
VAS Coverability in ExpSpace

Fix a d dimensional Vector Addition System (VAS). For two configurations
x, y ∈ Nd we say that x is bigger than y, denoted x � y, if x is coordinstewise
bigger or equal y. For two configurations source s and target t, both in Nd, a
path s −→ t′ is a covering path from s to t if t′ � t. The Coverability Problem

asks for two given configurations s, t ∈ Nd whether there exists a covering path
from s to t.

We present here a proof that Coverability Problem is in exponential space,
a small modification of the original proof by Charles Rackoff from 1978 (The
Covering and Boundedness Problems for Vector Addition Systems). It is clearly
enough to show that for any two configurations s, t if there is a covering path
from s to t then there is such of at most doubly exponential length, which is
achieved by the Lemma below. Then algorithm for coverabilitily problem simply
guesses such a path and it can verify in exponential space that it is indeed a
correct guess.

Let norm of a vector be maximal absolute value of any of its entries and norm
of a VAS be maximal norm of a transition of this VAS. Norm of a configuration
is the norm of its vector. Length of a path is the number of transitions in it.

Lemma 1. Consider a VAS, which has a norm bounded by M and two its con-
figurations s, t ∈ Nd such that norm of t is bounded by M (note that norm of
s can be arbitrary). If there is a covering path from s to t then there is such of

length at most (M + 1)(4d)
d−1

.

Proof. We proceed by induction on d. For d = 1 it is immediate to show that any
covering path, which does not repeat a configuration has length at most M + 1.

For the induction step assume that ρ is a covering path s
ρ−→ t′ in a d + 1

dimensional VAS. Let Bd = (M + 1)(4d)
d−1

. We distinguish two cases:

1. norm of every configuration on ρ is bounded by (M + 1) ·Bd;
2. norm of some u on ρ exceeds (M + 1) ·Bd.

Of course we can assume that no configuration on ρ appears more than once,
otherwise we unpump ρ. Thus in case 1 length of ρ is bounded by C = ((M +
1) ·Bd)d+1, we estimate C from above later.

In case 2 length of ρ might be long, but we show that we can find another
covering path ρ′, which is short enough. Let u be the first configuration on ρ

with norm exceeding (M + 1) · Bd. Let s
ρ1−→ u

ρ2−→ t′. Clearly length of ρ1 is
bounded by C, similarly as in case 1. Now we aim at modifying ρ2 to obtain

u
ρ3−→ t′′ for some t′′ � t such that ρ3 is short too. Some coordinate in u is at

least (M + 1) ·Bd, assume without loss of generality that it is the last, d+ 1-th
coordinate. We ignore for a moment this last coordinate in a whole VAS and by
induction assumption we get that there is a path π of length at most Bd such that
ud

π−→ t′′d . Here ud, td ∈ Nd are obtained from u, t ∈ Nd+1 by removing the last
coordinate and t′′d ∈ Nd is some configuration fulfilling t′′d � td. Then we remind
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ourselves that coordinate d+1 exists, let u
π−→ t′′. It is clear by above reasoning

that for all coordinates i ∈ {1, . . . , d} we have t′′[i] ≥ t[i], but what happens on
the last coordinate? By we assumption we have that u[d + 1] ≥ (M + 1) · Bd.
Every of at most Bd transitions in π can decrease the last coordinate by at most
M . So t′′[d+1] ≥ (M+1) ·Bd−Bd ·M = Bd ≥M ≥ t[d+1]. Thus indeed t′′ � t
and path s

ρ1−→ u
ρ3−→ t′′ is a covering path from s to t. Length of ρ′ = ρ1ρ3 is

at most C +Bd.
In order to finish the argument we have to show that C + Bd ≤ Bd+1 =

(M + 1)(4(d+1))d . We perform very rough estimations:

C+Bd ≤ (M+1)·C = (M+1)·
(

(M+1)·Bd
)d+1

= (M+1)·
(

(M+1)·(M+1)(4d)
d−1

)d+1

= (M + 1)((4d)
d−1+1)(d+1)+1 ≤ (M + 1)4·(4d)

d−1·(d+1) ≤ (M + 1)(4(d+1))d = Bd+1.

This finishes the proof. ut
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