian decay. Let A = (aij ) be a N × N complex matrix. Then there exist constants c, C > 0

such that, for any δ > 0

P

∣∣∣∣∣∣
N∑

i ,j=1

aij (xi x̄j − Exi x̄j)

∣∣∣∣∣∣ ≥ δ
 ≤ Ce−cδ/

√
TrA∗A . (5.5)

Let z = E + iη. For any j = 1, ...,N, set

Zj = (I − Ej)a∗j G
(j)aj . (5.6)

Setting A = G and integrating over δ

E|Zj |2q ≤ (Cq)2q
(

(Im msc)q + E|Λ|q

(Nη)q
+

1

(Nη)2q

)
, (5.7)

E|G12|2q < Cq

(Nη)q – tricky!
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