VAS Coverability in ExpSpace

Fix a d dimensional Vector Addition System (VAS). For two configurations $x, y \in \mathbb{N}^{d}$ we say that x is bigger than y, denoted $x \succeq y$, if x is coordinstewise bigger or equal y. For two configurations source s and target t, both in \mathbb{N}^{d}, a path $s \longrightarrow t^{\prime}$ is a covering path from s to t if $t^{\prime} \succeq t$. The Coverability Problem asks for two given configurations $s, t \in \mathbb{N}^{d}$ whether there exists a covering path from s to t.

We present here a proof that Coverability Problem is in exponential space, a small modification of the original proof by Charles Rackoff from 1978 (The Covering and Boundedness Problems for Vector Addition Systems). It is clearly enough to show that for any two configurations s, t if there is a covering path from s to t then there is such of at most doubly exponential length, which is achieved by the Lemma below. Then algorithm for coverabilitily problem simply guesses such a path and it can verify in exponential space that it is indeed a correct guess.

Let norm of a vector be maximal absolute value of any of its entries and norm of a VAS be maximal norm of a transition of this VAS. Norm of a configuration is the norm of its vector. Length of a path is the number of transitions in it.

Lemma 1. Consider a VAS, which has a norm bounded by M and two its configurations $s, t \in \mathbb{N}^{d}$ such that norm of t is bounded by M (note that norm of s can be arbitrary). If there is a covering path from s to t then there is such of length at most $(M+1)^{(4 d)^{d-1}}$.

Proof. We proceed by induction on d. For $d=1$ it is immediate to show that any covering path, which does not repeat a configuration has length at most $M+1$.

For the induction step assume that ρ is a covering path $s \xrightarrow{\rho} t^{\prime}$ in a $d+1$ dimensional VAS. Let $B_{d}=(M+1)^{(4 d)^{d-1}}$. We distinguish two cases:

1. norm of every configuration on ρ is bounded by $(M+1) \cdot B_{d}$;
2. norm of some u on ρ exceeds $(M+1) \cdot B_{d}$.

Of course we can assume that no configuration on ρ appears more than once, otherwise we unpump ρ. Thus in case 1 length of ρ is bounded by $C=((M+$ 1) $\left.\cdot B_{d}\right)^{d+1}$, we estimate C from above later.

In case 2 length of ρ might be long, but we show that we can find another covering path ρ^{\prime}, which is short enough. Let u be the first configuration on ρ with norm exceeding $(M+1) \cdot B_{d}$. Let $s \xrightarrow{\rho_{1}} u \xrightarrow{\rho_{2}} t^{\prime}$. Clearly length of ρ_{1} is bounded by C, similarly as in case 1 . Now we aim at modifying ρ_{2} to obtain $u \xrightarrow{\rho_{3}} t^{\prime \prime}$ for some $t^{\prime \prime} \succeq t$ such that ρ_{3} is short too. Some coordinate in u is at least $(M+1) \cdot B_{d}$, assume without loss of generality that it is the last, $d+1$-th coordinate. We ignore for a moment this last coordinate in a whole VAS and by induction assumption we get that there is a path π of length at most B_{d} such that $u_{d} \xrightarrow{\pi} t_{d}^{\prime \prime}$. Here $u_{d}, t_{d} \in \mathbb{N}^{d}$ are obtained from $u, t \in \mathbb{N}^{d+1}$ by removing the last coordinate and $t_{d}^{\prime \prime} \in \mathbb{N}^{d}$ is some configuration fulfilling $t_{d}^{\prime \prime} \succeq t_{d}$. Then we remind
ourselves that coordinate $d+1$ exists, let $u \xrightarrow{\pi} t^{\prime \prime}$. It is clear by above reasoning that for all coordinates $i \in\{1, \ldots, d\}$ we have $t^{\prime \prime}[i] \geq t[i]$, but what happens on the last coordinate? By we assumption we have that $u[d+1] \geq(M+1) \cdot B_{d}$. Every of at most B_{d} transitions in π can decrease the last coordinate by at most M. So $t^{\prime \prime}[d+1] \geq(M+1) \cdot B_{d}-B_{d} \cdot M=B_{d} \geq M \geq t[d+1]$. Thus indeed $t^{\prime \prime} \succeq t$ and path $s \xrightarrow{\rho_{1}} u \xrightarrow{\rho_{3}} t^{\prime \prime}$ is a covering path from s to t. Length of $\rho^{\prime}=\rho_{1} \rho_{3}$ is at most $C+B_{d}$.

In order to finish the argument we have to show that $C+B_{d} \leq B_{d+1}=$ $(M+1)^{(4(d+1))^{d}}$. We perform very rough estimations:

$$
\begin{aligned}
& C+B_{d} \leq(M+1) \cdot C=(M+1) \cdot\left((M+1) \cdot B_{d}\right)^{d+1}=(M+1) \cdot\left((M+1) \cdot(M+1)^{(4 d)^{d-1}}\right)^{d+1} \\
& =(M+1)^{\left((4 d)^{d-1}+1\right)(d+1)+1} \leq(M+1)^{4 \cdot(4 d)^{d-1} \cdot(d+1)} \leq(M+1)^{(4(d+1))^{d}}=B_{d+1} .
\end{aligned}
$$

This finishes the proof.

