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Yo=Y +¥®, 01,
If we study the asymptotic behaviour of the normalization Y, = %[Y”]

S Zn—1 51 n—2no(2 Z
Y, = nn Yé,,)—ﬁ‘ nnyr(,_)zn+g(:)+o(1)

as n — oo we get

y 2uy® 41— u)y® 1 g(u).
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» for which 6, E [e?X] < c0?
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Define Wasserstein metric via
d(p, ) =inf {IX = Y[ | X~p Y ~i}.

This distance can be interpreted as an optimal transportation problem.
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Theorem (U. Résler 1992)
Assume that

E <1, 0<EJ[C]] < 0.

N
2 Tk
k=1

ThenS: (M,d) — (M, d) is a contraction.

Corollary
Assume (W), then there exists a unique solution (in M) of

d N
X =Y TiXx+C.
k=1

Furthermore, for any n € M we have §"(n) 9 yasn— oo,
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Suppose also that for some § > 0
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andP[Ty =1, N>2] =0. Thenfor X 2 YN, Ty Xk + C and all § € R,
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Rough idea.
For ® increasing sufficiently fast

N

E |exp{0C}®(T16) [ [ ©(Tkb)

~E [eﬂcn (maxe Tk:”} (0) < D(0).
k=2
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