Star exercises - series I
 Languages, automata and computations II

Deadline: January 13th, 2020
By email to: wczerwin@mimuw.edu.pl

1. Boundedly repeating words

We say that an ω-word $w \in \Sigma^{\omega}$ is boundedly repeating if for every finite infix $v \in \Sigma^{*}$ that occurs infinitely many times in w there exists a bound B such that infix v occurs in every infix of w of length B. In other words for every i word v is an infix of $w[i] w[i+1] \cdots w[i+B-1]$. Every ultimately periodic word is boundedly repeating, but there exists boundedly repeating words, which are not ultimately periodic. A notable example is the Thue-Morse word. A cross product of two ω-words $u \in \Sigma^{\omega}, v \in \Gamma^{\omega}$ is a word $w \times v \in(\Sigma \times \Gamma)^{\omega}$ defined as $(u \times v)[i]=(u[i], v[i])$. Decide whether cross product of two boundedly repeating words is also a boundedly repeating word.

2. Characterization of ω-regular languages

For any ω-language $L \subseteq \Sigma^{\omega}$ we say that relation $\sim \subseteq \Sigma^{*} \times \Sigma^{*}$ is L-compatible if both following conditions hold:

1. For all infinite sequences u_{i}, v_{i} of finite words such that $u_{i} \sim v_{i}$ for all $i \in \mathbb{N}$ it holds $u_{1} u_{2} \cdots \in L \Longleftrightarrow v_{1} v_{2} \cdots \in L$.
2. For all $u_{1}, u_{2}, v_{1}, v_{2} \in \Sigma^{*}$ it holds: if $u_{1} \sim v_{1}$ and $u_{2} \sim v_{2}$ then $u_{1} u_{2} \sim v_{1} v_{2}$.

Show that language L is ω-regular if and only if there exists an L-compatible relation with finite index.
Hint: It can be useful to use Infinite Ramsey Theorem: in every infinite clique with edges colored on finite number of colors there exists a monochromatic infinite clique.

3. Fixed ambiguous automata

A finite automaton \mathcal{A} is k-ambiguous if for every word accepted by \mathcal{A} there is exactly k accepting runs of \mathcal{A} on that word. Decide whether there is a polynomial algorithm which decides universality, i.e. answers whether a given k-ambiguous automaton \mathcal{A} fulfills $L(\mathcal{A})=\Sigma^{*}$.
Remark: An NP-hardness or coNP-hardness is treated as a solution, as this means that there is no polynomial time algorithm unless $\mathrm{P}=\mathrm{NP}$.

4. Co-finiteness of UFA

Decide whether there exists a polynomial time algorithm deciding whether language of a given unambiguous finite automaton \mathcal{A} is co-finite, i.e. whether $\Sigma^{*} \backslash L(\mathcal{A})$ is finite.
Remark: An NP-hardness or coNP-hardness is treated as a solution, as this means that there is no polynomial time algorithm unless $\mathrm{P}=\mathrm{NP}$.

5. Distance automata with more counters

Consider the following extension of a distance automaton. Instead of having
a set of costly transitions, we have two counters $\{1,2\}$ and each transition is labelled by an instruction from the following toolkit:

- do nothing;
- increment counter 1 ;
- reset counter 1;
- reset counter 1 and increment counter 2;
- reset both counters.

The value of a run is the biggest value attained by any counter. Prove that limitedness is decidable for these automata, using the limitedness game.

6. Separation

Prove that the following problem is decidable:

- Input: Regular word languages $L, K \subseteq \Sigma^{*}$, given say by deterministic automata.
- Question: Is there a language of star height 1 which contains L but is disjoint with K ? A language of star height 1 is a language which can be defined by a regular expression, without complement, where the Kleene star is allowed, but it cannot be nested.

As a hint, use the previous exercise.

