Languages, automata and computations II Solutions to star exercises I

Konrad Majewski

2. Characterization of ω-regular languages

Let us denote the condition "if $u_{i} \sim v_{i}$, then $u_{1} u_{2} \ldots \in L \Longleftrightarrow v_{1} v_{2} \ldots \in L$ " as substitution property, and the condition "if $u_{1} \sim v_{1}$ and $u_{2} \sim v_{2}$, then $u_{1} u_{2} \sim v_{1} v_{2}$ " as concatenation property.

Now, we may proceed to the proof.
\Longrightarrow Let L be an ω-regular language. We need to show that there exists an L compatible relation. Let \mathcal{A} be a Büchi automaton recognizing language L and let Q, Δ be the sets of states and transitions of \mathcal{A}, respectively.
We define a function $f: \Sigma^{*} \rightarrow 2^{Q \times Q \times 2^{\Delta}}$ such that $\left(q, q^{\prime}, \Delta^{\prime}\right) \in f(w)$ if and only if there exists a run of automaton \mathcal{A} on word w which starts in state q, ends in state q^{\prime} and uses exactly transitions from $\Delta^{\prime} .{ }^{1}$ Let us denote such a situation by $q \xrightarrow{w, \Delta^{\prime}} q^{\prime}$. Function f corresponds to an equivalence relation: $u \sim v \Longleftrightarrow f(u)=f(v)$.
Clearly, this relation has finite index since codomain of f is finite. It remains to show that relation \sim is L-compatible.
Substitution property. Let us consider infinite sequences $\left(u_{i}\right),\left(v_{i}\right)$ of finite words such that $u_{i} \sim v_{i}$. Assume that $u=u_{1} u_{2} \ldots \in L$. This means that there exists a run of automaton \mathcal{A} over word u such that infinitely many words u_{i} contain an accepting transition on their run. Since $u_{i} \sim v_{i}$ we can find a run over word $v=v_{1} v_{2} \ldots$ such that each word v_{i} starts and ends in the same states as the word u_{i} and words v_{i} are using exactly the same transitions of \mathcal{A} as words u_{i}. This run certifies that $v \in L$, as desired.

Concatenation property. Let us consider words $u_{1}, u_{2}, v_{1}, v_{2} \in \Sigma^{*}$ such that $u_{1} \sim v_{1}$ and $u_{2} \sim v_{2}$. Assume that there is a run of automaton \mathcal{A} over word $u_{1} u_{2}$ of the form $q \xrightarrow{u_{1} u_{2}, \Delta^{\prime}} q^{\prime}$. Let $q^{\prime \prime}$ be a state on this run such that $q \xrightarrow{u_{1}, \Delta_{1}} q^{\prime \prime}, q^{\prime \prime} \xrightarrow{u_{2}, \Delta_{2}} q^{\prime}$ and $\Delta_{1} \cup \Delta_{2}=\Delta^{\prime}$. Since $u_{1} \sim v_{1}$ and $u_{2} \sim v_{2}$ we can find runs of automaton \mathcal{A} over words v_{1}, v_{2} of the form $q \xrightarrow{v_{1}, \Delta_{1}} q^{\prime \prime}$ and $q^{\prime \prime} \xrightarrow{v_{2}, \Delta_{2}} q^{\prime}$. Concatenating these runs we obtain a run $q \xrightarrow{v_{1} v_{2}, \Delta^{\prime}} q^{\prime}$. Hence, $f\left(u_{1} u_{2}\right) \subseteq f\left(v_{1} v_{2}\right)$. Similarly, $f\left(v_{1} v_{2}\right) \subseteq f\left(u_{1} u_{2}\right)$, and thus $f\left(u_{1} u_{2}\right)=f\left(v_{1} v_{2}\right)$ which means that $u_{1} u_{2} \sim v_{1} v_{2}$.
\Longleftarrow Let \sim be an L-compatible relation with finite index. Let us denote by $r_{1}, r_{2}, \ldots, r_{m} \in \Sigma^{*}$ representatives of all classes of equivalence of relation \sim. We need to show that language L is ω-regular. First, we will prove two lemmas:

[^0]Lemma 1. Let $w=a_{1} a_{2} \ldots$ be an ω-word where $a_{i} \in \Sigma$. Then there exists its partition $w=v u_{1} u_{2} \ldots$ into finite words such that $u_{i} \sim u_{j}$ for each $i, j \in \mathbb{N}$.
Proof. We define a complete graph G on the set $V(G)=\mathbb{N}$. We color the edges of graph G by m colors as follows: for edge $(i, j$) (where $i<j$) we choose color k if and only if it holds $a_{i} a_{i+1} \ldots a_{j-1} \sim r_{k}$. By infinite Ramsey theorem we obtain that there exists a monochromatic clique (of some color l) in graph G. Let $t_{1}<t_{2}<t_{3}<\ldots$ be an infinite sequence of numbers corresponding to the vertices of such a clique. Then words $v=a_{1} a_{2} \ldots a_{t_{1}-1}$ and $u_{i}=a_{t_{i}} a_{t_{i}+1} \ldots a_{t_{i+1}-1}$ for $i \in \mathbb{N}$ form the desired partition of word w because we have $u_{i} \sim r_{l}$ for all i, and thus $u_{i} \sim u_{j}$ for all i, j.
Lemma 2. Let $r_{k} \in \Sigma^{*}$ be a representative of an equivalence class of relation \sim. Then, language $L_{k}=\left\{w \in \Sigma^{*} \mid w \sim r_{k}\right\}$ is regular.
Proof. We define a DFA recognizing language L_{k} as follows: we put one state corresponding to each equivalence class $\left[r_{i}\right]_{\sim}$. The initial state is $[\varepsilon]_{\sim}$ and the accepting state is $\left[r_{k}\right]_{\sim}$. All transitions are of the form $\left[r_{i}\right] \xrightarrow{a}\left[r_{i} a\right]$ for $a \in \Sigma$. Let us observe that such an automaton keeps track of an equivalence class of a word that was read so far. Indeed, the transitions preserve this invariant because if we read word $u \sim r_{i}$, then after reading the next letter $a \in \Sigma$ we move to state $\left[r_{i} a\right.$], and by concatenation property of \sim we have $u a \sim r_{i} a$.
Having proved the lemmas, we are ready to construct a Büchi automaton \mathcal{A} recognizing language L. Let $w \in \Sigma^{\omega}$ be an input ω-word and let $w=v u_{1} u_{2} \ldots$ be its partition from Lemma 1. Let us say that $v \sim r_{s}$ and $u_{i} \sim r_{t}$. Then, by the substitution property of relation \sim we have $w \in L$ if and only if $r_{s} r_{t}^{\omega} \in L$.

The automaton \mathcal{A} starts with guessing classes $\left[r_{s}\right]$ and $\left[r_{t}\right]$ but it considers only these for which $r_{s} r_{t}^{\omega} \in L$ - this is realized by having at most m^{2} copies of different automata. Let us say that it chose classes $\left[r_{s^{\prime}}\right]$ and $\left[r_{t^{\prime}}\right]$. The first part of automaton \mathcal{A} recognizes regular language $\left\{v^{\prime} \in \Sigma^{*} \mid v^{\prime} \sim r_{s^{\prime}}\right\}$ as in the Lemma 2. However, instead of having an accepting state we can move from this state by ε-transition to the second part of our automaton. We see that the first part of automaton \mathcal{A} corresponds to the choice of prefix v of our word w such that $v \sim r_{s^{\prime}}$. The second part of our automaton recognizes regular language $\left\{u^{\prime} \in \Sigma^{*} \mid u^{\prime} \sim r_{t^{\prime}}\right\}$. Again, instead of having an accepting state q_{a} we add an accepting ε-transition from state q_{a} to the initial state of the second part of automaton \mathcal{A}. All ε-transitions that occurs here can be eliminated as in the case of finite automata. ${ }^{2}$

Summing up, we see that the language of such an automaton \mathcal{A} is:

$$
L(\mathcal{A})=\left\{v u_{1} u_{2} \ldots \mid v \sim r_{s^{\prime}}, u_{i} \sim r_{t^{\prime}}, r_{s^{\prime}} r_{t^{\prime}}^{\omega} \in L\right\}
$$

By the substitution property of relation \sim we have $L(\mathcal{A}) \subseteq L$ and by the Lemma 1 . we have $L \subseteq L(\mathcal{A})$, and thus $L(\mathcal{A})=L$.

[^1]
3. Fixed ambiguous automata

We will show that there exists the desired algorithm. This will be a consequence of the following lemma:

Lemma. Let \mathcal{A} be a k-ambiguous automaton. Then, we can construct in polynomial time an automaton \mathcal{A}^{\prime} which is unambiguous, and which satisfies $L\left(\mathcal{A}^{\prime}\right)=L(\mathcal{A})$.

Let us observe that to decide universality of k-ambiguous automaton \mathcal{A} it is enough to construct automaton \mathcal{A}^{\prime} from the lemma and run a polynomial algorithm for universality of unambiguous automaton \mathcal{A}^{\prime}.

Proof of lemma. Let Q be a set of states of automaton \mathcal{A} and assume that we fix some linear order on it. Our automaton \mathcal{A}^{\prime} simulates k copies of automaton \mathcal{A} and the run of \mathcal{A}^{\prime} is accepting if there are k different runs of \mathcal{A} sorted lexicographically. Clearly, if automaton \mathcal{A} is k-ambiguous, then automaton \mathcal{A}^{\prime} is unambiguous.
Now, we describe details of automaton \mathcal{A}^{\prime}. Its set of states is $\left(Q^{k} \times\{0,1\}^{k-1}\right) \cup \perp .{ }^{3}$ The coordinates Q^{k} keep track of k runs of automaton \mathcal{A} and coordinates $\{0,1\}^{k-1}$ indicate whether there was a difference between consecutive runs (i-th such coordinate is 1 whenever runs i and $i+1$ differs). Additionally, we move to state \perp whenever the first difference between runs i and $i+1$ breaks lexicographical order. It is easy to see that we can construct transitions of automaton \mathcal{A}^{\prime} which preserve all mentioned above invariants. The initial states of \mathcal{A}^{\prime} are all states of the form $\left(i_{1}, \ldots, i_{k}, \varepsilon_{1}, \ldots, \varepsilon_{k-1}\right)$ where $i_{1} \leqslant i_{2} \leqslant \ldots \leqslant i_{k}$ are initial states of automaton \mathcal{A} and $\varepsilon_{j}=1$ if $i_{j} \neq i_{j+1}$. Finally, the accepting states of \mathcal{A}^{\prime} are states of the form $\left(f_{1}, \ldots, f_{k}, 1, \ldots, 1\right)$ where f_{j} are accepting states of automaton \mathcal{A}.

4. Co-finiteness of UFA

We will prove the following lemma:
Lemma. Let \mathcal{A} be an unambiguous automaton with n states and assume that language $\Sigma^{*} \backslash L(\mathcal{A})$ is finite. Let w be the longest word such that $w \notin L(\mathcal{A})$. Then $|w| \leqslant n$.
Before proceeding to the proof we describe how above lemma relates to our problem. Given unambiguous automaton \mathcal{A} with n states we want to construct in polynomial time unambiguous automaton \mathcal{A}^{\prime} with the following property:

$$
L\left(\mathcal{A}^{\prime}\right)=L(\mathcal{A}) \cup\left\{u \in \Sigma^{*}:|u| \leqslant n\right\}
$$

Then, by the Lemma we conclude that language $\Sigma^{*} \backslash L(\mathcal{A})$ is finite if and only if $L\left(\mathcal{A}^{\prime}\right)=\Sigma^{*}$. Moreover, we know that the latter condition can be decided in polynomial time since automaton \mathcal{A}^{\prime} is unambiguous.

Let Q be a set of states of automaton \mathcal{A}. We build an automaton \mathcal{A}^{\prime} with states $\left(Q \cup q_{\text {short }}\right) \times\{0,1, \ldots, n, \infty\}$. The transitions of automaton \mathcal{A}^{\prime} are of the following form:

- $\left(q_{1}, i\right) \xrightarrow{a}\left(q_{2}, i+1\right)$ whenever there is a transition $q_{1} \xrightarrow{a} q_{2}$ in automaton \mathcal{A}.
- $\left(q_{\text {short }}, i\right) \xrightarrow{{ }^{\Sigma}}\left(q_{\text {short }}, i+1\right)$

[^2](in both cases if the second coordinate exceeds n we put ∞ on this coordinate)
We define initial states of automaton \mathcal{A}^{\prime} as:
$$
\left\{\left(q_{i}, 0\right) \mid q_{i} \text { is an initial state of } \mathcal{A}\right\} \cup\left(q_{\text {short }}, 0\right)
$$
and accepting ones as:
$$
\left\{\left(q_{a}, \infty\right) \mid q_{a} \text { is an accepting state of } \mathcal{A}\right\} \cup\left\{\left(q_{\text {short }}, l\right) \mid 0 \leqslant l \leqslant n\right\}
$$

We see that $L\left(\mathcal{A}^{\prime}\right)=L(\mathcal{A}) \cup\left\{u \in \Sigma^{*}:|u| \leqslant n\right\}$ and automaton \mathcal{A}^{\prime} is unambiguous because for words u of length at most n the only accepting run uses states $\left(q_{\text {short }}, 0\right), \ldots,\left(q_{\text {short }},|u|\right)$ and for longer words the only accepting run corresponds to the accepting run of automaton \mathcal{A}.

Proof of lemma. The proof is fully analogous to the one, that if $w \in \Sigma^{*}$ is the shortest word such that $w \notin L(\mathcal{A})$, and automaton \mathcal{A} is unambiguous with n states, then $|w| \leqslant n$.

Let us recall that for a given word $w=a_{1} \ldots a_{k}$ we defined a $(k+1) \times(k+1)$ zero-one matrix M such that $M_{i j}=1$ if and only if word $a_{1} a_{2} \ldots a_{i} \cdot a_{j+1} a_{j+2} \ldots a_{k}$ belongs to language $L(\mathcal{A})$. Then, it was shown that $k \leqslant \operatorname{rank}(M) \leqslant n$, and thus $|w|=k \leqslant n$. The only difference from the original proof is that now matrix $J-M$ is lower-triangular (not upper triangular as before) because word w is the longest one such that $w \notin L(\mathcal{A})$.

[^0]: ${ }^{1}$ State q does not need to be initial.

[^1]: ${ }^{2}$ If we eliminate an accepting ε-transition then we mark added skip edges as accepting.

[^2]: ${ }^{3}$ Since we consider k as fixed the number of such states is of polynomial size with respect to the number of states from Q.

