
Techniques
for

Unambiguous Systems

Wojciech Czerwiński

GandALF 2022

Plan

• unambiguity

Plan

• unambiguity

• equivalence of FA

Plan

• unambiguity

• equivalence of FA

• weighted automata (Schutzenberger `61)

Plan

• unambiguity

• equivalence of FA

• weighted automata (Schutzenberger `61)

• equivalence of VASSes

Plan

• unambiguity

• equivalence of FA

• weighted automata (Schutzenberger `61)

• equivalence of VASSes

• lookahead technique (Cz., Hofman `22)

Plan

• unambiguity

• equivalence of FA

• weighted automata (Schutzenberger `61)

• equivalence of VASSes

• lookahead technique (Cz., Hofman `22)

• connections to other fields

Plan

Unambiguity

Unambiguity

for each word there is at most one accepting run

Unambiguity

for each word there is at most one accepting run

more expressive than deterministic

Unambiguity

for each word there is at most one accepting run

more expressive than deterministic

many problems become simpler

Unambiguity

for each word there is at most one accepting run

more expressive than deterministic

many problems become simpler

mathematically interesting

Unambiguity

for each word there is at most one accepting run

more expressive than deterministic

many problems become simpler

mathematically interesting

recently a lot of research

Simplicity

Simplicity
many problems become simpler:

Simplicity
many problems become simpler:

universality for UFA (PTime vs PSpace)

Simplicity
many problems become simpler:

universality for UFA (PTime vs PSpace)

equivalence for UFA (PTime vs PSpace)

Simplicity
many problems become simpler:

universality for UFA (PTime vs PSpace)

equivalence for UFA (PTime vs PSpace)

equivalence for URA (ExpTime vs undec)

Simplicity
many problems become simpler:

universality for UFA (PTime vs PSpace)

equivalence for UFA (PTime vs PSpace)

equivalence for URA (ExpTime vs undec)

equivalence for UVASS (Ackermann vs undec)

UFA equivalence

UFA equivalence

reduction to weighted automata

UFA equivalence

reduction to weighted automata

reduction to zeroness problem

UFA equivalence

reduction to weighted automata

reduction to zeroness problem

solving zeroness

Weighted automata

Weighted automata

b, 1
qp

a, 2b, 1
a, 1

3 1

Weighted automata

b, 1
qp

a, 2b, 1
a, 1

3 1

weight of a run = product of transition weights

Weighted automata

b, 1
qp

a, 2b, 1
a, 1

3 1

weight of a run = product of transition weights

weight of a word = sum of run weights

Weighted automata

b, 1
qp

a, 2b, 1
a, 1

3 1

weight of a run = product of transition weights

weight of a word = sum of run weights

w(abbaabaaa) = 24

UFA to WA

UFA to WA

L(A) = L(B) ⇔ A’ and B’ equivalent

UFA to WA

L(A) = L(B) ⇔ A’ and B’ equivalent

each transition has weight 1

UFA to WA

L(A) = L(B) ⇔ A’ and B’ equivalent

each transition has weight 1

input weights of initial states are 1

UFA to WA

L(A) = L(B) ⇔ A’ and B’ equivalent

each transition has weight 1

input weights of initial states are 1

output weights of final states are 1

Zeroness

Zeroness

A’ and B’ equivalent ⇔ A’(w)-B’(w) is constantly zero

Zeroness

A’ and B’ equivalent ⇔ A’(w)-B’(w) is constantly zero

construct C such that C(w) = A’(w)-B’(w)

Zeroness

A’ and B’ equivalent ⇔ A’(w)-B’(w) is constantly zero

enough to check zeroness for WA!

construct C such that C(w) = A’(w)-B’(w)

Zeroness

A’ and B’ equivalent ⇔ A’(w)-B’(w) is constantly zero

enough to check zeroness for WA!

solves also multiplicity equivalence!

construct C such that C(w) = A’(w)-B’(w)

Solving zeroness

Solving zeroness

Fix A with n states

Solving zeroness

Fix A with n states Consider vec(w) in ℤn

Solving zeroness

Fix A with n states Consider vec(w) in ℤn

Let Vk be spanned by vec(w)
for words of length at most k

Solving zeroness

Fix A with n states Consider vec(w) in ℤn

Let Vk be spanned by vec(w)
for words of length at most k

weight(w) = out(vec(w))

Solving zeroness

Fix A with n states Consider vec(w) in ℤn

Let Vk be spanned by vec(w)
for words of length at most k

A is zero ⇔ all Vk ⊆ ker(out)

weight(w) = out(vec(w))

Solving zeroness

Fix A with n states Consider vec(w) in ℤn

Let Vk be spanned by vec(w)
for words of length at most k

A is zero ⇔ all Vk ⊆ ker(out)

Enough to compute Vk

weight(w) = out(vec(w))

Solving zeroness

Solving zeroness
A is zero ⇔ all Vk ⊆ ker(out)

Solving zeroness
A is zero ⇔ all Vk ⊆ ker(out)

V0 is spanned by vec(ε)

Solving zeroness
A is zero ⇔ all Vk ⊆ ker(out)

V0 is spanned by vec(ε)

compute Vk+1 from Vk

Solving zeroness
A is zero ⇔ all Vk ⊆ ker(out)

V0 is spanned by vec(ε)

compute Vk+1 from Vk

Vk+1 is generated by

Solving zeroness
A is zero ⇔ all Vk ⊆ ker(out)

V0 is spanned by vec(ε)

compute Vk+1 from Vk

Vk+1 is generated by generators of Vk after transitions

Solving zeroness
A is zero ⇔ all Vk ⊆ ker(out)

V0 is spanned by vec(ε)

compute Vk+1 from Vk

Vk+1 is generated by generators of Vk after transitions

and generators of Vk

Solving zeroness

Solving zeroness

A is zero ⇔ all Vk ⊆ ker(out)

Solving zeroness

A is zero ⇔ all Vk ⊆ ker(out)
V0 is spanned

by vec(ε)

Solving zeroness

A is zero ⇔ all Vk ⊆ ker(out)
V0 is spanned

by vec(ε)

either dim(Vk+1) > dim(Vk)

Solving zeroness

A is zero ⇔ all Vk ⊆ ker(out)
V0 is spanned

by vec(ε)

or Vk+1 = Vkeither dim(Vk+1) > dim(Vk)

Solving zeroness

A is zero ⇔ all Vk ⊆ ker(out)
V0 is spanned

by vec(ε)

or Vk+1 = Vk

algorithm:

either dim(Vk+1) > dim(Vk)

Solving zeroness

A is zero ⇔ all Vk ⊆ ker(out)
V0 is spanned

by vec(ε)

or Vk+1 = Vk

algorithm: compute Vk until stabilisation

either dim(Vk+1) > dim(Vk)

Solving zeroness

A is zero ⇔ all Vk ⊆ ker(out)
V0 is spanned

by vec(ε)

or Vk+1 = Vk

check if included in ker(out)

algorithm: compute Vk until stabilisation

either dim(Vk+1) > dim(Vk)

Solving zeroness

A is zero ⇔ all Vk ⊆ ker(out)
V0 is spanned

by vec(ε)

or Vk+1 = Vk

check if included in ker(out)

algorithm: compute Vk until stabilisation

either dim(Vk+1) > dim(Vk)

In PTime!

Vector Addition Systems
with States

Vector Addition Systems
with States

(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

Vector Addition Systems
with States

(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

p(2,0,7)

Vector Addition Systems
with States

(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

p(2,0,7) p(1,1,7)

Vector Addition Systems
with States

(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

p(2,0,7) p(0,2,7) p(1,1,7)

Vector Addition Systems
with States

(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

p(2,0,7) p(0,2,7) q(0,2,7) p(1,1,7)

Vector Addition Systems
with States

(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

p(2,0,7) p(0,2,7) q(0,2,7) q(2,1,7) p(1,1,7)

Vector Addition Systems
with States

(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

p(2,0,7) p(0,2,7) q(0,2,7) q(2,1,7) p(1,1,7)

q(4,0,7)

Vector Addition Systems
with States

(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

p(2,0,7) p(0,2,7) q(0,2,7) q(2,1,7)

p(4,0,6)

p(1,1,7)

q(4,0,7)

Vector Addition Systems
with States

(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

p(2,0,7) p(0,2,7) q(0,2,7) q(2,1,7)

p(4,0,6)

p(1,1,7)

q(4,0,7) Petri nets

Language of a VASS

Language of a VASS

VASS = vector addition system with states

Language of a VASS

VASS = vector addition system with states

initial configuration, acceptance by states

Language of a VASS

VASS = vector addition system with states

initial configuration, acceptance by states

detVASS = each reachable configuration is deterministic

Equivalence for VASS

Equivalence for VASS

for 2-dimensional VASSes - undecidable

Equivalence for VASS

for 2-dimensional VASSes - undecidable

for deterministic VASSes - decidable

Equivalence for VASS

for 2-dimensional VASSes - undecidable

for deterministic VASSes - decidable

unambiguous?

Equivalence for VASS

for 2-dimensional VASSes - undecidable

for deterministic VASSes - decidable

unambiguous?

decidable, Ackermann-complete

Equivalence for VASS

for 2-dimensional VASSes - undecidable

for deterministic VASSes - decidable

unambiguous?

decidable, Ackermann-complete CONCUR 2022

Zeroness?

Zeroness?

zeroness decidable?

Zeroness?

zeroness decidable?

multiplicity equivalence undecidable for VASSes

Zeroness?

zeroness decidable?

multiplicity equivalence undecidable for VASSes

Petr Jancar 2001
Nonprimitive recursive complexity and
undecidability for Petri net equivalences

Zeroness?

zeroness decidable?

multiplicity equivalence undecidable for VASSes

reduction to a deterministic case!

Petr Jancar 2001
Nonprimitive recursive complexity and
undecidability for Petri net equivalences

Idea

Idea

add information to get determinism

Idea

add information to get determinism lookahead

Idea

add information to get determinism

does the suffix belong to several fixed regular languages?

lookahead

Idea

add information to get determinism

does the suffix belong to several fixed regular languages?

best captured by a monoid

lookahead

Idea

add information to get determinism

does the suffix belong to several fixed regular languages?

best captured by a monoid h: Σ*→ M

lookahead

Idea

add information to get determinism

does the suffix belong to several fixed regular languages?

best captured by a monoid h: Σ*→ M

lookahead

For each regular L over Σ
there are h: Σ*→ M and F ⊆ M

such that L = h-1(F).

Reduction

Reduction
Let h: Σ*→ M

Reduction
Let h: Σ*→ M Then maph: Σ*→ (Σ×M)*

Reduction
Let h: Σ*→ M

maph(a b c) = (*, h(abc)) (a, h(bc)) (b, h(c)) (c, h(ε))
Then maph: Σ*→ (Σ×M)*

Reduction
Let h: Σ*→ M

maph(a b c) = (*, h(abc)) (a, h(bc)) (b, h(c)) (c, h(ε))
Then maph: Σ*→ (Σ×M)*

Claim 1: For each h: Σ*→ M it holds
K ⊆ L ⇔ maph(K) ⊆ maph(L)

Reduction
Let h: Σ*→ M

maph(a b c) = (*, h(abc)) (a, h(bc)) (b, h(c)) (c, h(ε))
Then maph: Σ*→ (Σ×M)*

Claim 1: For each h: Σ*→ M it holds
K ⊆ L ⇔ maph(K) ⊆ maph(L)

Claim 2: For each h: Σ*→ M and each VASS V
one can construct another VASS Vh accepting maph(L(V))

Reduction
Let h: Σ*→ M

maph(a b c) = (*, h(abc)) (a, h(bc)) (b, h(c)) (c, h(ε))
Then maph: Σ*→ (Σ×M)*

Claim 1: For each h: Σ*→ M it holds
K ⊆ L ⇔ maph(K) ⊆ maph(L)

Claim 2: For each h: Σ*→ M and each VASS V
one can construct another VASS Vh accepting maph(L(V))

Goal: choose h such that both Vh are deterministic

Reduction

Reduction
Claim 2: For each h: Σ*→ M and each VASS V

one can construct another VASS Vh accepting maph(L(V))

Reduction
Claim 2: For each h: Σ*→ M and each VASS V

one can construct another VASS Vh accepting maph(L(V))

States are pairs in
Q × M ∪ {(init, $)}

Reduction
Claim 2: For each h: Σ*→ M and each VASS V

one can construct another VASS Vh accepting maph(L(V))

States are pairs in
Q × M ∪ {(init, $)}

initial is (init, $)

Reduction
Claim 2: For each h: Σ*→ M and each VASS V

one can construct another VASS Vh accepting maph(L(V))

States are pairs in
Q × M ∪ {(init, $)} final are F × {h(ε)}

initial is (init, $)

Reduction
Claim 2: For each h: Σ*→ M and each VASS V

one can construct another VASS Vh accepting maph(L(V))

States are pairs in
Q × M ∪ {(init, $)}

For a transition

final are F × {h(ε)}
initial is (init, $)

Reduction
Claim 2: For each h: Σ*→ M and each VASS V

one can construct another VASS Vh accepting maph(L(V))

States are pairs in
Q × M ∪ {(init, $)}

For a transition p q
v
a

final are F × {h(ε)}
initial is (init, $)

Reduction
Claim 2: For each h: Σ*→ M and each VASS V

one can construct another VASS Vh accepting maph(L(V))

States are pairs in
Q × M ∪ {(init, $)}

For a transition p q
v
a

We create

final are F × {h(ε)}
initial is (init, $)

Reduction
Claim 2: For each h: Σ*→ M and each VASS V

one can construct another VASS Vh accepting maph(L(V))

States are pairs in
Q × M ∪ {(init, $)}

For a transition p q
v
a

We create (p,m) (q,m’)
v

(a,m’)

final are F × {h(ε)}
initial is (init, $)

Reduction
Claim 2: For each h: Σ*→ M and each VASS V

one can construct another VASS Vh accepting maph(L(V))

States are pairs in
Q × M ∪ {(init, $)}

For a transition p q
v
a

We create (p,m) (q,m’)
v

(a,m’)

if m = h(a) m’ or m = $, a = *

final are F × {h(ε)}
initial is (init, $)

Separability

Separability
Languages K and L are regular-separable

if there is a regular S such that
K ⊆ S and L ∩ S = ∅.

Separability
Languages K and L are regular-separable

if there is a regular S such that
K ⊆ S and L ∩ S = ∅.

K

Separability
Languages K and L are regular-separable

if there is a regular S such that
K ⊆ S and L ∩ S = ∅.

K L

Separability
Languages K and L are regular-separable

if there is a regular S such that
K ⊆ S and L ∩ S = ∅.

S
K L

Separability
Languages K and L are regular-separable

if there is a regular S such that
K ⊆ S and L ∩ S = ∅.

S
K L

Theorem [Cz., Lasota, Meyer, Muskalla, Kumar, Saivasan]
Each two disjoint VASS languages are regular-separable.

Separability

Separability
Theorem For each VASS V there is
a finite family of regular languages 𝓕V

such that if L(c1) and L(c2) are disjointed then
they are separable by some language from 𝓕V.

Separability

Claim 3: For each unambiguous VASS V and h: Σ*→ M
recognising all the languages from 𝓕V

the extended VASS V’h is deterministic and computable.

Theorem For each VASS V there is
a finite family of regular languages 𝓕V

such that if L(c1) and L(c2) are disjointed then
they are separable by some language from 𝓕V.

Separability

Claim 3: For each unambiguous VASS V and h: Σ*→ M
recognising all the languages from 𝓕V

the extended VASS V’h is deterministic and computable.

So language equivalence is decidable for UVASSes

Theorem For each VASS V there is
a finite family of regular languages 𝓕V

such that if L(c1) and L(c2) are disjointed then
they are separable by some language from 𝓕V.

Determinism

Determinism
Claim 3: For each unambiguous VASS V and h: Σ*→ M

recognising all the languages from 𝓕V

the extended VASS V’h is deterministic and computable.

Determinism
Claim 3: For each unambiguous VASS V and h: Σ*→ M

recognising all the languages from 𝓕V

the extended VASS V’h is deterministic and computable.

(a, m)

(a, m)

(c1, m)

(c2, m)

Determinism
Claim 3: For each unambiguous VASS V and h: Σ*→ M

recognising all the languages from 𝓕V

the extended VASS V’h is deterministic and computable.

if L(c1) and L(c2) both nonempty then they intersect

(a, m)

(a, m)

(c1, m)

(c2, m)

Determinism
Claim 3: For each unambiguous VASS V and h: Σ*→ M

recognising all the languages from 𝓕V

the extended VASS V’h is deterministic and computable.

if L(c1) and L(c2) both nonempty then they intersect

this contradicts unambiguity!

(a, m)

(a, m)

(c1, m)

(c2, m)

Determinism
Claim 3: For each unambiguous VASS V and h: Σ*→ M

recognising all the languages from 𝓕V

the extended VASS V’h is deterministic and computable.

if L(c1) and L(c2) both nonempty then they intersect

this contradicts unambiguity!

(a, m)

(a, m)

(c1, m)

(c2, m)

so Vh is deterministic after removing c with L(c) = ∅

Multiplicity equivalence

Multiplicity equivalence

finite automata: in PTime

Multiplicity equivalence

finite automata: in PTime

context-free grammars: decidability is a big open problem

Multiplicity equivalence

finite automata: in PTime

context-free grammars: decidability is a big open problem

maybe a better semantics?

Multiplicity equivalence

finite automata: in PTime

context-free grammars: decidability is a big open problem

ℤ-VASSes, one letter: decidable, holonomic sequences
(Bostan et al., ICALP `2020)

maybe a better semantics?

Multiplicity equivalence

finite automata: in PTime

context-free grammars: decidability is a big open problem

ℤ-VASSes, one letter: decidable, holonomic sequences
(Bostan et al., ICALP `2020)

one ℤ-counter: connections to complex analysis

maybe a better semantics?

Future work

Future work

What makes unambiguous system easier?

Future work

What makes unambiguous system easier?

Is the lookahead trick more universal?

Future work

What makes unambiguous system easier?

Is the lookahead trick more universal?

Connections between unambiguity and separability?

Future work

What makes unambiguous system easier?

Exploring multiplicity equivalence

Is the lookahead trick more universal?

Connections between unambiguity and separability?

Future work

What makes unambiguous system easier?

Thank you!

Exploring multiplicity equivalence

Is the lookahead trick more universal?

Connections between unambiguity and separability?

