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Example (Quicksort)

Let Yn = number of comparisons needed to sort list of length n and
Zn = uniform random number in {1, 2, . . . , n}. Then the
divide-and-conquer approach reads

Yn = Y (1)
Zn−1 + Y (2)

n−Zn
+ n− 1.

If we study the asymptotic behaviour of the normalization Ŷn = Yn−E[Yn ]
n

Ŷn =
Zn − 1

n
Ŷ (1)

Zn−1 +
n− Zn

n
Ŷ (2)

n−Zn
+ g

(
Zn

n

)
+ o(1)

as n→ ∞ we get

Y d
= UY (1) + (1− U)Y (2) + g(U).
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Ŷ (1)

Zn−1 +
n− Zn

n
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Suppose that a random vector (C,N,T1,T2, . . .) is given

, where

I Tk ≥ 0,

I N ∈N,

I (wlog) T1 ≥ T2 ≥ T3 ≥ . . ..

We are interested in law µ satisfying

X d
=

N

∑
k=1

Tk Xk + C,

where (X ,X1,X2, . . .) are iid with distribution µ and independent

of (C,N,T1,T2, . . .). (For N ≡ 1, X d
= T1X + C)

Agenda:

I existence and uniqueness of µ,

I for which θ, E
[
eθX
]
< ∞?
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We will treat µ ∼ X satisfying

X d
=

N

∑
k=1

Tk Xk + C

as a fixed point of a certain operator.

Let

E

[
N

∑
k=1

Tk

]
< 1, 0 < E [|C|] < ∞.

Let

M =

{
η ∈ P(R)

∣∣∣∣ ∫
R
|x | η(dx) < ∞

}
and define S : M→M by: for η ∈ M take (Yk )k iid(η) and put

S(η) = L
(

N

∑
k=1

Tk Yk + C

)
.

Then

X d
=

N

∑
k=1

Tk Xk + C ⇔ S(µ) = µ.
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Define Wasserstein metric via

d(µ, η) = inf {‖X − Y‖L1 | X ∼ µ, Y ∼ η} .

This distance can be interpreted as an optimal transportation problem.
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Theorem
(M,d) is a complete and separable metric space.

Furthermore,

µn
d→ µ⇔ µn

D→ µ and
∫

R
|x | µn(dx)→

∫
R
|x | µ(dx).

Theorem (U. Rösler 1992)
Assume that

E

[
N

∑
k=1

Tk

]
< 1, 0 < E [|C|] < ∞. (♠)

Then S : (M,d)→ (M,d) is a contraction.

Corollary
Assume (♠), then there exists a unique solution (inM) of

X d
=

N

∑
k=1

Tk Xk + C.

Furthermore, for any η ∈ M we have Sn(η)
d→ µ as n→ ∞.
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The stochastic fixed point equation (SFPE)

X d
=

N

∑
k=1

Tk Xk + C

in terms of the mgf Ψ(θ) = E[exp{θX}] with the domain

DΨ := {θ ∈ R |Ψ(θ) < ∞}

reads

Ψ(θ) = E

[
eθC

N

∏
k=1

Ψ(Tk θ)

]
for θ ∈ DΨ.
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Theorem (G. Alsmeyer, P. D.)
Suppose that E

[
∑N

k=1 Tk

]
< 1, 0 < E[|C|] < ∞ and ‖N‖∞ < ∞.

Then

E[exp{θX}] < ∞ for some θ 6= 0

iff one of the following three cases is true:

(a) P[T1 = max1≤k≤N Tk ≤ 1] = 1,

E[exp{sC}] < ∞ for some s 6= 0;

DΨ =???

(b) P[T1 = max1≤k≤N Tk > 1] > 0,

P
[
∑N

k=1 Tk w∗ + C ≤ w∗
]
= 1 some w∗ ≥ 0,

DΨ = [0,+∞);

(c) P[T1 = max1≤k≤N Tk > 1] > 0,

P
[
∑N

k=1 Tk w∗ + C ≥ w∗
]
= 1 some w∗ ≤ 0

DΨ = (−∞, 0];
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Proposition
Assume ‖N‖∞ < ∞ and

E

[
N

∑
k=1

Tk

]
< 1, 0 < E[|C|] < ∞, T1 = max

1≤k≤N
Tk ≤ 1.

Let Θ > 0 then Θ ∈ DΨ if, and only if ∃Φ : [0,Θ]→ (0,+∞),
Φ(0) = 1, Φ(θ) > δ > 0, differentiable at 0 such that

E

[
exp{θC}

N

∏
k=1

Φ(Tk θ)

]
≤ Φ(θ) for θ ∈ [0,Θ]

Proof.
There exists c such that

E[exp{θZ0}] = exp{cθ} ≤ Φ(θ) for θ ∈ [0,Θ].

Consider Zn
d
= Sn(δc).
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Proof continued.
Zn

d
= S(Zn−1) with Z0 = c.
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Theorem (G. Alsmeyer, P. D.)
As always, assume ‖N‖∞ < ∞,

E

[
N

∑
k=1

Tk

]
< 1, 0 < E[|C|] < ∞, T1 = max

1≤k≤N
Tk ≤ 1.

Suppose also that for some δ > 0

T2 ≤ 1− δ a.s.

and P[T1 = 1, N ≥ 2] = 0. Then for X d
= ∑N

k=1 Tk Xk + C and all θ ∈ R,

E
[
eθX
]
< ∞⇔ E

[
eθC
]
< ∞, E

[
eθC

1{maxk Tk=1}

]
< 1.

Rough idea.
For Φ increasing sufficiently fast

E

[
exp{θC}Φ(T1θ)

N

∏
k=2

Φ(Tk θ)

]
≈ E

[
eθC

1{maxk Tk=1}

]
Φ(θ) ≤ Φ(θ).
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Example
Suppose A d

= B(α, 1), and let N = n ≥ 1 such that α < 2
n−1 ,

T1 = T2 = . . . = Tn = A and take C independent of A with E[C] = 0
and ϕ(θ) = E[exp{θC}].

The SFPE reads

Ψ(θ) = ϕ(θ)
∫ 1

0
Ψ(tθ)nαtα−1dt

By computing the derivative d
dθ one gets

Ψ′(θ) =
αϕ(θ)

θ
Ψ(θ)n +

(
ϕ′(θ)

ϕ(θ)
− α

θ

)
Ψ(θ)

and so

Ψn−1(θ) =
ϕ(θ)n−1

1−
∫ θ

0 (ϕ(s)n − 1)
(

θ
s

)α(n−1)+1
α(n− 1)s−1 ds
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