Exponential moments of fixed points of the nonhomegenous smoothing transform

Piotr Dyszewski (University of Wrocław) joint work with Gerold Alsmeyer (University of Münster)

Tuesday $2^{\text {nd }}$ June, 2015

Warsaw Summer School in Probability

Example (Quicksort)

Example (Quicksort)

Let $Y_{n}=$ number of comparisons needed to sort list of length n

Example (Quicksort)

Let $Y_{n}=$ number of comparisons needed to sort list of length n and $Z_{n}=$ uniform random number in $\{1,2, \ldots, n\}$.

Example (Quicksort)

Let $Y_{n}=$ number of comparisons needed to sort list of length n and $Z_{n}=$ uniform random number in $\{1,2, \ldots, n\}$. Then the divide-and-conquer approach reads

$$
Y_{n}=Y_{Z_{n}-1}^{(1)}+Y_{n-Z_{n}}^{(2)}+n-1
$$

Example (Quicksort)

Let $Y_{n}=$ number of comparisons needed to sort list of length n and $Z_{n}=$ uniform random number in $\{1,2, \ldots, n\}$. Then the divide-and-conquer approach reads

$$
Y_{n}=Y_{Z_{n}-1}^{(1)}+Y_{n-Z_{n}}^{(2)}+n-1 .
$$

If we study the asymptotic behaviour of the normalization $\widehat{Y}_{n}=\frac{Y_{n}-\mathbb{E}\left[Y_{n}\right]}{n}$

Example (Quicksort)

Let $Y_{n}=$ number of comparisons needed to sort list of length n and $Z_{n}=$ uniform random number in $\{1,2, \ldots, n\}$. Then the divide-and-conquer approach reads

$$
Y_{n}=Y_{Z_{n}-1}^{(1)}+Y_{n-Z_{n}}^{(2)}+n-1
$$

If we study the asymptotic behaviour of the normalization $\widehat{Y}_{n}=\frac{Y_{n}-\mathbb{E}\left[Y_{n}\right]}{n}$

$$
\widehat{Y}_{n}=\frac{Z_{n}-1}{n} \widehat{Y}_{Z_{n-1}}^{(1)}+\frac{n-Z_{n}}{n} \widehat{Y}_{n-Z_{n}}^{(2)}+g\left(\frac{Z_{n}}{n}\right)+o(1)
$$

Example (Quicksort)

Let $Y_{n}=$ number of comparisons needed to sort list of length n and $Z_{n}=$ uniform random number in $\{1,2, \ldots, n\}$. Then the divide-and-conquer approach reads

$$
Y_{n}=Y_{Z_{n}-1}^{(1)}+Y_{n-Z_{n}}^{(2)}+n-1 .
$$

If we study the asymptotic behaviour of the normalization $\widehat{Y}_{n}=\frac{Y_{n}-\mathbb{E}\left[Y_{n}\right]}{n}$

$$
\widehat{Y}_{n}=\frac{Z_{n}-1}{n} \widehat{Y}_{Z_{n}-1}^{(1)}+\frac{n-Z_{n}}{n} \widehat{Y}_{n-Z_{n}}^{(2)}+g\left(\frac{Z_{n}}{n}\right)+o(1)
$$

as $n \rightarrow \infty$ we get

$$
Y \stackrel{d}{=} U Y^{(1)}+(1-U) Y^{(2)}+g(U)
$$

Suppose that a random vector $\left(C, N, T_{1}, T_{2}, \ldots\right)$ is given

Suppose that a random vector $\left(C, N, T_{1}, T_{2}, \ldots\right)$ is given, where

- $T_{k} \geq 0$,

Suppose that a random vector $\left(C, N, T_{1}, T_{2}, \ldots\right)$ is given, where

- $T_{k} \geq 0$,
- $N \in \mathbb{N}$,

Suppose that a random vector $\left(C, N, T_{1}, T_{2}, \ldots\right)$ is given, where

- $T_{k} \geq 0$,
- $N \in \mathbb{N}$,
- (wlog) $T_{1} \geq T_{2} \geq T_{3} \geq \ldots$.

Suppose that a random vector $\left(C, N, T_{1}, T_{2}, \ldots\right)$ is given, where

- $T_{k} \geq 0$,
- $N \in \mathbb{N}$,
- (wlog) $T_{1} \geq T_{2} \geq T_{3} \geq \ldots$.

We are interested in law μ satisfying

$$
X \stackrel{d}{=} \sum_{k=1}^{N} T_{k} X_{k}+C
$$

where $\left(X, X_{1}, X_{2}, \ldots\right)$ are iid with distribution μ and independent of $\left(C, N, T_{1}, T_{2}, \ldots\right)$.

Suppose that a random vector $\left(C, N, T_{1}, T_{2}, \ldots\right)$ is given, where

- $T_{k} \geq 0$,
- $N \in \mathbb{N}$,
- (wlog) $T_{1} \geq T_{2} \geq T_{3} \geq \ldots$.

We are interested in law μ satisfying

$$
X \stackrel{d}{=} \sum_{k=1}^{N} T_{k} X_{k}+C
$$

where $\left(X, X_{1}, X_{2}, \ldots\right)$ are iid with distribution μ and independent of $\left(C, N, T_{1}, T_{2}, \ldots\right)$. (For $\left.N \equiv 1, X \stackrel{d}{=} T_{1} X+C\right)$

Suppose that a random vector $\left(C, N, T_{1}, T_{2}, \ldots\right)$ is given, where

- $T_{k} \geq 0$,
- $N \in \mathbb{N}$,
- (wlog) $T_{1} \geq T_{2} \geq T_{3} \geq \ldots$.

We are interested in law μ satisfying

$$
X \stackrel{d}{=} \sum_{k=1}^{N} T_{k} X_{k}+C
$$

where $\left(X, X_{1}, X_{2}, \ldots\right)$ are iid with distribution μ and independent of $\left(C, N, T_{1}, T_{2}, \ldots\right)$. (For $\left.N \equiv 1, X \stackrel{d}{=} T_{1} X+C\right)$ Agenda:

- existence and uniqueness of μ,

Suppose that a random vector $\left(C, N, T_{1}, T_{2}, \ldots\right)$ is given, where

- $T_{k} \geq 0$,
- $N \in \mathbb{N}$,
- (wlog) $T_{1} \geq T_{2} \geq T_{3} \geq \ldots$

We are interested in law μ satisfying

$$
X \stackrel{d}{=} \sum_{k=1}^{N} T_{k} X_{k}+C
$$

where $\left(X, X_{1}, X_{2}, \ldots\right)$ are iid with distribution μ and independent of $\left(C, N, T_{1}, T_{2}, \ldots\right)$. (For $\left.N \equiv 1, X \stackrel{d}{=} T_{1} X+C\right)$ Agenda:

- existence and uniqueness of μ,
- for which $\theta, \mathbb{E}\left[e^{\theta X}\right]<\infty$?

We will treat $\mu \sim X$ satisfying

$$
X \stackrel{d}{=} \sum_{k=1}^{N} T_{k} X_{k}+C
$$

as a fixed point of a certain operator.

We will treat $\mu \sim X$ satisfying

$$
X \stackrel{d}{=} \sum_{k=1}^{N} T_{k} X_{k}+C
$$

as a fixed point of a certain operator. Let

$$
\mathbb{E}\left[\sum_{k=1}^{N} T_{k}\right]<1, \quad 0<\mathbb{E}[|C|]<\infty .
$$

We will treat $\mu \sim X$ satisfying

$$
X \stackrel{d}{=} \sum_{k=1}^{N} T_{k} X_{k}+C
$$

as a fixed point of a certain operator. Let

$$
\mathbb{E}\left[\sum_{k=1}^{N} T_{k}\right]<1, \quad 0<\mathbb{E}[|C|]<\infty .
$$

Let

$$
\mathcal{M}=\left\{\eta \in \mathcal{P}(\mathbb{R})\left|\int_{\mathbb{R}}\right| x \mid \eta(\mathrm{d} x)<\infty\right\}
$$

We will treat $\mu \sim X$ satisfying

$$
X \stackrel{d}{=} \sum_{k=1}^{N} T_{k} X_{k}+C
$$

as a fixed point of a certain operator. Let

$$
\mathbb{E}\left[\sum_{k=1}^{N} T_{k}\right]<1, \quad 0<\mathbb{E}[|C|]<\infty
$$

Let

$$
\mathcal{M}=\left\{\eta \in \mathcal{P}(\mathbb{R})\left|\int_{\mathbb{R}}\right| x \mid \eta(\mathrm{d} x)<\infty\right\}
$$

and define $\mathcal{S}: \mathcal{M} \rightarrow \mathcal{M}$ by: for $\eta \in \mathcal{M}$ take $\left(Y_{k}\right)_{k}$ iid (η) and put

$$
\mathcal{S}(\eta)=\mathcal{L}\left(\sum_{k=1}^{N} T_{k} Y_{k}+C\right)
$$

We will treat $\mu \sim X$ satisfying

$$
X \stackrel{d}{=} \sum_{k=1}^{N} T_{k} X_{k}+C
$$

as a fixed point of a certain operator. Let

$$
\mathbb{E}\left[\sum_{k=1}^{N} T_{k}\right]<1, \quad 0<\mathbb{E}[|C|]<\infty
$$

Let

$$
\mathcal{M}=\left\{\eta \in \mathcal{P}(\mathbb{R})\left|\int_{\mathbb{R}}\right| x \mid \eta(\mathrm{d} x)<\infty\right\}
$$

and define $\mathcal{S}: \mathcal{M} \rightarrow \mathcal{M}$ by: for $\eta \in \mathcal{M}$ take $\left(Y_{k}\right)_{k}$ iid (η) and put

$$
\mathcal{S}(\eta)=\mathcal{L}\left(\sum_{k=1}^{N} T_{k} Y_{k}+C\right)
$$

Then

$$
X \stackrel{d}{=} \sum_{k=1}^{N} T_{k} X_{k}+C \Leftrightarrow \mathcal{S}(\mu)=\mu .
$$

Define Wasserstein metric via

$$
\mathrm{d}(\mu, \eta)=\inf \left\{\|X-Y\|_{L^{1}} \mid X \sim \mu, Y \sim \eta\right\} .
$$

Define Wasserstein metric via

$$
\mathrm{d}(\mu, \eta)=\inf \left\{\|X-Y\|_{L^{1}} \mid X \sim \mu, Y \sim \eta\right\} .
$$

This distance can be interpreted as an optimal transportation problem.

Theorem
$(\mathcal{M}, \mathrm{d})$ is a complete and separable metric space.

Theorem
$(\mathcal{M}, \mathrm{d})$ is a complete and separable metric space. Furthermore,

$$
\mu_{n} \xrightarrow{\mathrm{~d}} \mu \Leftrightarrow \mu_{n} \xrightarrow{\mathcal{D}} \mu \text { and } \int_{\mathbb{R}}|x| \mu_{n}(\mathrm{~d} x) \rightarrow \int_{\mathbb{R}}|x| \mu(\mathrm{d} x) .
$$

Theorem
$(\mathcal{M}, \mathrm{d})$ is a complete and separable metric space. Furthermore,

$$
\mu_{n} \xrightarrow{\mathrm{~d}} \mu \Leftrightarrow \mu_{n} \xrightarrow{\mathcal{D}} \mu \text { and } \int_{\mathbb{R}}|x| \mu_{n}(\mathrm{~d} x) \rightarrow \int_{\mathbb{R}}|x| \mu(\mathrm{d} x) .
$$

Theorem (U. Rösler 1992)
Assume that

$$
\mathbb{E}\left[\sum_{k=1}^{N} T_{k}\right]<1, \quad 0<\mathbb{E}[|C|]<\infty .
$$

Then $\mathcal{S}:(\mathcal{M}, \mathrm{d}) \rightarrow(\mathcal{M}, \mathrm{d})$ is a contraction.

Theorem
$(\mathcal{M}, \mathrm{d})$ is a complete and separable metric space. Furthermore,

$$
\mu_{n} \xrightarrow{\mathrm{~d}} \mu \Leftrightarrow \mu_{n} \xrightarrow{\mathcal{D}} \mu \text { and } \int_{\mathbb{R}}|x| \mu_{n}(\mathrm{~d} x) \rightarrow \int_{\mathbb{R}}|x| \mu(\mathrm{d} x) .
$$

Theorem (U. Rösler 1992)
Assume that

$$
\mathbb{E}\left[\sum_{k=1}^{N} T_{k}\right]<1, \quad 0<\mathbb{E}[|C|]<\infty .
$$

Then $\mathcal{S}:(\mathcal{M}, \mathrm{d}) \rightarrow(\mathcal{M}, \mathrm{d})$ is a contraction.
Corollary
Assume ($\mathbf{~}$), then there exists a unique solution (in \mathcal{M}) of

$$
X \stackrel{d}{=} \sum_{k=1}^{N} T_{k} X_{k}+C .
$$

Furthermore, for any $\eta \in \mathcal{M}$ we have $\mathcal{S}^{n}(\eta) \xrightarrow{\mathrm{d}} \mu$ as $n \rightarrow \infty$.

The stochastic fixed point equation (SFPE)

$$
X \stackrel{d}{=} \sum_{k=1}^{N} T_{k} X_{k}+C
$$

The stochastic fixed point equation (SFPE)

$$
X \stackrel{d}{=} \sum_{k=1}^{N} T_{k} X_{k}+C
$$

in terms of the $\mathrm{mgf} \Psi(\theta)=\mathbb{E}[\exp \{\theta X\}]$

The stochastic fixed point equation (SFPE)

$$
X \stackrel{d}{=} \sum_{k=1}^{N} T_{k} X_{k}+C
$$

in terms of the $\operatorname{mgf} \Psi(\theta)=\mathbb{E}[\exp \{\theta X\}]$ with the domain

$$
\mathbb{D}_{\Psi}:=\{\theta \in \mathbb{R} \mid \Psi(\theta)<\infty\}
$$

The stochastic fixed point equation (SFPE)

$$
X \stackrel{d}{=} \sum_{k=1}^{N} T_{k} X_{k}+C
$$

in terms of the $\mathrm{mgf} \Psi(\theta)=\mathbb{E}[\exp \{\theta X\}]$ with the domain

$$
\mathbb{D}_{\Psi}:=\{\theta \in \mathbb{R} \mid \Psi(\theta)<\infty\}
$$

reads

$$
\Psi(\theta)=\mathbb{E}\left[e^{\theta C} \prod_{k=1}^{N} \Psi\left(T_{k} \theta\right)\right] \quad \text { for } \theta \in \mathbb{D}_{\Psi} .
$$

Theorem (G. Alsmeyer, P. D.)
Suppose that $\mathbb{E}\left[\sum_{k=1}^{N} T_{k}\right]<1,0<\mathbb{E}[|C|]<\infty$ and $\|N\|_{\infty}<\infty$.

Theorem (G. Alsmeyer, P. D.)
Suppose that $\mathbb{E}\left[\sum_{k=1}^{N} T_{k}\right]<1,0<\mathbb{E}[|C|]<\infty$ and $\|N\|_{\infty}<\infty$. Then

$$
\mathbb{E}[\exp \{\theta X\}]<\infty \quad \text { for some } \theta \neq 0
$$

Theorem (G. Alsmeyer, P. D.)
Suppose that $\mathbb{E}\left[\sum_{k=1}^{N} T_{k}\right]<1,0<\mathbb{E}[|C|]<\infty$ and $\|N\|_{\infty}<\infty$. Then

$$
\mathbb{E}[\exp \{\theta X\}]<\infty \quad \text { for some } \theta \neq 0
$$

iff one of the following three cases is true:

Theorem (G. Alsmeyer, P. D.)
Suppose that $\mathbb{E}\left[\sum_{k=1}^{N} T_{k}\right]<1,0<\mathbb{E}[|C|]<\infty$ and $\|N\|_{\infty}<\infty$. Then

$$
\mathbb{E}[\exp \{\theta X\}]<\infty \quad \text { for some } \theta \neq 0
$$

iff one of the following three cases is true:
(a) $\mathbb{P}\left[T_{1}=\max _{1 \leq k \leq N} T_{k} \leq 1\right]=1$,
$\mathbb{E}[\exp \{s C\}]<\infty$ for some $s \neq 0$;

Theorem (G. Alsmeyer, P. D.)
Suppose that $\mathbb{E}\left[\sum_{k=1}^{N} T_{k}\right]<1,0<\mathbb{E}[|C|]<\infty$ and $\|N\|_{\infty}<\infty$. Then

$$
\mathbb{E}[\exp \{\theta X\}]<\infty \quad \text { for some } \theta \neq 0
$$

iff one of the following three cases is true:
(a) $\mathbb{P}\left[T_{1}=\max _{1 \leq k \leq N} T_{k} \leq 1\right]=1$,
$\mathbb{E}[\exp \{s C\}]<\infty$ for some $s \neq 0$;
(b) $\mathbb{P}\left[T_{1}=\max _{1 \leq k \leq N} T_{k}>1\right]>0$, $\mathbb{P}\left[\sum_{k=1}^{N} T_{k} w^{*}+C \leq w^{*}\right]=1 \quad$ some $w^{*} \geq 0$,

Theorem (G. Alsmeyer, P. D.)
Suppose that $\mathbb{E}\left[\sum_{k=1}^{N} T_{k}\right]<1,0<\mathbb{E}[|C|]<\infty$ and $\|N\|_{\infty}<\infty$. Then

$$
\mathbb{E}[\exp \{\theta X\}]<\infty \quad \text { for some } \theta \neq 0
$$

iff one of the following three cases is true:
(a) $\mathbb{P}\left[T_{1}=\max _{1 \leq k \leq N} T_{k} \leq 1\right]=1$,
$\mathbb{E}[\exp \{s C\}]<\infty$ for some $s \neq 0$;
(b) $\mathbb{P}\left[T_{1}=\max _{1 \leq k \leq N} T_{k}>1\right]>0$,
$\mathbb{P}\left[\sum_{k=1}^{N} T_{k} w^{*}+C \leq w^{*}\right]=1 \quad$ some $w^{*} \geq 0$,
$\mathbb{D}_{\Psi}=[0,+\infty) ;$

Theorem (G. Alsmeyer, P. D.)
Suppose that $\mathbb{E}\left[\sum_{k=1}^{N} T_{k}\right]<1,0<\mathbb{E}[|C|]<\infty$ and $\|N\|_{\infty}<\infty$. Then

$$
\mathbb{E}[\exp \{\theta X\}]<\infty \quad \text { for some } \theta \neq 0
$$

iff one of the following three cases is true:
(a) $\mathbb{P}\left[T_{1}=\max _{1 \leq k \leq N} T_{k} \leq 1\right]=1$,
$\mathbb{E}[\exp \{s C\}]<\infty$ for some $s \neq 0$;
(b) $\mathbb{P}\left[T_{1}=\max _{1 \leq k \leq N} T_{k}>1\right]>0$,
$\mathbb{P}\left[\sum_{k=1}^{N} T_{k} w^{*}+C \leq w^{*}\right]=1 \quad$ some $w^{*} \geq 0$,
$\mathbb{D}_{\Psi}=[0,+\infty) ;$
(c) $\mathbb{P}\left[T_{1}=\max _{1 \leq k \leq N} T_{k}>1\right]>0$,
$\mathbb{P}\left[\sum_{k=1}^{N} T_{k} w_{*}+C \geq w_{*}\right]=1 \quad$ some $w_{*} \leq 0$

Theorem (G. Alsmeyer, P. D.)
Suppose that $\mathbb{E}\left[\sum_{k=1}^{N} T_{k}\right]<1,0<\mathbb{E}[|C|]<\infty$ and $\|N\|_{\infty}<\infty$. Then

$$
\mathbb{E}[\exp \{\theta X\}]<\infty \quad \text { for some } \theta \neq 0
$$

iff one of the following three cases is true:
(a) $\mathbb{P}\left[T_{1}=\max _{1 \leq k \leq N} T_{k} \leq 1\right]=1$,
$\mathbb{E}[\exp \{s C\}]<\infty$ for some $s \neq 0$;
(b) $\mathbb{P}\left[T_{1}=\max _{1 \leq k \leq N} T_{k}>1\right]>0$,
$\mathbb{P}\left[\sum_{k=1}^{N} T_{k} w^{*}+C \leq w^{*}\right]=1$ some $w^{*} \geq 0$,
$\mathbb{D}_{\Psi}=[0,+\infty) ;$
(c) $\mathbb{P}\left[T_{1}=\max _{1 \leq k \leq N} T_{k}>1\right]>0$,
$\mathbb{P}\left[\sum_{k=1}^{N} T_{k} w_{*}+C \geq w_{*}\right]=1 \quad$ some $w_{*} \leq 0$
$\mathbb{D}_{\Psi}=(-\infty, 0] ;$

Theorem (G. Alsmeyer, P. D.)
Suppose that $\mathbb{E}\left[\sum_{k=1}^{N} T_{k}\right]<1,0<\mathbb{E}[|C|]<\infty$ and $\|N\|_{\infty}<\infty$. Then

$$
\mathbb{E}[\exp \{\theta X\}]<\infty \quad \text { for some } \theta \neq 0
$$

iff one of the following three cases is true:
(a) $\mathbb{P}\left[T_{1}=\max _{1 \leq k \leq N} T_{k} \leq 1\right]=1$,
$\mathbb{E}[\exp \{s C\}]<\infty$ for some $s \neq 0$;
$\mathbb{D}_{\Psi}=$???
(b) $\mathbb{P}\left[T_{1}=\max _{1 \leq k \leq N} T_{k}>1\right]>0$,
$\mathbb{P}\left[\sum_{k=1}^{N} T_{k} w^{*}+C \leq w^{*}\right]=1 \quad$ some $w^{*} \geq 0$,
$\mathbb{D}_{\Psi}=[0,+\infty) ;$
(c) $\mathbb{P}\left[T_{1}=\max _{1 \leq k \leq N} T_{k}>1\right]>0$,
$\mathbb{P}\left[\sum_{k=1}^{N} T_{k} w_{*}+C \geq w_{*}\right]=1 \quad$ some $w_{*} \leq 0$
$\mathbb{D}_{\Psi}=(-\infty, 0] ;$

Proposition

Assume $\|N\|_{\infty}<\infty$ and

$$
\mathbb{E}\left[\sum_{k=1}^{N} T_{k}\right]<1, \quad 0<\mathbb{E}[|C|]<\infty, \quad T_{1}=\max _{1 \leq k \leq N} T_{k} \leq 1 .
$$

Proposition

Assume $\|N\|_{\infty}<\infty$ and

$$
\mathbb{E}\left[\sum_{k=1}^{N} T_{k}\right]<1, \quad 0<\mathbb{E}[|C|]<\infty, \quad T_{1}=\max _{1 \leq k \leq N} T_{k} \leq 1
$$

Let $\Theta>0$ then $\Theta \in \mathbb{D}_{\Psi}$ if, and only if $\exists \Phi:[0, \Theta] \rightarrow(0,+\infty)$, $\Phi(0)=1, \Phi(\theta)>\delta>0$, differentiable at 0 such that

$$
\mathbb{E}\left[\exp \{\theta C\} \prod_{k=1}^{N} \Phi\left(T_{k} \theta\right)\right] \leq \Phi(\theta) \quad \text { for } \theta \in[0, \Theta]
$$

Proposition

Assume $\|N\|_{\infty}<\infty$ and

$$
\mathbb{E}\left[\sum_{k=1}^{N} T_{k}\right]<1, \quad 0<\mathbb{E}[|C|]<\infty, \quad T_{1}=\max _{1 \leq k \leq N} T_{k} \leq 1
$$

Let $\Theta>0$ then $\Theta \in \mathbb{D}_{\Psi}$ if, and only if $\exists \Phi:[0, \Theta] \rightarrow(0,+\infty)$, $\Phi(0)=1, \Phi(\theta)>\delta>0$, differentiable at 0 such that

$$
\mathbb{E}\left[\exp \{\theta C\} \prod_{k=1}^{N} \Phi\left(T_{k} \theta\right)\right] \leq \Phi(\theta) \quad \text { for } \theta \in[0, \Theta]
$$

Proof.

There exists c such that

$$
\mathbb{E}\left[\exp \left\{\theta Z_{0}\right\}\right]=\exp \{c \theta\} \leq \Phi(\theta) \quad \text { for } \theta \in[0, \Theta]
$$

Consider $Z_{n} \stackrel{d}{=} \mathcal{S}^{n}\left(\delta_{C}\right)$.

Proof continued.
$Z_{n} \stackrel{d}{=} \mathcal{S}\left(Z_{n-1}\right)$ with $Z_{0}=c$.

Proof continued.

$Z_{n} \stackrel{d}{=} \mathcal{S}\left(Z_{n-1}\right)$ with $Z_{0}=c$. Let $\Psi_{n}(\theta)=\mathbb{E}\left[\exp \left\{\theta Z_{n}\right\}\right]$ and thus, by induction we obtain for any $n \in \mathbb{N}$

$$
\begin{aligned}
\Psi_{n}(\theta)=\mathbb{E} & {\left[\exp \{\theta C\} \prod_{k=1}^{N} \Psi_{n-1}\left(T_{k} \theta\right)\right] } \\
& \leq \mathbb{E}\left[\exp \{\theta C\} \prod_{k=1}^{N} \Phi\left(T_{k} \theta\right)\right] \leq \Phi(\theta) \quad \text { for } \theta \in[0, \Theta]
\end{aligned}
$$

Proof continued.

$Z_{n} \stackrel{d}{=} \mathcal{S}\left(Z_{n-1}\right)$ with $Z_{0}=c$. Let $\Psi_{n}(\theta)=\mathbb{E}\left[\exp \left\{\theta Z_{n}\right\}\right]$ and thus, by induction we obtain for any $n \in \mathbb{N}$

$$
\begin{aligned}
\Psi_{n}(\theta)=\mathbb{E} & {\left[\exp \{\theta C\} \prod_{k=1}^{N} \Psi_{n-1}\left(T_{k} \theta\right)\right] } \\
& \leq \mathbb{E}\left[\exp \{\theta C\} \prod_{k=1}^{N} \Phi\left(T_{k} \theta\right)\right] \leq \Phi(\theta) \quad \text { for } \theta \in[0, \Theta]
\end{aligned}
$$

and so

$$
\Psi(\theta)=\lim _{n \rightarrow \infty} \Psi_{n}(\theta) \leq \Phi(\theta) \quad \text { for } \theta \in[0, \Theta] .
$$

Proof continued.

$Z_{n} \stackrel{d}{=} \mathcal{S}\left(Z_{n-1}\right)$ with $Z_{0}=c$. Let $\Psi_{n}(\theta)=\mathbb{E}\left[\exp \left\{\theta Z_{n}\right\}\right]$ and thus, by induction we obtain for any $n \in \mathbb{N}$

$$
\begin{aligned}
\Psi_{n}(\theta)=\mathbb{E} & {\left[\exp \{\theta C\} \prod_{k=1}^{N} \Psi_{n-1}\left(T_{k} \theta\right)\right] } \\
& \leq \mathbb{E}\left[\exp \{\theta C\} \prod_{k=1}^{N} \Phi\left(T_{k} \theta\right)\right] \leq \Phi(\theta) \quad \text { for } \theta \in[0, \Theta]
\end{aligned}
$$

and so

$$
\Psi(\theta)=\lim _{n \rightarrow \infty} \Psi_{n}(\theta) \leq \Phi(\theta) \quad \text { for } \theta \in[0, \Theta] .
$$

On the other hand if $\Theta \in \mathbb{D}_{\Psi}$ then $\Phi(\theta)=\Psi(\theta)$ satisfies

$$
\mathbb{E}\left[\exp \{\theta C\} \prod_{k=1}^{N} \Phi\left(T_{k} \theta\right)\right]=\Phi(\theta) \quad \text { for } \theta \in[0, \Theta] .
$$

Theorem (G. Alsmeyer, P. D.)
As always, assume $\|N\|_{\infty}<\infty$,

$$
\mathbb{E}\left[\sum_{k=1}^{N} T_{k}\right]<1, \quad 0<\mathbb{E}[|C|]<\infty, \quad T_{1}=\max _{1 \leq k \leq N} T_{k} \leq 1
$$

Theorem (G. Alsmeyer, P. D.)
As always, assume $\|N\|_{\infty}<\infty$,

$$
\mathbb{E}\left[\sum_{k=1}^{N} T_{k}\right]<1, \quad 0<\mathbb{E}[|C|]<\infty, \quad T_{1}=\max _{1 \leq k \leq N} T_{k} \leq 1
$$

Suppose also that for some $\delta>0$

$$
T_{2} \leq 1-\delta \quad \text { a.s. }
$$

$$
\text { and } \mathbb{P}\left[T_{1}=1, N \geq 2\right]=0
$$

Theorem (G. Alsmeyer, P. D.)
As always, assume $\|N\|_{\infty}<\infty$,

$$
\mathbb{E}\left[\sum_{k=1}^{N} T_{k}\right]<1, \quad 0<\mathbb{E}[|C|]<\infty, \quad T_{1}=\max _{1 \leq k \leq N} T_{k} \leq 1 .
$$

Suppose also that for some $\delta>0$

$$
T_{2} \leq 1-\delta \quad \text { a.s. }
$$

and $\mathbb{P}\left[T_{1}=1, N \geq 2\right]=0$. Then for $X \stackrel{d}{=} \sum_{k=1}^{N} T_{k} X_{k}+C$ and all $\theta \in \mathbb{R}$,

$$
\mathbb{E}\left[e^{\theta X}\right]<\infty \Leftrightarrow \mathbb{E}\left[e^{\theta C}\right]<\infty, \quad \mathbb{E}\left[e^{\theta C_{1}} \mathbb{1}_{\left\{\max _{k} T_{k}=1\right\}}\right]<1
$$

Theorem (G. Alsmeyer, P. D.)
As always, assume $\|N\|_{\infty}<\infty$,

$$
\mathbb{E}\left[\sum_{k=1}^{N} T_{k}\right]<1, \quad 0<\mathbb{E}[|C|]<\infty, \quad T_{1}=\max _{1 \leq k \leq N} T_{k} \leq 1
$$

Suppose also that for some $\delta>0$

$$
T_{2} \leq 1-\delta \quad \text { a.s. }
$$

and $\mathbb{P}\left[T_{1}=1, N \geq 2\right]=0$. Then for $X \stackrel{d}{=} \sum_{k=1}^{N} T_{k} X_{k}+C$ and all $\theta \in \mathbb{R}$,

$$
\mathbb{E}\left[e^{\theta X}\right]<\infty \Leftrightarrow \mathbb{E}\left[e^{\theta C}\right]<\infty, \quad \mathbb{E}\left[e^{\theta C_{1}} \mathbb{1}_{\left\{\max _{k} T_{k}=1\right\}}\right]<1
$$

Rough idea.
For Φ increasing sufficiently fast
$\left.\left.\mathbb{E}\left[\exp \{\theta C\} \Phi\left(T_{1} \theta\right) \prod_{k=2}^{N} \Phi\left(T_{k} \theta\right)\right] \approx \mathbb{E}\left[e^{\theta C_{1}} \max _{k} T_{k}=1\right\}\right]\right] \Phi(\theta) \leq \Phi(\theta)$.

Example

Suppose $A \stackrel{d}{=} B(\alpha, 1)$, and let $N=n \geq 1$ such that $\alpha<\frac{2}{n-1}$, $T_{1}=T_{2}=\ldots=T_{n}=A$ and take C independent of A with $\mathbb{E}[C]=0$ and $\varphi(\theta)=\mathbb{E}[\exp \{\theta C\}]$.

Example

Suppose $A \stackrel{d}{=} B(\alpha, 1)$, and let $N=n \geq 1$ such that $\alpha<\frac{2}{n-1}$, $T_{1}=T_{2}=\ldots=T_{n}=A$ and take C independent of A with $\mathbb{E}[C]=0$ and $\varphi(\theta)=\mathbb{E}[\exp \{\theta C\}]$. The SFPE reads

$$
\Psi(\theta)=\varphi(\theta) \int_{0}^{1} \Psi(t \theta)^{n} \alpha t^{\alpha-1} \mathrm{~d} t
$$

Example

Suppose $A \stackrel{d}{=} B(\alpha, 1)$, and let $N=n \geq 1$ such that $\alpha<\frac{2}{n-1}$, $T_{1}=T_{2}=\ldots=T_{n}=A$ and take C independent of A with $\mathbb{E}[C]=0$ and $\varphi(\theta)=\mathbb{E}[\exp \{\theta C\}]$. The SFPE reads

$$
\Psi(\theta)=\varphi(\theta) \int_{0}^{1} \Psi(t \theta)^{n} \alpha t^{\alpha-1} \mathrm{~d} t
$$

By computing the derivative $\frac{\mathrm{d}}{\mathrm{d} \theta}$ one gets

$$
\Psi^{\prime}(\theta)=\frac{\alpha \varphi(\theta)}{\theta} \Psi(\theta)^{n}+\left(\frac{\varphi^{\prime}(\theta)}{\varphi(\theta)}-\frac{\alpha}{\theta}\right) \Psi(\theta)
$$

Example

Suppose $A \stackrel{d}{=} B(\alpha, 1)$, and let $N=n \geq 1$ such that $\alpha<\frac{2}{n-1}$, $T_{1}=T_{2}=\ldots=T_{n}=A$ and take C independent of A with $\mathbb{E}[C]=0$ and $\varphi(\theta)=\mathbb{E}[\exp \{\theta C\}]$. The SFPE reads

$$
\Psi(\theta)=\varphi(\theta) \int_{0}^{1} \Psi(t \theta)^{n} \alpha t^{\alpha-1} \mathrm{~d} t
$$

By computing the derivative $\frac{\mathrm{d}}{\mathrm{d} \theta}$ one gets

$$
\Psi^{\prime}(\theta)=\frac{\alpha \varphi(\theta)}{\theta} \Psi(\theta)^{n}+\left(\frac{\varphi^{\prime}(\theta)}{\varphi(\theta)}-\frac{\alpha}{\theta}\right) \Psi(\theta)
$$

and so

$$
\Psi^{n-1}(\theta)=\frac{\varphi(\theta)^{n-1}}{1-\int_{0}^{\theta}\left(\varphi(s)^{n}-1\right)\left(\frac{\theta}{s}\right)^{\alpha(n-1)+1} \alpha(n-1) s^{-1} \mathrm{~d} s}
$$

