Algorytmy i Struktury Danych, 12. é¢wiczenia

2026-01-21

Implementacja struktury Find-Union

Algorytm 1: Init(n)
foreach i € {1..n} do

R

Algorytm 2: Find(7)
if p[i] = —1 then
| return ¢
else
L pli] := Find(pli])

return pli|

Algorytm 3: Union(i, j)

i = Find(i)
j = Pind(j)
if © # j then
if size[j] > size[i] then
| (,3) = (5,0)
plj] =1

sizeli] = size[i] + size[j]

Zadanie 11.3

Mamy n kul ponumerowanych od 1 do n. Na poczatku wszystkie kule sa zielone.
Na kulach wykonujemy nastepujace operacje:

Pokoloruj(a, b, kol): 1 <a < b < n, kol € {zielony, czerwony } — pokoloruj
kule o numerach od a do b na kolor kol,

Kolor(a): 1 <a <n — podaj kolor kuli o numerze a.

a) Zaproponuj strukture danych, ktora umozliwi efektywne wykonywanie
ciagu operacji Pokoloruj i Kolor.

b) Zalézmy, ze na poczatku wykonujemy m > n z goéry znanych operacji
Pokoloruj, a nastepnie pytamy o kolor kazdej kuli. Zaproponuj efektywny
algorytm obliczajacy kolory kul po wykonaniu wszystkich operacji Pokolo-
ruj.

Rozwiazanie: Punkt a) zadanie “Malowanie Autostrady” z laboratorium —
drzewo przedzialowe, wszystkie operacje w czasie O(logn).

Punkt b) Tworzymy strukture Find-Union, ktora dodatkowo dla kazdego zbioru
przechowuje: min, max, vis (poczatkowo false). Dodatkowo utrzymujemy tablice
KoL[l,...,n| (poczatkowo wypelniona kolorem zielonym).

Nastepnie wykonujemy operacje Pokoloruj od ostatniej do pierwszej (przy
czym nasza implementacja koloruje tylko jeszcze niepokolorowane elementy):

Algorytm 4: Pokoloruj(a,b,kol)
s = Find(a)
while max(s) < b do
> niezmiennik: size(s) = 1 lub vis(s) = True
if vis[max(s)] = False then
L KoL[max(s)] = kol

vis[max(s)] = True
s = Find(max(s) + 1)
s = Find(a)
while max(s) < b do
L s := Union(s, max(s) + 1)

Zadanie 11.2

Zaproponuj implementacje struktury danych udostepniajacej operacje struk-
tury Find-Union dla elementéw 1..n z przypisanymi catkowitoliczbowymi warto-
Sciami (poczatkowo same zera) oraz dwie nowe operacje:

Add(i, a) :: do wartodci wszystkich elementéw ze zbioru zawierajacego element
i dodaj wartosé a

Value(i) :: podaj aktualng warto$é przypisana elementowi i

Rozwigzanie: Do kazdego wezla drzewa find-union dodaj dodatkowy atrybut

A poczatkowo wypelniony wartosciami 0.

Value(i) zaimplementowana jest jako zwrocenie sumy wartosci A na $ciezce
od wezla i do korzenia zbioru.

Add(i,a) lokalizuje korzeri zbioru zawierajacy element ¢ i dodaje do niego
wartosc a.

Dla standardowych operacji Find-Union, nalezy uwazaé na:

e kompresje $ciezek (trzeba aktualizowaé¢ wartosci A w weztach),

e Union (trzeba zapewni¢ wlasnosé, ze wartosci elementoéw podlaczanego
drzewa nie zmienig sie).

Zadanie 11.1

(w nowym wydaniu Cormena, problem na numer 21-2)

Dany jest las F = {T;} ukorzenionych drzew z trzema operacjami:

e Make-Tree(v) tworzy drzewo sktadajace sie z wezla v,
e Find-Depth(v) zwraca glebokosé wezta v w jego drzewie

e Graft(r,v) ustawia jako ojca wezta r wezel v (zakladamy, ze r jest korzeniem
swojego drzewa T, oraz v € T')

W naszym rozwiazaniu do reprezentacji lasu ukorzenionych drzew bedziemy
utrzymywaé strukture Find-Union. W strukturze Find-Union wskazniki p[v] nie
musza odpowiadaé¢ strukturze lasu, jednak za pomoca dodatkowego atrybutu
d[v] (pseudo-glebokosé) bedziemy mogli zapewni¢ obliczanie Find-Depth(v).
W trakcie dzialania algorytmu utrzymujemy nastepujacy niezmiennik: jesli wierz-
chotek v ma w lesie ukorzenionych drzew glebokos¢ h (czyli Find-Depth(v)=h),
a w strukturze Find-Union mamy nastepujaca Sciezke:

po = v,p1 = plv], p2 = p[p[v]], ..., Pk = P[Pr-1], Pr+1 = Ppk] = nil

to

Przykladowy stan lasu i struktury Find-Union:

Las drzew ukorzenionych Struktura Find-Union

v3e
o e e o"/(_o\

(%] l 1).4 : L J
l / \ : U1 V2 U3 V4 Vs Vg
v o dwl 11 a1 0 1

Algorytm 5: Make-Tree(v)

Make-Set(v) (czyli link[v] = nil, size[v] = 1)
parent[v]=nil (ojciec wierzchotka v w lesie F)
d[v]=0 (pseudo-gtebokosé v)

Algorytm 6: Find-Depth(v)
(symulujemy Find(v) i sumujemy wartosci d[v] na $ciezce wyznaczonej
przez wskazniki link)
if link[v] = nil then
| return d[v]
else
niech u = link|v]
dy = Find-Depth(u)
if link[u] # nil then
L d[v]+ = d[u]

link[v] = link[u]

Algorytm 7: Graft(r,v)
parent|r] = v
h = Find-Depth(v)
r’ = Find(r)
v = Find(v)
if size[r'] < size[v'] then
link[r'] = v
size[v'] = size[v'] + size[r’]
dir'] =d[r'] + h+1—d[V']
else
(w Find-Union podlaczamy wezly odwrotnie niz w lesie)
link[v'] =/
size[r'] = size[r'] 4+ size[v']
dir']=d[r'| +h+1
dv'] = d[v'] — d[r']

Zadanie 11.4

Dany ciag operacji INSERT(z) (z € 1,...,n, kazda wartos¢ jest dodawana co
najwyzej 1 raz). oraz EXTRACT-MIN. Nalezy obliczy¢ rezultaty poszczegdlnych
operacji EXTRACT-MIN (nalezy pamiectaé, ze caly ciag operacji jest z gory
dany).
Przyktad:

4,8, F,3,F,9,2,6,F,E,E, 1,7, E,5

Rozwigzanie: Rozbijamy cigg wywotan na podciagi jednorodne:

Il7Ea 125 ce Ima E7[7n+1
Gdzie kazdy zbior I; to jaki§ podzbior kluczy (by¢ moze pusty!).

Algorytm 8: Off-Line-Minimum
foriel,....,ndo

wyznacz j takie, ze ¢ € I;

if j #m + 1 then
extracted|jl=i
niech [bedzie najmniejsza wartoscig wieksza niz j, dla ktorej

zbior I; istnieje

Iy = I; U I; (zbior I; zostaje zniszczony)

Zadanie 11.5

Dokonaj analizy rozwigzania problemu Find-Union ze zrownowazaniem drzew i
kompresjg Sciezek, przy zalozeniu ze operacje Find wykonywane sa dopiero po
wykonaniu wszystkich operacji Union.

Rozwigzanie: Zakladam, ze dla wszystkich operacji Union argumenty wskazuja,
na reprezentantow zbiorow (wiec czas wykonania pojedynczej operacji to O(1)).
Gdyby bylo inaczej mozna symulowaé operacje Find za pomoca Union(i,).

Teraz pozostaje nam pokazaé, ze dowolny ciag m operacji Find na n zbiorach
nie zajmie wiecej niz O(n + m).

Pokolorujmy krawedzie lasu Find-Union na dwa kolory, zielony jesli krawedz
prowadzi do reprezentanta zbioru i niebieski wpp. Zauwazmy, ze lesie Find-Union
jest co najwyzej n — 2 krawedzi niebieskich. Jesli operacja Find przechodzi po k
krawedziach, to oznacza, ze przechodzi o k— 1 krawedziach niebieskich i 1 zielone;j.
Ze wzgledu na kompresje Sciezki, kazda krawedz niebieska jest zamieniana na
zielona. Poniewaz mamy ograniczona liczbe krawedzi niebieskich i po kazdej
jestedmy w stanie przejsé tylko raz, stad catkowity czas wykonania operacji Find
to O(n 4+ m).

Off-line LCA

(w nowym wydaniu Cormena, problem na numer 21-3)

Dane jest drzewo T, oraz ciag P, zapytan postaci LCA(x,y) — pytanie o
najnizszego wspolnego przodka weztow x i y.
Algorytm 9: LCA(u)
Make-Set(u)
ancestor|Find-Set(u)]=u
for v € adj(u) do
LCA(v)
UNION (u, v)
ancestor[Find-Set(u)]=u

olor|(u)]|=CZARNY
for v: {u,v} € P do
if color fv]=CZARNY then
| najnizszym wspolnym przodkiem u i v jest ancestor|Find-Set(v)]

Q

Trzeba uzasadnié:

e dla kazdej pary (u,v) € P udzielona zostanie doktadnie jedna odpowiedz,

e poprawnosé¢ algorytmu,

System réznych reprezentantéw

Dana jest rodzina I, n niepustych podzbioréow zbioru {1,2,...,n}, z kto-
rych kazdy to calkowitoliczbowy przedzial postaci [i,j], ¢ < j. Zaprojektuj
efektywny algorytm sprawdzania, czy zadana rodzina posiada system roznych
reprezentantow, a jesli tak, to podaje jeden z nich.

Algorytm 10: SYSTEMROZNYCHREPREZENTANTOW (])

foriel,...,n+1do
MAKE-SET(%)
Last[i] =i
posortuj przedzialy I wg. drugiej i pierwsze] wspotrzednej
for [I,r] € I do
i = Last[FIND-SET(L)]
if s <r then
przypisz i jako reprezentanta [l, 7]
i’ = Last[FIND-SET(i + 1)]
UNION(i, ")
Last[FIND-SET(¢)] = 4/
else
| BRAK ROZWIAZANIA

Zadanie 12.1

Dana jest tablica PJ0, ..., n| nieujemnych liczb calkowitych.

a) Zaproponuj algorytm, ktory efektywnie sprawdzi, czy P jest tablica prefiksow-
sufiksow z algorytmu KMP dla pewnego stowa nad alfabetem {a,b}?
Uwaga: kolejne symbole stowa sa indeksowane od 1.

P[0] odpowiada stowu pustemu.

b) Czy istnieje stowo nad alfabetem {a, b}, dla ktorego P = [0,0,1,0,1,2,3,4,1, 2]
jest tablica prefikséw-sufiksow?

Rozwigzanie: a) Bez straty ogolnosci mozemy zalozyé, ze rekonstruowane
stowo rozpoczyna sie od litery a. Dla dowolnego i > 1, jesli P[i] = 0 to dodajemy
litere b, wpp. P[i] < i i mozemy uzy¢ litery o indeksie P[i] z rekonstruowanego
stowa. Nastepnie obliczamy tablice P dla tak otrzymanego stowa i poréwnujemy
z wej$ciowa tablica.

b) uzywajaé¢ algorytmu otrzymujemy stowo S = aabaabaaa, ktore niestety nie
przechodzi weryfikacji (P =[0,0,1,0,1,2,3,4,5,2])

Zadanie 12.2

W tym zadaniu rozwazamy stowa na alfabetem binarnym.

a) Ile wynosi suma elementéw tablicy P dla stowa (01)2029?

b) Ile wynosi wysoko§¢ drzewa sufiksowego (liczona liczba krawedzi) dla stowa
(01)2020?

¢) Zaprojektuj efektywny algorytm, ktory dla dodatniej liczby catkowitej k
oraz slow x, y takich, ze |z| = k, |y| = k? sprawdzi, ile jest w y podstow o
dtugosci k, z ktorych kazde rézni sie od x na doktadnie jednej pozycji.

Rozwiazanie: a) E?Sig i, tablica P ma posta¢ [0,0,0,1,2,3,4,5,...,4038].

b) 2020
c) [rozwiazanie proste dla |y| = k%] Budujemy zbior stow X = {z; : 1 <i < k}

gdzie x; oznacza stowo x z zanegowanym i-tym znakiem. Uruchamiany algorytm
wyszukiwania wielu wzorcow X w tekscie y (alg. Aho-Corasick) dzialajacy w

czasie O(Zle lzi] + |y|) = O(k?).

¢) [rozwiazanie bardziej ogolne dla dowolnej dtugosci y| Budujemy drzewa sufik-
sowe dla z8y# i REV(2)$REV(y)#. Przygotowujemy drzewa do zapytan LCA
(Longest common ancestor) — preprocessing O(n), zapytania O(1). Dla kazdej
pozycji i w y mozemy w czasie O(1) wyznaczy¢ ' = LCP(x,yli,...]) (longest
common prefix) oraz I = LCS(x,y[1,...,i+ k —1]) (longest common suffix).
Jeslil! +1" = k—1toyli,...,i+k—1] rézni si¢ od x na doktadnie jednej pozycji.

Zadanie 12.3

Pokaz w jaki sposob z pomoca tablic sufiksowych mozna wydajnie rozwigzaé
nastepujace problemy:

1. znajdz wszystkie wystapienia stowa ¢ w stowie x
2. znajdz najdtuzsze stowo, ktore pojawia si¢ w x co najmniej 2 razy

3. znajdz najdtuzsze wspolne podstowo stow ¢ i x
Rozwiazanie:
Wszystkie wystgpienia stowa q¢ w stowie x (off-line)
Budujemy tablice sufiksowa (SA) i LCP dla tekstu 7' = x$q+#. Niech i to pozycja
w tablicy sufiksowej, ktéra odpowiada sufiksowi g# (czyli SA[i] = |z| + 2).
Odpowiedzig jest suma zbiorow OCC; U OCCs:

0CC, = {SAJj]:j <ioraz min(LCP[j+1,...,4]) = |q|}

OCCy = {SA[j]:j > ioraz min(LCPli +1,...,7]) = |q|}

Znajdz najdtuzsze stowo, ktore pojawia sie w x co najmniej 2 razy

https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_algorithm

Budujemy tablice sufiksowa (SA) i LCP dla tekstu T' = x$. Dtugos¢ najdluzszego
slowa, ktére wystepuje co najmniej dwa razy to max(LCP).

Znajdz najdtuzsze wspdlne podstowo stow q i x
Budujemy tablice sufiksowa (SA) i LCP dla tekstu T' = ¢g$a+#. Niech

1 1<i<]q|
id(i) = < 2 lgl +2<i<l|q|+2+ |z
NULL wpp

Dhtugosé najdtuzszgo wspolnego stowa g i x jest wyznaczona przez

max{LCPi] : 2 < i < |T)|,id(SA[i — 1]) Ad(SAJ])}

Zadanie 12.4

Powiemy, ze dwa ciagi liczb wymiernych aq, as, ..., a, i b1,bs,..., b, sa podobne,
gdy istnieje takie ¢, ze b; = ¢ - a;, dla kazdego ¢ = 1,2,...,n. Zaprojektuj
wydajny algorytm, ktory dla danych dwoch ciggéw dodatnich liczb wymiernych
T1,X9, ..., Ty OTAZ Y1,Y2, ..., Ym, N < M, Wyznacza w ciagu y wszystkie pozycje i
takie, ze podciag y;, Yi+1, - - -, Yi+n—1 Oraz ciag x sa podobne. Mozesz przyjaé, ze
operacje arytmetyczne na liczbach wymiernych wykonywane sa w czasie statym.
Rozwigzanie: Jesli n = 1 to jedno-elementowy ciag X wystepuje na kazdej
pozycji w Y.

Jesli n > 11 elementy ciagdéw sa rézne od 0, to obliczamy nowe ciagi:

X' = { T3 T }
£E17I27 7fl?n—l
Y — [y2 Y3 Ym :l
1y " Ym—1

Za pomoca KMP znajdujemy wystapienia X’ w Y.

Zadanie 12.5

W tym zadaniu rozwazamy slowa zbudowane z cyfr 0,1, ...,9. Kazde takie stowo
mozna traktowaé jako zapis w uktadzie dziesietnym pewnej nieujemne;j liczby
catkowitej. Zaprojektuj efektywny algorytm, ktéry dla danego niepustego stowa
x:

a) obliczy liczbe wszystkich takich par indeksow (i,7), 1 < i < j < |z|, ze
stowo x[i..j] jest zapisem liczby podzielnej przez 3;

b) wyznaczy taka pare indeksow (i,7), 1 < i < j < |z|, ze stowo z[i..j] jest
zapisem najwiekszej liczby podzielnej przez 3 wsrdéd wszystkich podstow
stowa x;

c¢) obliczy liczbe wszystkich parami réznych podstow (rozniacych sie dlugo-
$cia lub znakami na odpowiadajacych sobie pozycjach) stowa = bedacych
zapisami liczb podzielnych przez 3.

Rozwigzanie: Dla ustalenia uwagi, niech S oznacza zadane stowo cy,...,c,
(c; €{0,...,9}).

a) Obliczamy tablice Ile(i,j) dla 0 <i <mn, j € {0,1,2} oznaczajaca liczbe pre-
fiksow S[1,...,4] o sumie = j (mod 3). Nastepnie obliczamy tablice Wynik(7)
dla 0 < i < n oznaczajaca liczbe podstow S[1,...,i] o sumie podzielnej przez 3.

Wynik(i) = Wynik(i — 1) + Ile(i — 1, Suma(i))

b) Dla kazdej pozycji ¢ zaznaczamy najdluzsze stowo podzielne przez 3 koriczace
sie na danej pozycji. Nastepnie wybieramy tylko stowa o maksymalnej dlugosci.
Za pomocy drzewa sufiksowego wyznaczamy najwieksze leksykograficznie stowo.

c)

Zadanie 12.6

Niech x bedzie stowem binarnym o dlugosci co najmniej 2 i zawierajacym co
najmniej jedno 0 (zero) oraz co najmniej jedng 1 (jedynke). Zaprojektuj efektywny
algorytm, ktory w stowie binarnym z znajduje dwa podstowa o maksymalnej
dtugosci, ktore réznia na kazdej pozycji.

Rozwiazanie: Obliczamy drzewo sufiksowe dla S = z$NEG(xz)#. Dla takiego
stowa szukamy najdtuzszego stowa, ktore wystepuje w S’ co najmniej dwa razy,
raz w x raz w NEG(z). Zlozonosé czasowa i pamieciowa: O(n).

Zadanie 12.7

Zaprojektuj efektywny algorytm, ktory dla danych stow z, y nad alfabetem
{d, i, k, s} obliczy ile roznych stéw bedacych cyklicznymi przesunieciami stowa x
jest podstowami stowa y.

Rozwigzanie: Budujemy drzewo sufiksowe dla stowa S = y$zz#. Znajdujemy
zbior weztow drzewa V na glebokosci |z| (zbior powinien zawiera¢ rowniez
wezly, ktore znajduja sie wewnatrz skompresowanych krawedzi drzewa). Dla
kazdego wierzchotka v € V' sprawdzamy, czy w jego poddrzewie istnieje sufiks
rozpoczynajacy sie we fragmencie zx.

Zadanie 12.8

Zaproponuj efektywny algorytm, ktory w stowie S o dtugosci n > 3 nad alfabetem
{a, b} znajdzie dwa najdluzsze, takie same podstowa nie zachodzace na siebie

Przyklad
W slowie aaaaaa takie dwa najdluzsze podstowa to aaa zaczynajace si¢ na
pozycji 1 i aaa zaczynajace sie na pozycji 4.

W slowie abbabbbab takie stowa, to np. bbab zaczynajace sie na pozycji 2 i bbab
zaczynajace sie na pozycji 6.

Rozwiazanie: Budujemy drzewo sufiksowe S, oraz w kazdym wezle u zapisu-
jemy:

e liczbe lisci w poddrzewie,
e glebokosé (suma wag krawedzi na Sciezce r — u),

e minimalny i maksymalny indeks liscia w poddrzewie.

10

