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Unambiguity

for each word there is at most one accepting run

more expressive than deterministic

many problems become simpler

mathematically interesting

recently a lot of research
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many problems become simpler:

universality for UFA (PTime vs PSpace)

equivalence for UFA (PTime vs PSpace)

equivalence for URA (ExpTime vs undec)

equivalence for UVASS (Ackermann vs undec)
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Weighted automata

b, 1
qp

a, 2b, 1
a, 1

3 1

weight of a run = product of transition weights

weight of a word = sum of run weights

w(abbaabaaa) = 24
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UFA to WA

L(A) = L(B) ⇔ A’ and B’ equivalent

each transition has weight 1

input weights of initial states are 1

output weights of final states are 1
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Zeroness

A’ and B’ equivalent ⇔ A’(w)-B’(w) is constantly zero

enough to check zeroness for WA!

solves also multiplicity equivalence!

construct C such that C(w) = A’(w)-B’(w)
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Solving zeroness

Fix A with n states Consider vec(w) in ℤn 

Let Vk be spanned by vec(w)
for words of length at most k

A is zero ⇔ all Vk ⊆ ker(out)

Enough to compute Vk

weight(w) = out(vec(w))
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A is zero ⇔ all Vk ⊆ ker(out)

V0 is spanned by vec(ε)

compute Vk+1 from Vk

Vk+1 is generated by generators of  Vk after transitions

and generators of  Vk
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Solving zeroness

A is zero ⇔ all Vk ⊆ ker(out)
V0 is spanned 

by vec(ε)

or Vk+1 = Vk

check if included in ker(out)

algorithm: compute Vk until stabilisation

either dim(Vk+1) > dim(Vk)

In PTime!
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Vector Addition Systems 
with States

(0,0,-1)

(0,0,0)

(-1,1,0) (2,-1,0)qp

p(2,0,7) p(0,2,7) q(0,2,7) q(2,1,7) 

p(4,0,6) 

p(1,1,7) 

q(4,0,7) Petri nets
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Language of a VASS

VASS = vector addition system with states

initial configuration, acceptance by states

detVASS = each reachable configuration is deterministic 
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Equivalence for VASS

for 2-dimensional VASSes - undecidable

for deterministic VASSes - decidable

unambiguous?

decidable, Ackermann-complete CONCUR 2022
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Zeroness?

zeroness decidable?

multiplicity equivalence undecidable for VASSes

reduction to a deterministic case!

Petr Jancar 2001
Nonprimitive recursive complexity and 
undecidability for Petri net equivalences
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Idea

add information to get determinism

does the suffix belong to several fixed regular languages?

best captured by a monoid h: Σ*→ M

lookahead

For each regular L over Σ
there are h: Σ*→ M and F ⊆ M

such that L = h-1(F).
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Reduction
Let h: Σ*→ M

maph(a b c) = (*, h(abc)) (a, h(bc)) (b, h(c)) (c, h(ε))
Then maph: Σ*→ (Σ×M)*

Claim 1: For each h: Σ*→ M it holds
K ⊆ L ⇔ maph(K) ⊆ maph(L)

Claim 2: For each h: Σ*→ M and each VASS V
one can construct another VASS Vh accepting maph(L(V))

Goal: choose h such that both Vh are deterministic
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Reduction
Claim 2: For each h: Σ*→ M and each VASS V

one can construct another VASS Vh accepting maph(L(V))

States are pairs in
Q × M ∪ {(init, $)}

For a transition p q
v
a

We create (p,m) (q,m’)
v

(a,m’)

if m = h(a) m’  or   m = $, a = *

final are F × {h(ε)}
initial is (init, $) 



Separability



Separability
Languages K and L are regular-separable

if there is a regular S such that
K ⊆ S and L ∩ S = ∅.



Separability
Languages K and L are regular-separable

if there is a regular S such that
K ⊆ S and L ∩ S = ∅.

K



Separability
Languages K and L are regular-separable

if there is a regular S such that
K ⊆ S and L ∩ S = ∅.

K L



Separability
Languages K and L are regular-separable

if there is a regular S such that
K ⊆ S and L ∩ S = ∅.

S
K L



Separability
Languages K and L are regular-separable

if there is a regular S such that
K ⊆ S and L ∩ S = ∅.

S
K L

Theorem [Cz., Lasota, Meyer, Muskalla, Kumar, Saivasan]
Each two disjoint  VASS languages are regular-separable.
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Separability

Claim 3: For each unambiguous VASS V and h: Σ*→ M 
recognising all the languages from 𝓕V 

the extended VASS V’h is deterministic and computable.

So language equivalence is decidable for UVASSes 

Theorem For each VASS V there is
a finite family of regular languages 𝓕V

such that if L(c1) and L(c2) are disjointed then
they are separable by some language from 𝓕V.
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Determinism
Claim 3: For each unambiguous VASS V and h: Σ*→ M 

recognising all the languages from 𝓕V 

the extended VASS V’h is deterministic and computable.

if L(c1) and L(c2) both nonempty then they intersect 

this contradicts unambiguity!

(a, m)

(a, m)

(c1, m)

(c2, m)

so Vh is deterministic after removing c with L(c) = ∅
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Multiplicity equivalence

finite automata: in PTime

context-free grammars: decidability is a big open problem

ℤ-VASSes, one letter: decidable, holonomic sequences
(Bostan et al., ICALP `2020) 

one ℤ-counter: connections to complex analysis 

maybe a better semantics?
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Future work

What makes unambiguous system easier?

Thank you!

Exploring multiplicity equivalence

Is the lookahead trick more universal?

Connections between unambiguity and separability?


