
Languages, automata and computations II
Solutions to star exercises I

Konrad Majewski

2. Characterization of ω-regular languages

Let us denote the condition “if ui ∼ vi, then u1u2 . . . ∈ L ⇐⇒ v1v2 . . . ∈ L”
as substitution property, and the condition “if u1 ∼ v1 and u2 ∼ v2, then u1u2 ∼ v1v2”
as concatenation property.

Now, we may proceed to the proof.

=⇒ Let L be an ω-regular language. We need to show that there exists an L-
compatible relation. Let A be a Büchi automaton recognizing language L and let Q,∆
be the sets of states and transitions of A, respectively.

We define a function f : Σ∗ → 2Q×Q×2∆
such that (q, q′,∆′) ∈ f(w) if and only if

there exists a run of automaton A on word w which starts in state q, ends in state q′

and uses exactly transitions from ∆′.1 Let us denote such a situation by q
w, ∆′
−−−→ q′.

Function f corresponds to an equivalence relation: u ∼ v ⇐⇒ f(u) = f(v).

Clearly, this relation has finite index since codomain of f is finite. It remains to show
that relation ∼ is L-compatible.

Substitution property. Let us consider infinite sequences (ui), (vi) of finite words such
that ui ∼ vi. Assume that u = u1u2 . . . ∈ L. This means that there exists a run of
automaton A over word u such that infinitely many words ui contain an accepting
transition on their run. Since ui ∼ vi we can find a run over word v = v1v2 . . . such
that each word vi starts and ends in the same states as the word ui and words vi are
using exactly the same transitions of A as words ui. This run certifies that v ∈ L, as
desired.

Concatenation property. Let us consider words u1, u2, v1, v2 ∈ Σ∗ such that u1 ∼ v1

and u2 ∼ v2. Assume that there is a run of automaton A over word u1u2 of the form

q
u1u2, ∆′
−−−−−→ q′. Let q′′ be a state on this run such that q

u1, ∆1−−−−→ q′′, q′′
u2, ∆2−−−−→ q′ and

∆1∪∆2 = ∆′. Since u1 ∼ v1 and u2 ∼ v2 we can find runs of automaton A over words

v1, v2 of the form q
v1, ∆1−−−−→ q′′ and q′′

v2, ∆2−−−−→ q′. Concatenating these runs we obtain

a run q
v1v2, ∆′
−−−−−→ q′. Hence, f(u1u2) ⊆ f(v1v2). Similarly, f(v1v2) ⊆ f(u1u2), and thus

f(u1u2) = f(v1v2) which means that u1u2 ∼ v1v2.

⇐= Let ∼ be an L-compatible relation with finite index. Let us denote by
r1, r2, . . . , rm ∈ Σ∗ representatives of all classes of equivalence of relation ∼. We
need to show that language L is ω-regular. First, we will prove two lemmas:

1State q does not need to be initial.

1

Lemma 1. Let w = a1a2 . . . be an ω-word where ai ∈ Σ. Then there exists its
partition w = vu1u2 . . . into finite words such that ui ∼ uj for each i, j ∈ N.

Proof. We define a complete graph G on the set V (G) = N. We color the edges of
graph G by m colors as follows: for edge (i, j) (where i < j) we choose color k if and
only if it holds aiai+1 . . . aj−1 ∼ rk. By infinite Ramsey theorem we obtain that there
exists a monochromatic clique (of some color l) in graph G. Let t1 < t2 < t3 < . . . be an
infinite sequence of numbers corresponding to the vertices of such a clique. Then words
v = a1a2 . . . at1−1 and ui = atiati+1 . . . ati+1−1 for i ∈ N form the desired partition of
word w because we have ui ∼ rl for all i, and thus ui ∼ uj for all i, j. �

Lemma 2. Let rk ∈ Σ∗ be a representative of an equivalence class of relation ∼.
Then, language Lk = {w ∈ Σ∗ | w ∼ rk} is regular.

Proof. We define a DFA recognizing language Lk as follows: we put one state corre-
sponding to each equivalence class [ri]∼. The initial state is [ε]∼ and the accepting
state is [rk]∼. All transitions are of the form [ri]

a−→ [ria] for a ∈ Σ. Let us observe
that such an automaton keeps track of an equivalence class of a word that was read
so far. Indeed, the transitions preserve this invariant because if we read word u ∼ ri,
then after reading the next letter a ∈ Σ we move to state [ria], and by concatenation
property of ∼ we have ua ∼ ria. �

Having proved the lemmas, we are ready to construct a Büchi automaton A recognizing
language L. Let w ∈ Σω be an input ω-word and let w = vu1u2 . . . be its partition
from Lemma 1. Let us say that v ∼ rs and ui ∼ rt. Then, by the substitution property
of relation ∼ we have w ∈ L if and only if rsr

ω
t ∈ L.

The automaton A starts with guessing classes [rs] and [rt] but it considers only these
for which rsr

ω
t ∈ L – this is realized by having at most m2 copies of different automata.

Let us say that it chose classes [rs′] and [rt′]. The first part of automaton A recognizes
regular language {v′ ∈ Σ∗ | v′ ∼ rs′} as in the Lemma 2. However, instead of having
an accepting state we can move from this state by ε-transition to the second part of
our automaton. We see that the first part of automaton A corresponds to the choice of
prefix v of our word w such that v ∼ rs′ . The second part of our automaton recognizes
regular language {u′ ∈ Σ∗ | u′ ∼ rt′}. Again, instead of having an accepting state qa
we add an accepting ε-transition from state qa to the initial state of the second part
of automaton A. All ε-transitions that occurs here can be eliminated as in the case of
finite automata. 2

Summing up, we see that the language of such an automaton A is:

L(A) = {vu1u2 . . . | v ∼ rs′ , ui ∼ rt′ , rs′r
ω
t′ ∈ L}

By the substitution property of relation ∼ we have L(A) ⊆ L and by the Lemma 1.
we have L ⊆ L(A), and thus L(A) = L. �

2If we eliminate an accepting ε-transition then we mark added skip edges as accepting.

2

3. Fixed ambiguous automata

We will show that there exists the desired algorithm. This will be a consequence of
the following lemma:

Lemma. Let A be a k-ambiguous automaton. Then, we can construct in polynomial
time an automaton A′ which is unambiguous, and which satisfies L(A′) = L(A).

Let us observe that to decide universality of k-ambiguous automaton A it is enough
to construct automaton A′ from the lemma and run a polynomial algorithm for uni-
versality of unambiguous automaton A′.

Proof of lemma. Let Q be a set of states of automaton A and assume that we fix some
linear order on it. Our automaton A′ simulates k copies of automaton A and the run
of A′ is accepting if there are k different runs of A sorted lexicographically. Clearly, if
automaton A is k-ambiguous, then automaton A′ is unambiguous.

Now, we describe details of automaton A′. Its set of states is (Qk × {0, 1}k−1) ∪ ⊥. 3

The coordinates Qk keep track of k runs of automaton A and coordinates {0, 1}k−1

indicate whether there was a difference between consecutive runs (i-th such coordinate
is 1 whenever runs i and i+ 1 differs). Additionally, we move to state ⊥ whenever the
first difference between runs i and i + 1 breaks lexicographical order. It is easy to see
that we can construct transitions of automaton A′ which preserve all mentioned above
invariants. The initial states of A′ are all states of the form (i1, . . . , ik, ε1, . . . , εk−1)
where i1 6 i2 6 . . . 6 ik are initial states of automaton A and εj = 1 if ij 6= ij+1.
Finally, the accepting states of A′ are states of the form (f1, . . . , fk, 1, . . . , 1) where fj
are accepting states of automaton A. �

4. Co-finiteness of UFA

We will prove the following lemma:

Lemma. LetA be an unambiguous automaton with n states and assume that language
Σ∗ \ L(A) is finite. Let w be the longest word such that w 6∈ L(A). Then |w| 6 n.

Before proceeding to the proof we describe how above lemma relates to our problem.
Given unambiguous automaton A with n states we want to construct in polynomial
time unambiguous automaton A′ with the following property:

L(A′) = L(A) ∪ {u ∈ Σ∗ : |u| 6 n}

Then, by the Lemma we conclude that language Σ∗ \ L(A) is finite if and only if
L(A′) = Σ∗. Moreover, we know that the latter condition can be decided in polynomial
time since automaton A′ is unambiguous.

Let Q be a set of states of automaton A. We build an automaton A′ with states
(Q ∪ qshort) × {0, 1, . . . , n,∞}. The transitions of automaton A′ are of the following
form:

• (q1, i)
a−→ (q2, i + 1) whenever there is a transition q1

a−→ q2 in automaton A.

• (qshort, i)
Σ−→ (qshort, i + 1)

3Since we consider k as fixed the number of such states is of polynomial size with respect to the
number of states from Q.

3

(in both cases if the second coordinate exceeds n we put ∞ on this coordinate)

We define initial states of automaton A′ as:

{(qi, 0) | qi is an initial state of A} ∪ (qshort, 0)

and accepting ones as:

{(qa,∞) | qa is an accepting state of A} ∪ {(qshort, l) | 0 6 l 6 n}

We see that L(A′) = L(A) ∪ {u ∈ Σ∗ : |u| 6 n} and automaton A′ is unambigu-
ous because for words u of length at most n the only accepting run uses states
(qshort, 0), . . . , (qshort, |u|) and for longer words the only accepting run corresponds to
the accepting run of automaton A.

Proof of lemma. The proof is fully analogous to the one, that if w ∈ Σ∗ is the shortest
word such that w 6∈ L(A), and automaton A is unambiguous with n states, then
|w| 6 n.

Let us recall that for a given word w = a1 . . . ak we defined a (k+ 1)× (k+ 1) zero-one
matrix M such that Mij = 1 if and only if word a1a2 . . . ai · aj+1aj+2 . . . ak belongs to
language L(A). Then, it was shown that k 6 rank(M) 6 n, and thus |w| = k 6 n.
The only difference from the original proof is that now matrix J−M is lower-triangular
(not upper triangular as before) because word w is the longest one such that w 6∈ L(A).

4

