Branching Bisimilarity on Normed BPA Processes is in \text{NEXPTIME}

Wojciech Czerwiński

Petr Jančar
Bisimulation
Bisimulation

Given labelled (multi)graph
Bisimulation

Given labelled (multi)graph

Bisimulation - equivalence on the set of nodes
Bisimulation

Given labelled (multi)graph

Bisimulation - equivalence on the set of nodes
Bisimulation

Given labelled (multi)graph

Bisimulation - equivalence on the set of nodes
Bisimulation

Given labelled (multi)graph

Bisimulation - equivalence on the set of nodes
Bisimulation

Given labelled (multi)graph

Bisimulation - equivalence on the set of nodes
Weak bisimulation
Weak bisimulation
Weak bisimulation

\[\text{a} \]
Weak bisimulation
Weak bisimulation
Weak bisimulation
Weak bisimulation
Weak bisimulation
Weak bisimulation
Branching bisimulation
BPA Processes
BPA Processes

BPA = stateless pushdown automaton
BPA Processes

BPA = stateless pushdown automaton

$X \xrightarrow{a} \alpha$ in the automaton
BPA Processes

BPA = stateless pushdown automaton

\[X \xrightarrow{a} \alpha \text{ in the automaton} \]
BPA Processes

BPA = stateless pushdown automaton

\[X \xrightarrow{a} \alpha \text{ in the automaton} \]

\[X\beta \xrightarrow{a} \alpha\beta \text{ in the multigraph} \]
BPA Processes

BPA = stateless pushdown automaton

\[X \xrightarrow{a} \alpha \text{ in the automaton} \]

\[\downarrow \]

\[X\beta \xrightarrow{a} \alpha\beta \text{ in the multigraph} \]

Normedness: every variable has a path to the empty configuration
Problem
Problem

Given: normed BPA, configurations α and β
Problem

Given: normed BPA, configurations α and β

Question: is α branching bisimilar to β?
Main result
Main result

Theorem
Branching bisimilarity on normed BPA is in NExpTime
History (personal view)
History (personal view)

- a lot of research on bisimilarity checking (since 90-ties)
History (personal view)

- a lot of research on bisimilarity checking (since 90-ties)
- branching bisimilarity on normed BPA is EXPTIME-hard (Mayr `04)
History (personal view)

- a lot of research on bisimilarity checking (since 90-ties)
- branching bisimilarity on normed BPA is EXPTIME-hard (Mayr `04)
- br. bis. on normed BPP is decidable (C., Hofman, Lasota `11)
History (personal view)

- a lot of research on bisimilarity checking (since 90-ties)
- branching bisimilarity on normed BPA is EXPTIME-hard (Mayr `04)
- br. bis. on normed BPP is decidable (C., Hofman, Lasota `11)
- br. bis. on normed BPA is decidable (Fu `13)
History (personal view)

- a lot of research on bisimilarity checking (since 90-ties)
- branching bisimilarity on normed BPA is EXPTIME-hard (Mayr `04)
- br. bis. on normed BPP is decidable (C., Hofman, Lasota `11)
- br. bis. on normed BPA is decidable (Fu `13)
- br. bis. on normed BPA is in NEXPTIME (now)
History (personal view)

- a lot of research on bisimilarity checking (since 90-ties)
- branching bisimilarity on normed BPA is EXPTIME-hard (Mayr `04)
- br. bis. on normed BPP is decidable (C., Hofman, Lasota `11)
- br. bis. on normed BPA is decidable (Fu `13)
- br. bis. on normed BPA is in NEXPTIME (now)
- br. bis. on normed BPA is EXPTIME-comp. (He, Huang LICS`15)
Idea
Idea

• show that branching bisimilarity can be represented by an exponential base
Idea

• show that branching bisimilarity can be represented by an exponential base

• guess an exponential base
Idea

• show that branching bisimilarity can be represented by an exponential base

• guess an exponential base

• verify its correctness
Idea

• show that branching bisimilarity can be represented by an exponential base
• guess an exponential base
• verify its correctness
• check whether \((\alpha, \beta)\) belongs to guessed relation
Unique prime decomposition
Unique prime decomposition

• idea - from the strong bisimulation
Unique prime decomposition

- idea - from the strong bisimulation
- variables: decomposable or prime
Unique prime decomposition

• idea - from the strong bisimulation

• variables: decomposable or prime

• every decomposable has a decomposition into primes
Unique prime decomposition

• idea - from the strong bisimulation

• variables: decomposable or prime

• every decomposable has a decomposition into primes

• every configuration - exactly one equivalent configuration using only primes
Unique prime decomposition

- idea - from the strong bisimulation
- variables: decomposable or prime
- every decomposable has a decomposition into primes
- every configuration - exactly one equivalent configuration using only primes
- bisimilarity = equality of prime forms
For branching bisimulation
For branching bisimulation

unique decomposition does not work!
For branching bisimulation

unique decomposition does not work!

A $\xrightarrow{a} A$
For branching bisimulation

unique decomposition does not work!

\[A \xrightarrow{a} A \quad \text{and} \quad A \xrightarrow{a} \varepsilon \]
For branching bisimulation

unique decomposition does not work!

\[
\begin{align*}
A \xrightarrow{a} A & \quad & A \xrightarrow{a} \varepsilon & \quad & A \xrightarrow{} \varepsilon
\end{align*}
\]
For branching bisimulation

unique decomposition does not work!

$A \xrightarrow{a} A \quad A \xrightarrow{a} \epsilon \quad A \rightarrow \epsilon$

$A \sim AA$
For branching bisimulation

unique decomposition does not work!

\[
\begin{align*}
A & \xrightarrow{a} A \\
A & \xrightarrow{a} \varepsilon \\
A & \xrightarrow{} \varepsilon \\
A & \sim AA \\
A & \not\sim \varepsilon
\end{align*}
\]
For branching bisimulation

unique decomposition does not work!

\[A \xrightarrow{a} A \quad A \xrightarrow{a} \varepsilon \quad A \xrightarrow{} \varepsilon \]

\[A \sim AA \quad A \not\sim \varepsilon \]

\[\text{pf}(A) = \text{pf}(A) \quad \text{pf}(A) \Rightarrow \text{pf}(A) = \varepsilon \]
For branching bisimulation

unique decomposition does not work!

\[A \xrightarrow{a} A \quad A \xrightarrow{a} \varepsilon \quad A \rightarrow \varepsilon \]

\[A \sim AA \quad A \not\sim \varepsilon \]

\[\text{pf}(A) = \text{pf}(A) \quad \text{pf}(A) \Rightarrow \text{pf}(A) = \varepsilon \]

some more ideas needed!
Redundant variables
Redundant variables

\[\text{RED}(\alpha) = \{X : X\alpha \sim \alpha\} \]
Redundant variables

\[\text{RED}(\alpha) = \{X: X\alpha \sim \alpha\} \]

redundant variables provide full information about the suffix:
Redundant variables

\[RED(\alpha) = \{ X : X\alpha \sim \alpha \} \]

redundant variables provide full information about the suffix:

\[RED(\alpha) = RED(\beta) \Rightarrow (\gamma\alpha \sim \delta\alpha \Leftrightarrow \gamma\beta \sim \delta\beta) \]
Main technical contribution
Main technical contribution

- relative decomposition works!
Main technical contribution

• relative decomposition works!
• decomposition depends on the suffix
Main technical contribution

• relative decomposition works!
• decomposition depends on the suffix
• concretely: on the RED(suffix)
Main technical contribution

- relative decomposition works!
- decomposition depends on the suffix
- concretely: on the RED(suffix)
- one decomposition system for every \(R \subseteq \text{Var} \) is enough
Main technical contribution

- relative decomposition works!
- decomposition depends on the suffix
- concretely: on the RED(suffix)
- one decomposition system for every $R \subseteq \text{Var}$ is enough
- unique decomposition: still exactly one fully decomposed form!
Base
Base

- an exponential description of bisimilarity
Base

- an exponential description of bisimilarity
- for every \(R \subseteq \text{Var} \):
Base

• an exponential description of bisimilarity

• for every $R \subseteq \text{Var}$:

 • set of R-primes, R-decomposables and decompositions for them
Base

• an exponential description of bisimilarity
• for every $R \subseteq \text{Var}$:
 • set of R-primes, R-decomposables and decompositions for them
• for every $X \in \text{Var}$ a rule $R \xrightarrow{X} R'$
 $(\text{RED}(\alpha) = R \Rightarrow \text{RED}(X\alpha) = R')$
Algorithm
Algorithm

• guess a base (exponential)
Algorithm

• guess a base (exponential)
• verify it (nontrivial):
Algorithm

- guess a base (exponential)
- verify it (nontrivial):
 - check that defined relation is indeed a branching bisimulation
Algorithm

- guess a base (exponential)
- verify it (nontrivial):
 - check that defined relation is indeed a branching bisimulation
 - possible due to a new, elegant class change norm (due to Fu)
Algorithm

- guess a base (exponential)
- verify it (nontrivial):
 - check that defined relation is indeed a branching bisimulation
 - possible due to a new, elegant class change norm (due to Fu)
 - check only not too big responses
Class change norm
Class change norm

• how many class changes needed to reach \(\varepsilon \)
Class change norm

• how many class changes needed to reach ε

• $\alpha \sim \beta \Rightarrow \text{cc-norm}(\alpha) = \text{cc-norm}(\beta)$
Class change norm

- how many class changes needed to reach ε
- $\alpha \sim \beta \Rightarrow \text{cc-norm}(\alpha) = \text{cc-norm}(\beta)$
- cc-norm does not change too much \Rightarrow short responses are enough
Class change norm

- how many class changes needed to reach ε
- $\alpha \sim \beta \Rightarrow \text{cc-norm}(\alpha) = \text{cc-norm}(\beta)$
- cc-norm does not change too much \Rightarrow
 short responses are enough
- correctness possible to verify
Thank you!