Star exercises - series II
 Languages, automata and computations II

Deadline: February 4th, 2020
By email to: wczerwin@mimuw.edu.pl

1. Universality for deterministic VASS

Consider a labelled VASS, where every transition is labelled by some letter from a finite alphabet Σ, no ε-labelled transitions are allowed. Such a VASS together with initial configuration $(p, v) \in Q \times \mathbb{N}^{d}$ and a final set of states $F \subseteq Q$ defines a VASS language in a natural way. A VASS is deterministic if for any state $q \in Q$ and letter $a \in \Sigma$ there exists at most one transition outgoing from q and a-labelled. Provide a deterministic polynomial time algorithm, which for a language L of a deterministic VASS decides whether L is universal, i.e. whether $L=\Sigma^{*}$.

2. Short run in $\mathbb{N} \times \mathbb{Z}$-VAS

Consider a system called $\mathbb{N} \times \mathbb{Z}$-VAS defined by a set of transitions $T \subseteq \mathbb{Z}^{2}$. Configuration in this system is a vector $v \in \mathbb{N} \times \mathbb{Z}$, i.e. first coordinate has to be nonnegative, but second not necessarily. Transitions between configurations are defined as usual in VASes. Let M be the maximal absolute value of a number occurring in a transition. Show that if there is a path from $(0,0)$ to $(0,1)$ then there exists such a path of length at most polynomial in M.
Hint: Use the following Steinitz lemma. Let vectors $v_{1}, \ldots, v_{n} \in \mathbb{R}^{d}$ sum up to zero vector and all the coordinates of all v_{i} have absolute value at most 1 (i.e. their infinity norm is at most 1). Then there exists a permutation $v_{1}^{\prime}, \ldots, v_{n}^{\prime}$ of the above vectors such that every point reachable by a path starting in zero vector and firing consecutively vectors $v_{1}^{\prime}, \ldots, v_{n}^{\prime}$ has the infinite norm bounded by d.

3. Marble automata

A deterministic two-way automaton with k-marbles is a model that can mark some positions with marbles as it moves around the input word. All marbles are different, so it knows if it sees the 1st or the 5 th marble. The marbles in the word have to satisfy the interval condition - the set of marbles that is currently "in use" has to be an interval ($[1 . i]$ for some i), or be empty. Formally a two-way automaton with k-marbles consists of:

- a finite input alphabet Σ
- a finite set of states Q,
- a transition function

$$
f:(\Sigma+\{\vdash, \dashv\}) \times Q \times \overbrace{P(\{1,2, \ldots k\})}^{\text {currently seen marbles }} \rightarrow \text { Actions } \times Q
$$

where Actions is the following set:

- accept/reject
- go left/right
- put the smallest unused marble in the current position
- collect marbles $[i, i+1, \ldots k]$ from the word (for any i).

The automaton runs on the word $\vdash w \dashv$, for $w \in \Sigma^{*}$. If the automaton loops, or exits the word the automaton rejects it. Note that the automaton doesn't have to see the marble in order to collect it.
Prove that for every k deterministic two-way automata with k marbles recognize exactly regular languages.

