
Generalized Indiscernibility Relations:
Applications for Missing Values and Analysis of

Structural Objects

Wojciech Jaworski

Faculty of Mathematics, Computer Science and Mechanics
Warsaw University, Banacha 2, 02-07 Warsaw, Poland

wjaworski@mimuw.edu.pl

Abstract. In this paper, we discuss an approach to structural objects
based on a generalisation of indiscernibility relation used in rough set the-
ory. The existing results in rough set theory are based on the assumption
that objects are perceived by attribute value vectors.

We propose the new point of view on rough set theory. We replace
information systems with the knowledge representation models that in-
corporate information relative to the structure of objects. We redefine the
indiscernibility relation as a relation on objects characterised by some ax-
ioms. Such a definition can be naturally applied for information systems
with missing values and multivalued attributes. We extend the approach
on structural objects. We introduce the meaning representation language
for expressing properties of structural objects and we show how to select
relevant formulae from this language for sequential data.

Keywords: Indiscernibility relation, rough sets, knowledge representa-
tion, sequential data, missing values, multivalued attributes, structural
objects, model of reality, data analysis, information system.

1 Introduction

Rough set theory [28,29] is based on the analysis of information systems con-
sisting of sets of objects characterised by attribute value vectors. This data
representation found successful application in many fields [30,31,32]. However,
such information systems have some drawbacks when we deal with multivalued
attributes or attributes with missing values. Moreover, the representation by
means of vector of feature values should be treated as a consequence of a more
primitive representation of structural objects. This representation is next used
for computing the values of relevant attributes.

For the above reasons, we postulate a new approach to knowledge representa-
tion. We model the reality and our domain knowledge using an approach based
on logic, in particular on model theory [22]. We describe our knowledge by a
set of axioms written in a formal language. Such an approach solves semantic
ambiguities which are present, for example, in information systems with miss-
ing values: the missing value of an attribute may be interpreted as originally

J.F. Peters and A. Skowron (Eds.): Transactions on Rough Sets VIII, LNCS 5084, pp. 116–145, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Generalized Indiscernibility Relations: Applications for Missing Values 117

specified for a given object, yet unknown under the present knowledge or the
attribute may be not applicable for a certain case or the attribute may have any
value from its domain for this object. In order to solve these ambiguities, an
additional domain knowledge, not represented in a given information system, is
needed.

We define rough set concepts such as indiscernibility, definability and set
approximations in terms of axioms. We prove that, in thecase of complete in-
formation systems, the proposed approach is equivalent to the approach used
so far in rough set theory [28,29]. Then we compare our idea with extensions of
rough set theory for information systems with missing values and multivalued
attributes presented in [8,9,14,15,16,17,18,19,20,4,27].

Finally, we extend the rough set approach on structural objects. We introduce
the meaning representation language for expressing properties of structural ob-
jects represented by data. Our language provides description of features of data
irreducible relative to the attribute value vectors. The idea of knowledge rep-
resentation by means of formal language was thoroughly studied in Artificial
Intelligence [36].

Structural objects are often represented by means of the sequential data gen-
erated as the result of purposeful actions, for example, textual documents, voice
signals or recorded parameters of cars on road. Unfortunately, the sequential
representation of structural objects is computationally opaque — the structure
is hidden in the sequence and the fair deal of knowledge is needed to extract it
[3,34].

We show how to extract object descriptions from the sequential data using
a relevant rule system (grammar of regular language) equipped with seman-
tic attachments. Our approach is motivated by Structural Pattern Recognition
[5,24,26], Natural Language Processing [12] and Information Extraction [21] as
well as by Knuth’s Attributed Grammars [13]. We already studied this feature
extraction task in [11].

Structural objects are composed out of subobjects connected by relational
constraints. These relations together with properties of objects create an ontol-
ogy [2,7]. The ontology defining the structure of objects, is acquired from an
expert. It helps to select the object properties relevant for the further applica-
tions. The ontology is representing hints showing how to translate data into the
meaning representation language formula and how to identify objects.

The novelty of our approach is that it makes possible the generalisation of the
definition of indiscernibility, making it independent from the existence of missing
values, multivalued attributes and other characteristics of data. This definition
is driven by semantics and it depends on the meaning of features. This allows
us to merge indiscernibility with domain knowledge, introduce structure on the
attribute values, express the fact that one value may be a specific case of another
and deal with the problem that one object may have many different descriptions.

The indiscernibility classes are defined on the basis of the structure of ob-
jects. They provide us patterns that approximate high level concepts relevant

118 W. Jaworski

for classification and knowledge discovery. These patterns are expressed by log-
ical formulae.

Missing values and multivalued attributes are examples of ambiguity in data.
These are simple cases illustrating ambiguity arising during the sequential data
processing. Due to the ambiguity we obtain various contradicting interpreta-
tions of data. Each of them represents a possible model of reality. We may not
determine which of these interpretations is correct without acquiring further
information such as a domain knowledge or more data.

This paper is structured as follows. In Section 2, we define our knowledge
representation model. In Section 3, we present the application of our knowledge
representation model to the information systems. In Section 4, we show how to
represent structural objects as the meaning representation language formulae.
In Section 5, we describe the transformation of sequential data into the meaning
representation language formulae. In Section 6, we define the set approximations.
In Section 7, we conclude our paper presenting applications and extensions of
our ideas.

2 Knowledge Representation

The goal of data analysis is to discover information about reality from a given
data. However, the data itself can also be treated as a kind of information. In
this section we present the knowledge representation model and we consider the
problem of a relationship between this representation and the reality.

The latter question is known in the philosophy of language as the reference
problem. Some ideas presented below corresponds to picture theory of language
developed by Wittgenstein in [37].

Overview of various theories of reference in the computer science context is
presented in [10] and an example of the basic data model for rough set theory
is reported in [6].

2.1 Reality Perceived by Sensors

We do not possess the direct insight into the nature of reality. We perceive it
by means of sensors. Sensors generate structural data on the basis of reality,
by extracting objects and relations among them. Sensors recognise properties
of objects as well as relations between them. As examples of sensors, one can
consider a thermometer, a camera as well as an expert. Generally, every analysis
of the reality that results in structural data may be understood as obtained by
means of sensor measurements.

We represent sensor measurements by means of relational structures developed
using model theory [23]. In model theory structures are composed out of a set of
individuals, and some relations among them. The set of all individuals is called as
the universe of the structure. We also refer to the individuals as objects or entities.

Individuals and relations from a relational structure are represented by sym-
bols. The set of such symbols is called a signature. The interpretation is a func-
tion that maps symbols from a given signature to individuals and relations. The

Generalized Indiscernibility Relations: Applications for Missing Values 119

interpretation assigns objects or relations to names. It assures that the object
or relation represent the aspect of sensor activity stated by its name. For exam-
ple, the symbol red is interpreted as an object that represents the red colour.
The signature is a lexicon for every syntactic construct (i.e. language formula,
information system, image) by means of which we describe sensor measurements.

Let the structure P be a model of the reality observed by our sensors 1. We
assume that P is a relational structure of signature ΣP and with the universe P .
ΣP consists of symbols of constants u1, u2, . . . and relational symbols a1, a2,
In symbols, P can be described by:

P = 〈P, uP
1 , uP

2 , . . . , aP
1 , aP

2 , . . . 〉,

where P includes objects as well as attribute values for objects uP
1 , uP

2 , . . . , and
aP
1 , aP

2 , . . . are interpretations of the symbols from ΣP . Constants are mapped
to individuals and relational symbols to relations.

Let us consider the following example: Our goal is to describe persons. Our
sensors recognise person properties such as name, age, colour of hair, number
of hairs, known languages. A person may be a parent for another person and
the colour of hair of some person may be similar to the colour of hair
of another person.

In our example of a world, we are given 10 persons: p1, p2, . . . , p10. We know
the names: Alice, Bob, Charlie, David. The age may be young or old. The
possible colours of hair are blond, brown, black or non specified directly
h1, h2, h3. The number of hairs varies from none, little, many. The known
languages are Pascal, Ocaml and Cobol.

We denote our example world as P1. The signature ΣP1 consists of

– constants p1, p2, . . . , p10, Alice, Bob, Charlie, David, young, old, blond,
brown, black, h1, h2, h3, none, little, many, Pascal, Ocaml, Cobol,

– unary relations is a person, is a hair colour that define categories of
objects

– binary relations name, age, colour of hair, number of hairs,
known languages, parent that define person attributes .

– binary relation similar that define the similarity between colours of hair.

The structure P1 is defined as follows:

P1 = 〈P1, p
P1
1 , pP1

2 , . . . , pP1
10 , AliceP1 , BobP1 , CharlieP1 , DavidP1 ,

youngP1 , oldP1 , blondP1 , brownP1 , blackP1 , hP1
1 , hP1

2 , hP1
3

noneP1 , littleP1 , manyP1 , PascalP1 , OcamlP1 , CobolP1 ,

is a personP1 , is a hair colourP1 ,

nameP1 , ageP1 , colour of hairP1 , number of hairsP1 ,

known languagesP1 , parentP1 , similarP1〉.
1 We mean the model in a sense of mathematical modelling, and the structure in a

sense of model theory.

120 W. Jaworski

There is no clear distinction between individuals and values of individual
attributes. Therefore, we consider interpretation of every constant as an object.
For example, property values like names of colours are objects. In our example,
the hair colours are values of the attribute colour of hair and individuals on
whose the relation similar is defined.

Objects may be abstract entities. The constant Alice refers to the abstract
entity which is a name, while each pi points to a certain person.

Let us consider the digital camera as an another example. We may define pho-
tos, data produced by this sensor, as a structure whose universe is composed out
of pixels, colours and objects that represent the picture itself. We introduce bi-
nary relations horizontal neighbours and vertical neighbours that defines
the topology of pixels and the 3-argument relation colour of pixel whose ar-
guments are a picture, pixel and colour. The latter relation provide us an access
to the picture contents.

Assume that we would like to recognise people on photos. We add new sensor
which provides data structuralised by concepts such as man, face, eye, hand.
The problem of people recognition is equivalent to the problem of describing one
sensor concept in terms of some other concepts.

We consider objects in the universe as atomic entities. We describe their struc-
ture by means of relations yet we do not asume that objects are explicitely rep-
resented by vectors of feature values. There are two reasons for such a decision.
First, in order to define structure of a given object one must possess its unam-
biguous decomposition into essential components. And the problem is whether
such essential components exist. The second reason is that that such a structure
is accessible only on the metalanguage level and therefore is useless. Instead of
this, we represent the internal structure of objects by means of relations between
them, for examle the meronymy relation.

Objects perceived by sensors need not necessarily be the real things. Objects
may be epiphenomena, created by sensors (for example by human perception),
nevertheless we need them in order to operate on reality. While modelling the
reality we do not recognise existing objects. We define them.

2.2 Semantics of Knowledge

Knowledge, or information, provides us an insight into P , the model of the reality
observed by sensors. Information about P is represented by means of symbols
connected by syntactic rules. Languages, information systems, images, tables,
time series etc. are examples of such representations.

Besides the symbolic representation we do not possess any insight into P and
this representation describes the results of sensor measurements in an incomplete
and ambiguous way. It includes information only for a part of interesting us
sensors and objects. For a given information there exists lots of different models
consistent with this information.

We introduce semantics for all symbolic representations. This semantics al-
lows us to define the symbolic representations in the formal way and translate
information between such representations.

Generalized Indiscernibility Relations: Applications for Missing Values 121

Definition 1. We describe semantics of symbolic representation by the class of
structures, which we name as the class possible worlds and denote as P. Every
Q ∈ P is a model of possible reality, i.e., the world that does not contradict our
knowledge. Each Q ∈ P posses signature ΣQ and interpretation IQ.

The class of structures P defines knowledge independently from the syntactic
medium. Every Q ∈ P describes sensor measurements in a precise way (Q de-
scribes also the possible reality with the precision relative to the sensor pre-
cision). Imprecise description provided by the symbolic representation is inter-
preted as a collection of precise descriptions. Possible worlds consists of all the
possible extensions of the set of given sensor measurements without any estima-
tion or inductive reasoning over unknown measurements. Even as the multicipity
of possible worlds refer to the incompleteness of knowledge, the P ∈ P statement
defines its correctness: the knowledge is correct if the real world belongs to the
class of possible ones.

For each Q ∈ P its signature ΣQ is a set of atomic symbols available for
symbolic representation. Signature differs across the possible worlds since some
symbols may be unknown to us or we may assume existence of something that
in fact does not really exist.

The interpretation is a link between sensormeasurements and symbols.Apart of
symbols refers to the sensor construction. Interpretations of these symbols should
be correlated among the possible worlds. In the digital camera example constants
that represent pixels and colours as well as relations horizontal neighbours and
vertical neighbours should be identical in all possible worlds.

In order to formalise the above we introduce primitives.

Definition 2. Primitives are symbols such that

– For each primitive symbol σ
σ ∈ ΣP .

– For each constant primitive symbol σ and for each Q ∈ P if σ ∈ ΣQ then

IP(σ) = IQ(σ).

– For each n-ary relational primitive symbol σ and for each Q ∈ P if σ ∈ ΣQ
then

∀u1,...,un∈P∩Q IP (σ)(u1, . . . , un) = IQ(σ)(u1, . . . , un).

In other words, each primitive has the same interpretation for all real objects
in every possible world. The primitives for unreal objects may be defined in
an arbitrary way. We require from the interpretations of all possible worlds to
preserve the constraints defined by primitives.

Primitives connect names with specific objects. They allow us state that ob-
jects have diverse properties, belong to distinct sorts. We provide the meaningful
names for primitives in order to represent their metalanguage definitions.

In our example the constants Alice, Bob, Charlie, David, young, old, blond,
brown, black, none, little, many, Pascal, Ocaml, Cobol and the categories of
objects is a person, is a hair colour are primitives

122 W. Jaworski

2.3 Language

Signature symbols denote basic concepts given by sensors. Complex concepts
are defined out of basic ones by means of language. The language is a set of
syntactic rules for connecting signature symbols. Each syntactic rule generate a
language formula. For each rule there is provided a method of calculation the
interpretation of the formula generated by the rule .

Definition 3. Let A be a set of language formulae without free variables. We
say that A is valid in the structure Q iff for each formula a ∈ A, truth is an
interpretation of a in the structure Q. We denote the above as

Q |= A.

We use language for the knowledge representation. In terms of language we define
sensor properties.

We create constraints for symbols whose interpretation depend on the nature
of the sensor. The requirement of category for the relation argument is defined
by the formula that states that if a relation is true for a certain objects as its
arguments, then these objects must belong to a certain category. The category
itself is determined by a primitive relation. For example

∀x,y similar(x, y) =⇒ is a hair colour(x) ∧ is a hair colour(y)

and
∀x,y name(x, y) =⇒ is a person(x) ∧

∧ (y = Alice∨ y = Bob ∨ y = Charlie∨ y = David).

In the same way we may state that for each object the attribute has exactly one
value. For example

∀x∃!y name(x, y).

We provide the meaningful names for symbols whose interpretation is restricted
by the properties of sensors

Such an approach assures us that the given symbol represents corresponding
relations in all possible worlds. For example, the relation denoted by symbol
colour of hair may vary in different possible worlds, yet it is desired for it to
point in each world to the colour of hair.

The second use of language is to define values of sensor measurements.
We define the class P(A) of possible realities by a set of language formulae A,

which we call axioms:
P(A) = {Q : Q |= A}.

Definition 4. We say that the set of language formula ϕ is a semantic conse-
quence of axioms A iff for each structure Q, such that Q |= A,

Q |= ϕ.

We denote the above as
A |= ϕ.

Generalized Indiscernibility Relations: Applications for Missing Values 123

Table 1. Notation

Symbol Interpretation
P a structure that is a real world
ΣP the signature of P
P the universe of P
IP the interpretation of P
Q an arbitrary structure
ΣQ the signature of Q
Q the universe of Q
IQ the interpretation of Q
P the class of possible worlds
Q ∈ P a possible world
A the set of axioms
|= the relation of semantic consequence
Q |= A the axioms A are satisfied in the structure Q
A |= ϕ the formula ϕ is the semantic consequence of axioms A

U the universe of information system
A the set of attributes of information system
m(u, a) the set of values of the attribute a for the object u in the information system.
AX lower approximation of X
AX upper approximation of X

The knowledge is provided in three ways: Primitives defined in metalanguage
assure the connection between symbols and elements of sensor measurements.
Axioms expressed as language formulae describe the properties of sensors. Lan-
guage is used also to formulate axioms that define values of sensor measurements.

The Table 1 contains the summary of notation introduced in this and the
following sections.

3 Information Systems

In this section, we consider data sets presented in a form of information system
[27]. We propose axiomatic representation of information systems, define indis-
cernibility and set approximations for complete information systems, then we
extend the definitions on the case of missing values and multivariate attributes.
We compare our approach with the literature.

3.1 Complete Data

An example of information system is presented in Table 2, we denote this system
by I1. The system I1 contains information about structure P1 from Section
2, yet not the whole information. Rows of the information system represent
known objects, elements of P universe, while columns are labelled by known
attributes. Attributes are relations in P . The set of labels of objects described in
the information system will be denoted by U . In Table 2, U = {p1, p2, p3, p4, p5}.
The set of all attributes included in the information system will be denoted by

124 W. Jaworski

Table 2. A complete information system

name age
p1 Alice young
p2 Alice old
p3 Bob young
p4 Bob old
p5 Bob young

A. In Table 2, A = {name, age}. We assume that both U and A are finite.
Each attribute a defines a relation between the set of objects and the set of
attribute values Va. In Table 2, Vname = {Alice, Bob} and Vage = {young, old}.
Any information system defines attribute values for given objects. Let

m(u, a)

denote the set of values of the attribute a for the object u in the information
system. Usually each attribute has exactly one value for each object, i.e m(u, a)
contains one element for every u and a. In such a case information system is
called complete.

We consider an information system as a sensor. Constants that represent at-
tribute values are primitives. We introduce the primitive relation is an object
which recognise objects measured by sensor described in the information system.
For each u ∈ U we the statement is an object(u) is true, yet the relation is
an object is broader: it contains all objects that the sensor perceived, perceive
and will perceive. The information system provides also the structural informa-
tion about the domains of the attributes. We encode this information in the
following way: for each attribute a we state

P |= ∀x,y a(x, y) =⇒ is an object(x) ∧ y ∈ Va.

The complete information system also states that every attribute has exactly
one value for each object: for each attribute a we state

P |= ∀x

(
is an object(x) =⇒ ∃!y a(x, y)

)
.

We encode the information system as a set of axioms A in the following way:
For each u ∈ U , for each a ∈ A we state

P |= a(u, v),

where v ∈ m(u, a) in the information system.
The above transformation treats both an object etiquette and an attribute

value as constants. The attributes are considered as binary relations.
For Table 2, our knowledge about P1 provided by an information system I1

is restricted to the following axiom:

Generalized Indiscernibility Relations: Applications for Missing Values 125

P1 |= name(p1, Alice) ∧ age(p1, young) ∧ name(p2, Alice) ∧ age(p2, old) ∧

∧name(p3, Bob) ∧ age(p3, young) ∧ name(p4, Bob) ∧ age(p4, old)∧
∧name(p5, Bob) ∧ age(p5, young).

Axioms derived for Table 2 allow us to define many different structures. The
set of possible worlds P(A) consists of all the possible extensions of information
system presented in Table 2. P(A) will include

Q1 = 〈Q1, p
Q1
1 , pQ1

2 , . . . , pQ1
5 , AliceQ1 , BobQ1 , youngQ1 , oldQ1 , nameQ1 , ageQ1〉

as well as

Q2 = 〈Q2, p
Q2
1 , pQ2

2 , . . . , pQ2
10 , AliceQ2 , BobQ2 , youngQ2 , oldQ2 , nameQ2 , ageQ2〉

or
Q3 = 〈Q3, p

Q3
1 , pQ3

2 , . . . , pQ3
5 ,

AliceQ3 , BobQ3 , youngQ3 , oldQ3 , nameQ3 , ageQ3 , parentQ3〉.
Axioms do not provide any information about objects p6, . . . , p10. They may
have arbitrary properties. Relations name, age and parent are specified in any
way that satisfy A. They do not need to be consistent with their definition in P .

Rough set theory [28,29] is based on the idea of an indiscernibility relation. Let
B be a nonempty subset of the set A of all attributes. The indiscernibility relation
IND(B) is a relation on objects in a complete information system defined for
x, y ∈ U as follows

(x, y) ∈ IND(B) iff ∀a ∈ B
(
m(x, a) = m(x, a)

)
or equivalently

(x, y) ∈ IND(B) iff ∀a ∈ B ∀v ∈ Va

(
a(x, v) ⇐⇒ a(y, v)

)
.

For example, for Table 2, p3 and p5 are indiscernible with respect to the at-
tributes name and age.

The indiscernibility is an equivalence relation. We will denote its equivalence
class generated by object u as

[u]IND(B).

Definition 5. By a query over the set of attributes A we denote any formula
n∧

i=1

ai(x, vi),

where ai ∈ A, vi ∈ Vai and n ≤ |A|. x is a free variable, which is valuated to an
object.

Consider the query:

ϕ(x) = name(x, Bob) ∧ age(x, young).

This formula is satisfied either if p3 is the value for x or its value is p5. p3 and
p5 cannot be distinguished by formula ϕ(x).

We postulate the following definition of indiscernibility:

126 W. Jaworski

Definition 6. Let A be a set of axioms. Let ϕ(x) be a query with free variable
x. Let u1 and u2 be constants. We say that u1 and u2 are indiscernible by the
query ϕ(x) if (

A |= ϕ(u1)
)

⇐⇒
(
A |= ϕ(u2)

)
.

Theorem 1. Let I = (U, A) be a complete information system with the set of
objects’ labels U and the set of attributes A. Let B be a subset of A. Objects
u1 ∈ U and u2 ∈ U are indiscernible with respect to attribute set B iff they are
indiscernible with respect to every query over the set of attributes B.

Proof. Let A be axioms derived from I.
If (u1, u2) ∈ IND(B), for every a ∈ B there exists va such that

m(u1, a) = m(u2, a) = {va}.

Then the set of formulae {a(u1, va) : a ∈ B} is a subset of A and the set of
formulae {a(u2, va) : a ∈ B} is a subset of A. So for all a ∈ B and v ∈ Va we
have

A |= a(u1, v) ⇔ A |= a(u2, v).

Thus for every query ϕ(x) we obtain A |= ϕ(u1) ⇔ A |= ϕ(u2).
If (u1, u2) ∈ IND(B) we have a ∈ B and v1, v2 such that v1 = v2, m(u1, a) =

{v1} and m(u2, a) = {v2}. Thus

A |= a(u1, v1) ∧ A |= a(u2, v1)

and the query ϕ(x) = a(x, v1) distinguishes u1 and u2.

Assume that we have two sensors. Measurements of both of them are repre-
sented by information systems and these information systems shares their sets
of objects, i.e. the relation is an object is identical for both sensors. We wish
to describe the measurements of one sensor by means of measurements of the
second one. Alternatively we say the that we are describing the value of attribute
in an information system (which we call the decision attribute) by the values of
the rest of attributes. We may reduce this problem to the problem of description
of the set objects in the information system for which the decision attribute has
a certain value. Such a set is either definable or indefinable by other attributes.

Definition 7. Let X be a subset of U . We say that X is definable by A iff there
exist queries ϕ1(x), . . . , ϕn(x) such that

∀u ∈ U
(
u ∈ X ⇐⇒ A |= ϕ1(u) ∨ · · · ∨ ϕn(u)

)
.

Each definable set is a sum of objects that satisfy at least one of a given queries.

Proposition 1. Let I = (U, A) be a complete information system with set of
objects’ labels U and set of attributes A. Let A be axioms derived from I. X is
definable by A iff

X = [u1]IND(A) ∪ · · · ∪ [un]IND(A)

for some u1, . . . , un ∈ U .

Generalized Indiscernibility Relations: Applications for Missing Values 127

Proof. X is definable by A if and only if

X =
n⋃

i=1

{u ∈ U : A |= ϕi(u)}.

Theorem 1 states that u1, u2 ∈ {u ∈ U : A |= ϕi(u)} iff (u1, u2) ∈ IND(A).

An indefinable set X ⊂ U may be approximated by two definable sets. The first
one is called the lower approximation of X , denoted by AX , and is defined by

⋃
{Y | Y ⊂ X ∧ Y is definable by A}.

The second set is called the upper approximation of X, denoted by AX , and is
defined by ⋂

{Y | X ⊂ Y ∧ Y is definable by A}.

AX ⊂ U because every definable set is a subset of U .

Proposition 2. The lower and the upper approximations of any set X ⊂ U are
definable.

Proof. For a given information system, there is a finite number of definable sets.
Thus ⋃

{Y | Y ⊂ X ∧ Y is definable} = Y1 ∪ · · · ∪ Yn,

where Yi is defined by a formula ϕi(x). Hence, Y1 ∪· · ·∪Yn is defined by ϕ1(x)∨
· · · ∨ ϕn(x). Similarly

⋂
{Y | X ⊂ Y ∧ Y is definable} = Y1 ∩ · · · ∩ Yn,

where every Yi is defined by a formula ϕi(x). Hence, Y1 ∩ · · · ∩ Yn is defined
by ϕ1(x) ∧ · · · ∧ ϕn(x). The last formula may be transformed into a form of an
alternative of queries.

Theorem 2. Let I = (U, A) be a complete information system with set of ob-
jects’ labels U and set of attributes A, such that U and A are finite. Let A be the
set of axioms derived from I. Then

AX = AX and AX = AX.

Proof. According to Prop. 1

AX =
⋃

{[u1]IND(A) ∪ · · · ∪ [un]IND(A) ⊂ X} =

=
⋃

{[u]IND(A) | [u]IND(A) ⊂ X} = AX,

AX =
⋂

{X ⊂ [u1]IND(A) ∪ · · · ∪ [un]IND(A)}.

IND(A) is an equivalence relation, so

AX =
⋃

{[u]IND(A) | [u]IND(A) ∩ X = ∅} = AX.

128 W. Jaworski

Let the set X be the subset of universe of information system for which the
decision attribute d takes the value v. Let ϕ(x) and ϕ(x) be the formulae that
define the lower and upper approximation of X . ϕ(x) is equivalent to ϕ(x) when
X is definable. Symbolically:

{x | x ∈ U ∧ ϕ(x)} ⊆ {x | x ∈ U ∧ d(x, v)} ⊆ {x | x ∈ U ∧ ϕ(x)}.

The claim that

{x | is an object(x) ∧ ϕ(x)} ⊆ {x | is an object(x) ∧ d(x, v)} ⊆

⊆ {x | is an object(x) ∧ ϕ(x)}.

we denote as inductive reasoning.
Inductive reasoning bases on the assumption that the definition generated for

the specific data is still valid in the general case. ϕ(x) and ϕ(x) constitutes a
classifier that assigns values of decision attribute to new samples.

Since a sample of objects included in the information system is not representa-
tive enough to define the bounds correctly, statistical methods are used in order
to obtain bounds that are correct with the high probability. Such as method
are for example: the limit of the number of queries in the bound definition, the
minimal support for each query in the bound and so on.

3.2 Incomplete Data

Real-life data are frequently incomplete, i.e. values for some attributes are miss-
ing. We will assume three different interpretations of missing values:

– missing attribute values that are lost, i.e they are specified, yet their value
are unknown

– attributes not applicable for a certain case, e.g. the colour of hair for a com-
pletely bald person

– do not care values: the attribute may have any value from its domain.

We will extend the definition of m(u, a). m(u, a) =? will mean that the value
of attribute a for object u is lost, m(u, a) = � that it is ‘do not care’ and
m(u, a) = − that it is not applicable.

The problem of missing values was thoroughly studied (see e.g. [8,9,14,15]).
The presented ideas were based on various modifications of indiscernibility rela-
tion so it could handle missing values and remain definable in terms of attributes.

The definitions of indiscernibility, definability, lower and upper approximation
we stated in the above section may do not need to be modified for information
systems with missing values. They are equivalent to the definitions proposed in
the cited papers.

We express the various types of missing value semantics using axioms:

– for each u ∈ U , for each a ∈ A we state

P |= a(u, v),

where v ∈ m(u, a) in the information system.

Generalized Indiscernibility Relations: Applications for Missing Values 129

Table 3. An information system with missing values

number of hairs colour of hair
p1 none -
p2 little brown
p3 ? blond
p4 � brown

– ‘lost’ values we define as follows: for each u ∈ U , for each a ∈ A we state

P |= a(u, v1) ∨ · · · ∨ a(u, vn),

where v1, . . . , vn are all possible values of attribute a.

– for each u ∈ U , for each a ∈ A whose value is not applicable we state

P |= ∀x¬a(u, x),

– for each u ∈ U , for each a ∈ A, for each v from the domain of a we state

P |= a(u, v),

when the value of a is ‘do not care’ for object u.

We may describe contents of Table 3 using the following formula 2:

P1 |= number of hairs(p1, none) ∧ ∀x¬colour of hair(p1, x) ∧

∧ number of hairs(p2, little) ∧ colour of hair(p2, brown) ∧

∧
(
number of hairs(p3, none) ∨ number of hairs(p3, little) ∨

∨ number of hairs(p3, many)
)

∧ colour of hair(p3, blond)

∧ number of hairs(p4, none) ∧ number of hairs(p4, little) ∧

∧ number of hairs(p4, many) ∧ colour of hair(p4, brown).

Since indiscernibility with respect to the set of attributes does not work for
incomplete information systems authors extended it or replaced it by another
concepts.

The extension proposed in [14] for the information systems with ‘do not care’
missing values is the relation

(x, y) ∈ SIM(B) iff ∀a ∈ B
(
m(x, a) = � ∨ m(y, a) = � ∨ m(x, a) = m(y, a)

)
.

2 Since it is impossible to have none, little and many hairs at the same
time, the formula number of hairs(p4, none) ∧ number of hairs(p4, little) ∧
number of hairs(p4, many) is contradictory. Yet, for the purpose of example, we do
not take this fact into account.

130 W. Jaworski

Theorem 3. Let I = (U, A) be an information system with ‘do not care’ missing
vales. Let U be the set of objects and A be the set of attributes. Let B be a subset
of A. If objects u1 ∈ U and u2 ∈ U are indiscernible with respect to every query
over the set of attributes B then

(u1, u2) ∈ SIM(B).

The reverse implication is not valid for information systems with nontrivial miss-
ing values.

Proof. Let A be axioms derived from I. If (u1, u2) ∈ SIM(B) we have a ∈ B
and v1, v2 ∈ Va such that v1 = v2, m(u1, a) = {v1} and m(u2, a) = {v2}. Thus

A |= a(u1, v1) and A |= a(u2, v1)

and the query ϕ(x) = a(x, v) distinguishes u1 and u2.
For the case of reverse implication let us consider Table 3. We have

(p2, p4) ∈ SIM({number of hairs}),

yet the query
number of hairs(x, none)

distinguish them.

In [8] an another approach for ‘do not care’ and ‘lost’ missing values is pre-
sented. The indiscernibility with respect to the set of attributes is replaced by
the concept of characteristic set:

Definition 8. For an object u ∈ U the characteristic set KA(u) is defined as

KA(u) =
⋂

a∈A

K(u, a),

where K(u, a) is defined in the following way

– if m(u, a) = {v} then

K(u, a) = {u′ ∈ U | m(u′, a) = {v} ∨ m(u′, a) = �}.

– if m(u, a) =? or m(u, a) = � then K(u, a) = U .

Lemma 1. Let I = (U, A) be an information system with ‘lost’ and ‘do not
care’ missing vales. Let U be the set of objects and A be the set of attributes.
Let A be axioms derived from I. For every a ∈ A and for each u ∈ U such that
m(u, a) = {v}

x ∈ K(u, a) ⇐⇒ A |= a(x, v).

Proof. Let x be an element of K(u, a). Then m(u, a) = {v} or m(u, a) = �. In
both cases a(x, v) is satisfied by A.

If A |= a(x, v), then either the value of a on x was specified as v either it was
‘do not care’ missing value. In both cases x ∈ K(u, a).

Generalized Indiscernibility Relations: Applications for Missing Values 131

Theorem 4. Let I = (U, A) be an information system with ‘lost’ and ‘do not
care’ missing vales. Let U be the set of objects and A be the set of attributes. Let
A be axioms derived from I. The set X ⊂ U is definable iff X is the union of
characteristic sets.

Proof. Let u1, . . . , un be such that

X =
n⋃

i=0

KA(ui) =
n⋃

i=0

⋂

a∈A

K(ui, a) =
n⋃

i=0

⋂

a∈Ai

K(ui, a),

where Ai is the set of all attributes specified for ui. Let m(ui, a) = {va,i}.
According to Lemma 1

K(ui, a) = {x ∈ U | A |= a(x, va,i)}.

Thus x ∈ X iff

A |=
n∨

i=0

∧

a∈Ai

a(x, va,i).

Theorem 5. Let I = (U, A) be an information system with ‘lost’ and ‘do not
care’ missing vales. Let U be the set of objects and A be the set of attributes. Let
A be axioms derived from I. For each X ⊂ U

AX =
⋃

{KA(x) | KA(x) ⊂ X},

AX =
⋃

{KA(x) | x ∈ U, KA(x) ∩ X = ∅}.

Lower and upper approximations are equivalent to subset lower and upper ap-
proximations (defined in [8]).

Proof. AX is definable, so according to Thm. 4

AX =
n⋃

i=1

KA(ui)

for some u1, . . . , un ∈ U . Since AX ⊂ X , we obtain KA(ui) ⊂ X . If KA(x) ⊂ X
then KA(x) ⊂

⋃n
i=1 KA(ui), because KA(x) is definable and AX is the largest

definable subset of X .
AX is definable, so according to Thm. 4

AX =
n⋃

i=1

KA(ui)

for some u1, . . . , un ∈ U . Since AX is the smallest definable set such that X ⊂
AX , we obtain KA(ui) ∩ X = ∅.

132 W. Jaworski

3.3 Multivalued Attributes

Multiple valued attributed (introduced in [27] and studied in [20]) may reflect
our incomplete knowledge about their values, what makes them similar to ‘lost’
missing values. The may also represent attributes that have a few values simul-
taneously, in which case the are like ‘do not care’ missing values.

– ‘lost’ multiple values we define as follows: for each u ∈ U , for each a ∈ A we
state

P |= a(u, v1) ∨ · · · ∨ a(u, vn),

where v1, . . . , vn are all possible values of attribute a for object u mentioned
in information system.

– for each u ∈ U , for each a ∈ A, for each value v of attribute a for object u
in information system

P |= a(u, v),

when the value of a is ‘do not care’ multiple value for object u.

Table 4. A multiple valued information system

name known languages
p5 Bob Pascal, Ocaml, Cobol
p6 David, Alice Ocaml

For example objects in Table 4 will be described by the following formula:

P1 |= name(p5, Bob) ∧ known languages(p5, Pascal) ∧

∧ known languages(p5, Ocaml) ∧ known languages(p5, Cobol) ∧
∧ (name(p6, David) ∨ name(p6, Alice)) ∧ known languages(p6, Ocaml).

Multivalued attributes is a simple extension of the ‘missing values’ case and
the whole theory derived for the information systems with missing attributes is
applicable here.

4 Structural Objects

Information systems are devoted to representation of simple objects described by
a vector of attributes. What makes compound objects different from the simple
ones is the internal structure. Structural objects are composed of subobjects
connected by relations.

We shown in Section 3 that the idea of representing knowledge in terms of
axioms provides us a flexible and extendable framework for coherent theory of
data analysis. Now, we formally define the language for knowledge representa-
tion, which allow us to describe properties of structured objects. We call it a
meaning representation language.

Generalized Indiscernibility Relations: Applications for Missing Values 133

Table 5. A set of data sequences

s1 Alice has brown hair.
s2 Charlie and David know Ocaml and Cobol.
s3 Bob’s hair colour is black,

similar to David’s hair colour.
s4 Parents of Alice and Bob are old.
s5 Alice, Bob, Charlie and David are old.

The meaning representation language represents concepts included in data
and dependencies between them. It is an extension of the formulae used to
describe axioms derived from information systems in Section 3.

Syntax of the language is defined as follows: We have the set of constants and
the set of predicate names.

Constants play the role of labels for entities described in data. Constant
names may be meaningful (see Section 2) or may not carry any information
about pointed entity. The anonymity of constants reflects the fact that we do
not posses direct access to the entities. We know only the relations between en-
tities and these relation does not define entities in an exact way. It reflects the
incompleteness of our knowledge.

Predicates posses lists of one or more arguments. Number of arguments for a
given predicate is not fixed. Predicates represent relations on finite sequences of
entities. The predicates have meaningful names.

Atomic formula is a predicate. Formula is composed of one or more atomic
formulae connected by means of conjunction or alternative. We do not use quan-
tifiers, functions or negation.

The semantics of the meaning representation language is based on the concepts
presented in Section 2. The structure P plays the role of the reality model.
Information about P is represented by axioms A. The axioms are written using
the meaning representation language. P(A) is the set of possible world defined
by A. We assume that data are consistent; in other words:

P |= A.

For example, Table 5 provides us knowledge representation of s1 by the fol-
lowing axioms:

P1 |= name(u1, Alice) ∧ colour of hair(u1, brown).

Note that object identifiers are not sequence identifiers si. One sequence may
describe many objects. The same object may be mentioned in several sequences,
yet we must use the domain knowledge in order to assure that different constants
denote the same object. Let us consider now s2:

P1 |= name(u2, Charlie) ∧ name(u3, David) ∧ and(u4, u2, u3)∧

∧known languages(u4, Ocaml) ∧ known languages(u4, Cobol).

134 W. Jaworski

The conjunction and in the sequence s2 has two meanings. The second time it
is used as logical ‘∧’, while in the first case of use it forks the sequence. We
represent this operation using symbol and defined as

and(a, a1, . . . , an) ∧ ϕ(a, a1, . . . , an) ⇐⇒

⇐⇒ ϕ(a1, a1, . . . , an) ∧ · · · ∧ ϕ(an, a1, . . . , an).

In sequence s3, the colour of hair is an object and the property of person in
the same time:

P1 |= name(u5, Bob) ∧ colour of hair(u5, black)∧

∧name(u6, David) ∧ colour of hair(u6, u7) ∧ similar(black, u7).

The sequence s4 is ambiguous: in first interpretation Parents of Bob are old
and in the second Bob is old. We use ‘∨’ in order to represent both possibilities.

P1 |= name(u8, Alice) ∧ parent(u9, u8) ∧ parent(u10, u8) ∧ name(u11, Bob)∧

∧
(
and(u12, u9, u10, u11) ∨

(
parent(u9, u11) ∧ parent(u10, u11)∧

∧and(u12, u9, u10)
))

∧ age(u12, old).

In sequence s5 we have the list of objects that could be arbitrary long:

P1 |= name(u13, Alice) ∧ name(u14, Bob) ∧ name(u15, Charlie)∧

∧name(u16, David) ∧ and(u17, u13, u14, u15, u16) ∧ age(u17, old).

5 Sequential Data Processing

Now, we show how to obtain structural object description written in form of
axioms. We assume that the source information is given as the sequence of sym-
bols, for example textual data, recorded sound, sequence of some measurements
etc. We will carefully study the process of translation of sequential data into
our meaning representation language in the following sections. This process is
similar to the segmentation of images [35]. As we will see it is tightly connected
with the syntax of the meaning representation language.

Sequential data are a description of some world P . This description is not a
precise definition, rather the theory of the set of possible worlds P(A). Our goal
is to transform this description into the set of axioms A that would define the
same theory of P(A). Thanks to this processing the data obtain the description
that has a formal semantics and identifies objects and their properties.

The sequential data processing is an example of complex translation from
one sensor into another one. We show in Section 6 that this process may be
considered as rough set approximation.

The classical approach to sequential data analysis consists in splitting the data
into subsequences of constant length denoted as windows. Then each window

Generalized Indiscernibility Relations: Applications for Missing Values 135

is treated as a vector of attribute values. The advantage of this approach is
a simple translation into an information system. The disadvantage is that it
does not reflect the semantics of the data. If the windows are small, they cut
object descriptions. If they are large, they do not distinguish objects. When
the sequence length used for describing objects varies, the proper window size
does not exist. In addition windows does not allow to express the properties of
structured objects described by the sequential data.

In our approach, we divide sequences into the windows that vary in size and
merge windows into larger structures. We transform data sequences into axioms
using the methodology of the attributed grammars [13]. The basic idea is to
perform the syntactic decomposition of the sequence using generative grammar
and add the semantic value for each grammar symbol. In our case, these semantic
values are formulae of meaning representation language. The semantic values
are calculated by means of semantic attachments assigned to grammar rules. We
extract concepts explicitly stated in sequence, not the ones that can be deduced
from it.

5.1 Syntactic Rules

First, we define grammar which we will use for describing syntactic structure of
data sequences.

We decided that our grammar would recognise regular languages. Yet we may
replace our grammar with Context-Free Grammar without deep modification in
the system.

We represent syntactic rules using a modification of context-free grammars
by adding some special rule, called, a term accumulation rule. Formally let

G = (Σ, N, XI , R, +, ≺)

be such that

– Σ is a finite set of terminal symbols,
– N is a finite set of non-terminal symbols.
– XI ∈ N is the start-symbol of grammar.
– R is a finite set of production rules. Each production has the form A → α

or A → β+, where A is a non-terminal and α is a sequence of terminals
and non-terminals and β ∈ Σ ∪ N . A → β+ is a shortcut for set of rules:
A → β, A → ββ, A → βββ,

– ≺ is binary relation of Σ ∪ N such that A ≺ B if and only if there is a rule
A → α in R such that B belongs to α or there is a rule A → B+.

– ≺ is a irreflexive and transitive partial order.

We will denote every subsequence parsed to a grammar symbol as a phrase.

Proposition 3. Language L can be recognised by grammar defined above if and
only if L is regular language.

136 W. Jaworski

For example, for sequences from Table 5 the following grammar may be generated:

[name] ::= Alice | Bob | Charlie | David
[age] ::= young | old
[colour of hair] ::= brown | black
[number of hairs] ::= none | little | many
[known language] ::= Pascal | Ocaml | Cobol
[known languages] ::= [known language] |

[known language] and [known language]
[name,] ::= [name] ,
[name list] ::= [name,] +
[names] ::= [name] | [name] and [name] | [name list] and [name]
[parents] ::= [names] | parents of [names]
[person] ::= [parents] | [parents] and [parents]
XI ::= [person] are [age] |

[person] has [colour of hair] hair |
[person] know [known languages]

Names of the symbols in the grammar reflect the concept names. The grammar
is ambiguous. The sequence s4 may be parsed in two different ways which reflect
two possible interpretations of sequence.

5.2 Data Sequence Representation

We are looking for all the possible derivation trees for a given data sequence and
grammar.

We need representation that can describe ambiguous, partially parsed data.
We represent it as directed acyclic graph whose edges are labelled by grammar
symbols. We call it the graph of syntactic decomposition.

We represent data sequence as a graph that is a list. Formally, let {σi}n
1 ,

σi ∈ Σ be the sequence. We create graph with vertexes V = {v0, . . . , vn} and
set of edges E = {v0

σ1−→ v1, . . . , vn−1
σn−→ vn}.

While applying the rule we find path in the graph with edge labels that match
to the rule. Then we add to graph a new edge from beginning to end of the path
labelled with rule production.

In order to apply the rule A → α1, . . . , αk we find all paths

va0

α1−→ va1

α2−→ va2 . . . vak−1

αk−→ vak

and we add for each of them the edge

va0

A−→ vak

to the graph.
While applying the A → β+ rule, we find all paths

va0

β−→ va1

β−→ va2 . . . vak−1

β−→ vak

Generalized Indiscernibility Relations: Applications for Missing Values 137

Fig. 1. Part of the graph of syntactic decomposition for sequence s4

and we add for each of them the edge

va0

A−→ vak

to the graph.
We will denote the edge labelled α such that vi

α−→ vj by αi,j .
As a result of parsing process we obtain the edge from the beginning to the

end of graph labelled by the start symbol of grammar.

5.3 Parser Algorithm

Having defined the data representation, we describe the parser algorithm.
We divide the set of symbols into layers: Let N0 = Σ and let

Nn+1 = {A : ∃A → α1 . . . αk∀i(αi ∈ Nn) ∪ ∃A → β+(β ∈ Nn)}.

Now we divide the rules set R into layers. Let R−1 = ∅ and

Rn = {A → α1 . . . αk : ∀iαi ∈ Nn} ∪ {A → β+ : β ∈ Nn} \ Rn−1.

Since we do not allow recurrent symbol to occur there is finite number of layers.
For example, for grammar created for sequences from Table 5 we obtain:

N0 = {Alice, Bob, Charlie, David, young, old, brown, black,
none, little, many, Pascal, Ocaml, Cobol,
and, ,, parents, of, are, has, know, hair}

N1 = {[name], [age], [colour of hair],
[number of hairs], [known language]}

N2 = {[known languages], [name,]}
N3 = {[name list]}
N4 = {[names]}
N5 = {[parents]}
N6 = {[person]}
N7 = {XI}

138 W. Jaworski

and

R0 =

[name] ::= Alice | Bob | Charlie | David
[age] ::= young | old
[colour of hair] ::= brown | black
[number of hairs] ::= none | little | many
[known language] ::= Pascal | Ocaml | Cobol

R1 =
[known languages] ::= [known language] |

[known language] and [known language]
[name,] ::= [name] ,

etc.
Rules belonging to each layer are independent. Hence we may go through the

sequence once for each layer and apply all matching rules simultaneously.
For each path in graph, the algorithm finds all rules that match to the path

and add their production to graph. We begin with graph (V, E0), where E0 = E.
We obtain graph (V, En+1) by applying to (V, En) rules from Rn. For each text’s
subsequence we find all its possible syntactic consequences.

In order to do it efficiently we create prefix tree out of every layer: For each
rule A → α1 . . . αk in Rn we create path in the tree from the root labelled by
symbols α1 till αk and we label the leaf tree node by A. For each node we merge
paths that have identical labels.

Using this data structure we can apply all A → α rules in layer in O(|En|l log |
Σ ∪ E| + |En||R+

n |) time, where

l = max
Rn

{k : A → α1 . . . αk ∈ Rn}.

Since l, log |Σ ∪ E| and number of layers is relatively small |En| is crucial for
parser performance.

For the different kinds of grammar parser may be replaced with other known
in literature parsers [12].

5.4 Semantic Values of Grammar Symbols

In case of ambiguous grammar, the number of possible syntax derivation trees
may be exponential to the sequence length. The concept of the graph of syntactic
decomposition is their compact representation. The number of possible semantic
values of the sequence is equal to the number of syntax derivation trees. That
is why we cannot represent them directly. Instead, we distribute the semantic
values across the graph of syntactic decomposition.

The meaning representation language formulae must have syntax coherent
with the graph of syntactic decomposition. This requirement creates the de-
pendence between the syntax of the meaning representation language and the
process of translating data into axioms.

The formulae are spread across the graph in a way presented below.
Consider the edge αi,j of the graph. This edge was created as the result of

parsing a phrase. The phrase described an entity. We represent this entity by
means of constant aα,i,j . We describe its properties derived from the phrase by

Generalized Indiscernibility Relations: Applications for Missing Values 139

the formula of meaning representation language. We name this formula semantic
value of grammar symbol and denote it as [[α]]i,j . We assign the formula [[α]]i,j
to the edge αi,j on the implementation level.

The formula [[α]]i,j has the following structure:

[[α]]i,j :=
n∨

k=1

pk(aα,i,j , aαk
1 ,ik

1 ,jk
1
, . . . , aαk

mk
,ik

mk
,jk

mk
) ∧

mk∧

l=1

[[αk
l]]ik

l ,jk
l
.

Each [[αk
l]]ik

l
,jk

l
is assigned to the edge αk

l ik
l ,jk

l
, so only the set of atomic for-

mulae
{p1(aα,i,j , aα1

1,i11,j1
1
, . . . , aα1

mk
,i1mk

,j1
mk

), . . .

. . . , pn(aα,i,j , aαn
1 ,in

1 ,jn
1
, . . . , aαn

mk
,in

mk
,jn

mk
)}

must by associated with graph edge on the implementation level.
Semantics for a terminal symbol αi,j is an one-argument predicate whose

name is α and whose argument is the variable aα,i,j .
For example, for graph of syntactic decomposition presented on Fig. 1 we will

obtain the following semantic values:

[[[name]]]2,3 = [name](a[name],2,3, Alice)
[[[names]]]2,5 = and(a[names],2,5, a[name],2,3, a[name],4,5) ∧ [[[name]]]2,3∧

∧[[[name]]]4,5
[[[parents]]]0,3 = [parents](a[parents],0,3, a[names],2,3) ∧ [[[names]]]2,3
[[[person]]]0,5 =

(
equal(a[person],0,5, a[parents],0,5) ∧ [[[parents]]]0,5

)
∨

∨
(
and(a[person],0,5, a[parents],0,3, a[parents],4,5)∧

∧[[[parents]]]0,3 ∧ [[[parents]]]4,5
)
.

5.5 Semantic Attachments

Semantic values of grammar symbols are constructed using semantic attachments
of grammar rules. Semantic attachment are functions that compose semantics
of greater objects out of semantics of smaller ones.

Let A → α1 . . . αk be a syntactic rule and fA→α1...αk
be a semantic attach-

ment assigned to it. Assume that the rule was matched to the path α1,i0,i1 , . . . ,
αk,ik−1,ik

. As the rule was applied the symbol Ai0,ik
was created.

The semantic value for Ai0,ik
is constructed as follows: first we calculate the

value of
fA→α1...αk

([[α1]]i0,i1 , . . . , [[αk]]ik−1,ik
).

We demand from the values of the semantic attachments to be predicate. Let

p(aA,i0,ik
, aβ1,j1,k1 , . . . , aβn,jn,kn) := fA→α1...αk

([[α1]]i0,i1 , . . . , [[αk]]ik−1,ik
),

where every βi,ji,ki belongs to {α1,i0,i1 , . . . , αk,ik−1,ik
}. Now we define semantics

of Ai0,ik
as

[[A]]i0,ik
:= p(aA,i0,ik

, aβ1,j1,k1 , . . . , aβn,jn,kn) ∧
∧

1≤i≤n

[[βi]]ji,ki) ∨ [[A]]i0,ik
.

140 W. Jaworski

[[A]]i0,ik
on the right side of assignment is the semantic value of the edge Ai0,ik

before the rule application. The semantic value for nonexistent edge is falsity.
The first argument of the predicate p is the constant aA,i0,ik

whose value is
the entity described by phrase parsed to Ai0,ik

.
The semantic attachment manipulates on formulae considering them as terms.

It extracts parts of formulae and constructs the predicate p using them. In most
cases it uses the constant pointing to the entity described by the predicate. The
semantic attachment often concatenates the names of predicates that are the
semantic values of terminal symbols

For example, the grammar created for sequences from Table 5 may have the
following semantic attachments:

[name] ::= Alice
name(u[name], Alice)

[age] ::= old
age(u[age], old)

[known language] ::= Pascal
[known language](u[name], Pascal)

[known languages] ::= [known language]
equal(u[known languages], u[known language])

[known languages] ::= [known language]1 and [known language]2
equal(u[known languages], u[known language]1 , u[known language]2)

[names] ::= [name]
equal(u[names], u[name])

[names] ::= [name]1 and [name]2
and(u[names], u[name]1 , u[name]2)

[parents] ::= [names]
equal(u[parents], u[names])

[parents] ::= parents of [names]
parents(u[parents], u[names])

[person] ::= [parents]
equal(u[person], u[names])

[person] ::= [parents]1 and [parents]2
and(u[person], u[parents]1 , u[parents]2)

XI ::= [person] are [age]
equal(uXI , u[person], u[age])

XI ::= [person] know [known languages]
equal(uXI , u[person], u[known languages]).

The space complexity determines the representation of semantics. Each rule
application add one predicate, so space complexity of semantics is proportional
to the number of applied rules.

Thank to such representation of formulae we omit combinatorial explosion
during the analysis of data with high ambiguity.

Various predicates generated for a given subsequence are possible descriptions
of an entity. That is why we point that entity by the same constant in each
predicate.

Generalized Indiscernibility Relations: Applications for Missing Values 141

We connect different possible subsequence interpretations by means of al-
ternative. Only one of them may be correct because only one of contradicting
formulae may be consistent, ensuring that only one clause of alternative will be
true. In case when text interpretations do not contradict, it could happen that
a few clauses will be true (consistent with the facts described in the document)
at the same time, despite the fact that only one of them could be meant do be
written.

For for each A → β+ rule we assign semantic action fA→β+ such that

[[A]] = fA→β+([[β1]], [[β2]], . . .).

We represent semantic value of the symbol generated by accumulation rule as a
graph, whose vertexes are constants that are arguments of predicate. Each path
from beginning to ending vertex in such a graph represents a list of predicate
arguments. The predicates are connected by alternative. We denote such a graph
as graph of logic structure of accumulation symbol.

Size of semantics for accumulation rule is smaller than n(n+1)
2 , where n is

number of vertexes in the graph of syntax decomposition.
We may add a few different semantic attachments to a syntactic rule. Obtain-

ing rules that are grammatically identical but differ on semantic level.
In the end of parsing process we obtain an edge labelled by start symbol of

grammar. Its semantic value is a formula that contains every possible translation
for the entire text into meaning representation language.

6 Set Approximations

Now, when we studied the process of generating axioms for a given data, we
define rough sets for objects described by axioms written as the meaning repre-
sentation language formulae.

The most important difference with the case of information systems is the
extension of the definition of query that makes it suitable for data represented
in a form of meaning representation language formulae.

Definition 9. By a query we denote any formula ϕ(x) of the form

∃x1,...,xn

k∧

i=1

pi(ai
1, . . . , a

i
ki

),

where each ai
j either is a variable belonging to {x, x1, . . . , xn} or a constant. x

is a free variable and pi are predicates.

For example, the query

ϕ1(x) = ∃x1 colour of hair(x, x1) ∧ similar(x1, brown)

refers to the people whose hair has colour similar to brown. In Table 6, the
formula ϕ1(x) is satisfied either if p1 is the value of x or its value is p2. p1 and
p2 cannot be distinguished by formula ϕ1(x).

142 W. Jaworski

Table 6. A set of axioms

P1 |= colour of hair(p1, h1) ∧ similar(h1, brown)
P1 |= colour of hair(p2, h2) ∧ similar(h2, brown)

The indiscernibility is defined in the same way as for information systems
(compare with Definition 6 in Section 3):

Definition 10. Let A be a set of axioms. Let ϕ(x) be a query with free variable
x. Let u1 and u2 be constants. We say that u1 and u2 are indiscernible by the
query ϕ(x) if (

A |= ϕ(u1)
)

⇐⇒
(
A |= ϕ(u2)

)
.

In case of information systems, the set of objects’ labels U were given. When
data are represented as a set of axioms, we define the set of objects’ labels U as
the set of all constant symbols included in axioms.

Definition 11. Let X be a subset of U . We say that X is definable by A iff
there exist queries ϕ1(x), . . . , ϕn(x) such that

∀u ∈ U
(
u ∈ X ⇐⇒ A |= ϕ1(u) ∨ · · · ∨ ϕn(u)

)
.

Nondefinable X may be approximated by two definable sets. The first one is
called lower approximation of X , denoted by AX and defined as

⋃
{Y | Y ⊂ X ∧ Y is definable by A}.

The second set is called upper approximation of X, denoted by AX and defined
as ⋂

{Y | X ⊂ Y ∧ Y is definable by A}.

AX ⊂ U because every definable Y ⊂ U .
Lower and upper approximations are definable, so

AX = {u ∈ U | ϕ(u)},

AX = {u ∈ U | ϕ(u)}.

We consider rough set approximation as a pair of formula

∀u∈U

(
ϕ(u) =⇒ u ∈ X

)
,

∀u∈U

(
¬ϕ(u) =⇒ ¬u ∈ X

)
,

providing that ϕ and ϕ are the strongest formulae for which the above implica-
tions holds.

The sequential data processing methodology presented in the Section above
may be interpreted as rough set approximation. Syntactic rules are queries and
semantic attachments define the measurements of the approximated sensor. As
the effect of sequential data processing we obtain the upper approximation of
structural sensor by means of means of sequential sensor measurements.

Generalized Indiscernibility Relations: Applications for Missing Values 143

7 Conclusions

When we process data into meaning representation language formulae we obtain
knowledge base, which we may use for various data mining applications.

We can look for information using concepts from the documents. We describe
properties of desired objects by means of queries and then we find the set of
objects that satisfy the query.

The meaning representation language formulae provide us features for cluster-
ing and classification of the structural objects. If we define a decision attribute,
we may construct rule based classifiers that use queries as selectors in decision
rules. We plan to adapt the classical rule generation algorithms, so they could
analyse the information contained in the properties of structurally described
objects.

One of the classification tasks is an object identification. The goal of object
identification is to determine the object’s ontological category. We use properties
of objects extracted from the sequential data for that purpose.

Object descriptions extracted from the sequential data are often incomplete.
Part of attributes is missing. When we identify the object’s ontological category,
we add the values of missing attributes to the set of axioms as ‘lost’ missing values.

Weplan also to study the process of high level concept extraction: the algorithms
for defining the concepts that are not included in data but only approximated.

We will search for automatic methods for generating ontologies and deter-
mining the structure of objects in a way that would provide features useful for
further application.

The ontology is most important during the process of feature selection. In our
case the development of grammar and semantics for processing the sequential
data into the meaning representation language formulae. This suggest that both
problems are tightly connected and should be studied together.

On the other hand we plan to derive methods of extracting features from
visual data and to extend our system on numerical data sequences.

Acknowledgments

I would like to thank Professor Andrzej Skowron for the inspiration and com-
prehensive support during the writing of this paper.

The research has been supported by the grant N-N206-400234 from Ministry
of Science and Higher Education of the Republic of Poland.

References

1. Ballesteros, S., Shepp, B.E.: Object Perception: Structure and Process. Lawrence
Erlbaum Associates, Hillsdale (1989)

2. Bazan, J., Nguyen, S.H., Nguyen, H.S., Skowron, A.: Rough set methods in ap-
proximation of hierarchical concepts. In: Tsumoto, S., S�lowiński, R., Komorowski,
J., Grzyma�la-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 346–
355. Springer, Heidelberg (2004)

144 W. Jaworski

3. Bazan, J., Skowron, A., Peters, J.F., Synak, P.: Spatio-temporal approximate rea-
soning over complex objects. Fundamenta Informaticae 67(1-3), 249–269 (2005)

4. Demri, S., Or�lowska, E.: Incomplete Information: Structure, Inference, Complex-
ity. Springer, Heidelberg (2002)

5. Duda, O., Hart, P.E., Stark, D.G.: Pattern Classification. A Wiley-Interscience
Publication John Wiley & Sons, Chichester (2001)

6. Düntsch, I., Gediga, G.: Rough set data analysis: A road to non-invasive knowl-
edge discovery. Methodos, Bangor (2000)

7. Gruber, T.R.: A translation approach to portable ontologies. Knowledge Acqui-
sition 5(2), 199–220 (1993)

8. Grzyma�la-Busse, J.W., Grzyma�la-Busse, W.J.: An Experimental Comparison of
Three Rough Set Approaches to Missing Attribute Values. In: T. Rough Sets,
vol. 6, pp. 31–50 (2007)

9. Grzyma�la-Busse, J.W.: A Rough Set Approach to Data with Missing Attribute
Values. In: Wang, G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006.
LNCS (LNAI), vol. 4062, pp. 58–67. Springer, Heidelberg (2006)

10. Hanseth, O., Monteiro, E.: Modelling and the representation of reality: some im-
plications of philosophy on practical systems development. Scandinavian Journal
of Information Systems 6(1), 25–46 (1994)

11. Jaworski, W.: Learning Compound Decision Functions for Sequential Data in
Dialog with Experts. In: Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto,
S., Nguyen, H.S., S�lowiński, R. (eds.) RSCTC 2006. LNCS (LNAI), vol. 4259,
Springer, Heidelberg (2006)

12. Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recogni-
tion. Prentice-Hall, Englewood Cliffs (2000)

13. Knuth, D.E.: The Genesis of Attribute Grammars. In: WAGA 1990, pp. 1–12
(1990)

14. Kryszkiewicz, M.: Rough Set Approach to Incomplete Information Systems. Inf.
Sci. 112(1-4), 39–49 (1998)

15. Kryszkiewicz, M.: Properties of incomplete information systems in the framework
of rough sets. In: Polkowski, L., Skowron, A. (eds.) Studies in Fuzziness and Soft
Computing. Rough Sets in Knowledge Discovery 1, vol. 18, pp. 422–450. Physica-
Verlag, Heidelberg (1998)

16. Latkowski, R.: On decomposition for incomplete data. Fundamenta Informati-
cae 54(1), 1–16 (2003)

17. Latkowski, R.: On indiscernibility relations for missing attribute values. In: Pro-
ceedings of the Workshop on Concurrency, Specification and Programming (CSP
2004), Caputh, Germany, September 24-26, 2004, Informatik-Bericht 170, strony
pp. 330–335. Humboldt Universitt, Berlin (2004)

18. Latkowski, R., Miko�lajczyk, M.: Data decomposition and decision rule joining
for classification of data with missing values. LNCS Transactions on Rough
Sets 3100(1), 299–320 (2004)

19. Latkowski, R.: Flexible indiscernibility relations for missing attribute values. Fun-
damenta Informaticae 67(1-3), 131–147 (2005)

20. Lipski Jr., W.: On Databases with Incomplete Information. J. ACM 28(1), 41–70
(1981)

21. Moens, M.-F.: Information Extraction: Algorithms and Prospects in a Retrieval
Context. The Information Retrieval Series, vol. 21. Springer, Heidelberg (2006)

22. Marker, D.: Model Theory: An Introduction. Springer, Heidelberg (2002)

Generalized Indiscernibility Relations: Applications for Missing Values 145

23. Mendelson, E.: Introduction to Mathematical Logic, 4th edn. International Thom-
son Publishing (1997)

24. Mohr, R., Pavlidis, T., Sanfeliu, A. (eds.): Structural Pattern Analysis. World
Scientific, Teaneck (1990)

25. Nguyen, S.H., Bazan, J., Skowron, A., Nguyen, H.S.: Layered learning for concept
synthesis. LNCS Transactions on Rough Sets 3100(1), 187–208 (2004)

26. Pavlidis, T.: Structural Pattern Recognition. Springer, Heidelberg (1977)
27. Pawlak, Z.: Information systems — theoretical foundations. Inf. Syst. 6(3), 205–

218 (1981)
28. Pawlak, Z.: Rough Sets. International Journal of Computer and Information Sci-

ences 11, 341–356 (1982)
29. Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer

Academic Publishers, Dordrecht (1991)
30. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177(1),

3–27 (2007)
31. Pawlak, Z., Skowron, A.: Rough sets: Some extensions. Information Sci-

ences 177(1), 28–40 (2007)
32. Pawlak, Z., Skowron, A.: Rough sets and Boolean reasoning. Information Sci-

ences 177(1), 41–73 (2007)
33. Peters, J.F., Skowron, A. (eds.): Transactions on Rough Sets III. LNCS, vol. 3400.

Springer, Heidelberg (2005)
34. Roddick, J.F., Hornsby, K., Spiliopoulou, M.: YABTSSTDMR - Yet Another Bib-

liography of Temporal, Spatial and Spatio-Temporal Mining Research. In: Uthu-
rusamy, R., Unnikrishnan, K.P. (eds.) SIGKDD Temporal Data Mining Work-
shop, San Francisco, CA, pp. 167–175. ACM Press, Springer (2001)

35. Russ, J.C.: The Image Processing Handbook, Fourth Edition, 4th edn. CRC Press,
Inc., Boca Raton (2002)

36. Russell, S.J., Norvig, P.: Artificial Intelligence. A Modern Approach. Prentice-
Hall, Englewood Cliffs (1995)

37. Wittgenstein, L.: Tractatus Logico-Philosophicus. Routledge, London (1974)

	Introduction
	Knowledge Representation
	Reality Perceived by Sensors
	Semantics of Knowledge
	Language

	Information Systems
	Complete Data
	Incomplete Data
	Multivalued Attributes

	Structural Objects
	Sequential Data Processing
	Syntactic Rules
	Data Sequence Representation
	Parser Algorithm
	Semantic Values of Grammar Symbols
	Semantic Attachments

	Set Approximations
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

