
Algorytmy i Struktury Danych, 12. ćwiczenia

2026-01-21

Implementacja struktury Find-Union

Algorytm 1: Init(n)
foreach i ∈ {1..n} do

p[i] = −1
size[i] = 1

Algorytm 2: Find(i)
if p[i] = −1 then

return i
else

p[i] := Find(p[i])
return p[i]

Algorytm 3: Union(i, j)
i = Find(i)
j = Find(j)
if i ̸= j then

if size[j] > size[i] then
(i, j) = (j, i)

p[j] = i
size[i] = size[i] + size[j]

Zadanie 11.3
Mamy n kul ponumerowanych od 1 do n. Na początku wszystkie kule są zielone.
Na kulach wykonujemy następujące operacje:

Pokoloruj(a, b, kol): 1 ≤ a ≤ b ≤ n, kol ∈ {zielony, czerwony} — pokoloruj
kule o numerach od a do b na kolor kol,

Kolor(a): 1 ≤ a ≤ n — podaj kolor kuli o numerze a.

a) Zaproponuj strukturę danych, która umożliwi efektywne wykonywanie
ciągu operacji Pokoloruj i Kolor.

1

b) Załóżmy, że na początku wykonujemy m ≥ n z góry znanych operacji
Pokoloruj, a następnie pytamy o kolor każdej kuli. Zaproponuj efektywny
algorytm obliczający kolory kul po wykonaniu wszystkich operacji Pokolo-
ruj.

Rozwiązanie: Punkt a) zadanie “Malowanie Autostrady” z laboratorium –
drzewo przedziałowe, wszystkie operacje w czasie O(log n).

Punkt b) Tworzymy strukturę Find-Union, która dodatkowo dla każdego zbioru
przechowuje: min, max, vis (początkowo false). Dodatkowo utrzymujemy tablicę
Kol[1, . . . , n] (początkowo wypełnioną kolorem zielonym).

Następnie wykonujemy operacje Pokoloruj od ostatniej do pierwszej (przy
czym nasza implementacja koloruje tylko jeszcze niepokolorowane elementy):

Algorytm 4: Pokoloruj(a,b,kol)
s = Find(a)
while max(s) ≤ b do

� niezmiennik: size(s) = 1 lub vis(s) = True
if vis[max(s)] = False then

Kol[max(s)] = kol
vis[max(s)] = True

s = Find(max(s) + 1)

s = Find(a)
while max(s) < b do

s := Union(s,max(s) + 1)

Zadanie 11.2
Zaproponuj implementację struktury danych udostępniającej operacje struk-

tury Find-Union dla elementów 1..n z przypisanymi całkowitoliczbowymi warto-
ściami (początkowo same zera) oraz dwie nowe operacje:

Add(i, a) :: do wartości wszystkich elementów ze zbioru zawierającego element
i dodaj wartość a

Value(i) :: podaj aktualną wartość przypisaną elementowi i

Rozwiązanie: Do każdego węzła drzewa find-union dodaj dodatkowy atrybut
∆ początkowo wypełniony wartościami 0.

V alue(i) zaimplementowana jest jako zwrócenie sumy wartości ∆ na ścieżce
od węzła i do korzenia zbioru.

Add(i, a) lokalizuje korzeń zbioru zawierający element i i dodaje do niego
wartość a.

Dla standardowych operacji Find-Union, należy uważać na:

• kompresje ścieżek (trzeba aktualizować wartości ∆ w węzłach),

• Union (trzeba zapewnić własność, że wartości elementów podłączanego
drzewa nie zmienią się).

2

Zadanie 11.1
(w nowym wydaniu Cormena, problem na numer 21–2)

Dany jest las F = {Ti} ukorzenionych drzew z trzema operacjami:

• Make-Tree(v) tworzy drzewo składające się z węzła v,

• Find-Depth(v) zwraca głębokość węzła v w jego drzewie

• Graft(r,v) ustawia jako ojca węzła r węzeł v (zakładamy, że r jest korzeniem
swojego drzewa T , oraz v ̸∈ T)

W naszym rozwiązaniu do reprezentacji lasu ukorzenionych drzew będziemy
utrzymywać strukturę Find-Union. W strukturze Find-Union wskaźniki p[v] nie
muszą odpowiadać strukturze lasu, jednak za pomocą dodatkowego atrybutu
d[v] (pseudo-głębokość) będziemy mogli zapewnić obliczanie Find-Depth(v).
W trakcie działania algorytmu utrzymujemy następujący niezmiennik: jeśli wierz-
chołek v ma w lesie ukorzenionych drzew głębokość h (czyli Find-Depth(v)=h),
a w strukturze Find-Union mamy następującą ścieżkę:

p0 = v, p1 = p[v], p2 = p[p[v]], . . . , pk = p[pk−1], pk+1 = p[pk] = nil

to

h =

k∑
i=0

d[pi].

Przykładowy stan lasu i struktury Find-Union:

Las drzew ukorzenionych

v1

v2

v3

v4

v5 v6

Struktura Find-Union

v1 v2 v3 v4 v5 v6

1 1 -1 0 1 1d[ui]

Algorytm 5: Make-Tree(v)
Make-Set(v) (czyli link[v] = nil, size[v] = 1)
parent[v]=nil (ojciec wierzchołka v w lesie F)
d[v]=0 (pseudo-głębokość v)

3

Algorytm 6: Find-Depth(v)
(symulujemy Find(v) i sumujemy wartości d[v] na ścieżce wyznaczonej
przez wskaźniki link)

if link[v] = nil then
return d[v]

else
niech u = link[v]
d1 = Find-Depth(u)
if link[u] ̸= nil then

d[v]+ = d[u]
link[v] = link[u]

Algorytm 7: Graft(r, v)
parent[r] = v
h = Find-Depth(v)
r′ = Find(r)
v′ = Find(v)
if size[r′] ≤ size[v′] then

link[r′] = v′

size[v′] = size[v′] + size[r′]
d[r′] = d[r′] + h+ 1− d[v′]

else
(w Find-Union podłączamy węzły odwrotnie niż w lesie)
link[v′] = r′

size[r′] = size[r′] + size[v′]
d[r′] = d[r′] + h+ 1
d[v′] = d[v′]− d[r′]

Zadanie 11.4

Dany ciąg operacji INSERT(x) (x ∈ 1, . . . , n, każda wartość jest dodawana co
najwyżej 1 raz). oraz EXTRACT-MIN. Należy obliczyć rezultaty poszczególnych
operacji EXTRACT-MIN (należy pamiętać, że cały ciąg operacji jest z góry
dany).
Przykład:

4, 8, E, 3, E, 9, 2, 6, E,E,E, 1, 7, E, 5

Rozwiązanie: Rozbijamy ciąg wywołań na podciągi jednorodne:

I1, E, I2, . . . , Im, E, Im+1

Gdzie każdy zbiór Ij to jakiś podzbiór kluczy (być może pusty!).

4

Algorytm 8: Off-Line-Minimum
for i ∈ 1, . . . , n do

wyznacz j takie, że i ∈ Ij
if j ̸= m+ 1 then

extracted[j]=i
niech l będzie najmniejszą wartością wiekszą niż j, dla której
zbiór Il istnieje
Il = Ij ∪ Il (zbiór Ij zostaje zniszczony)

Zadanie 11.5
Dokonaj analizy rozwiązania problemu Find-Union ze zrównoważaniem drzew i
kompresją ścieżek, przy założeniu że operacje Find wykonywane są dopiero po
wykonaniu wszystkich operacji Union.
Rozwiązanie: Zakładam, że dla wszystkich operacji Union argumenty wskazują
na reprezentantów zbiorów (więc czas wykonania pojedynczej operacji to O(1)).
Gdyby było inaczej można symulować operacje Find za pomocą Union(i, i).

Teraz pozostaje nam pokazać, że dowolny ciąg m operacji Find na n zbiorach
nie zajmie więcej niż O(n+m).

Pokolorujmy krawędzie lasu Find-Union na dwa kolory, zielony jeśli krawędź
prowadzi do reprezentanta zbioru i niebieski wpp. Zauważmy, że lesie Find-Union
jest co najwyżej n− 2 krawędzi niebieskich. Jeśli operacja Find przechodzi po k
krawędziach, to oznacza, że przechodzi o k−1 krawędziach niebieskich i 1 zielonej.
Ze względu na kompresję ścieżki, każda krawędź niebieska jest zamieniana na
zieloną. Ponieważ mamy ograniczoną liczbę krawędzi niebieskich i po każdej
jesteśmy w stanie przejść tylko raz, stąd całkowity czas wykonania operacji Find
to O(n+m).

Off-line LCA
(w nowym wydaniu Cormena, problem na numer 21–3)

Dane jest drzewo T , oraz ciąg P , zapytań postaci LCA(x, y) — pytanie o
najniższego wspólnego przodka węzłów x i y.

Algorytm 9: LCA(u)

Make-Set(u)
ancestor[Find-Set(u)]=u
for v ∈ adj(u) do

LCA(v)
UNION(u, v)
ancestor[Find-Set(u)]=u

color[(u)]=CZARNY
for v : {u, v} ∈ P do

if color[v]=CZARNY then
najniższym wspólnym przodkiem u i v jest ancestor[Find-Set(v)]

Trzeba uzasadnić:

5

• dla każdej pary (u, v) ∈ P udzielona zostanie dokładnie jedna odpowiedź,

• poprawnosć algorytmu,

System różnych reprezentantów
Dana jest rodzina I, n niepustych podzbiorów zbioru {1, 2, . . . , n}, z któ-

rych każdy to całkowitoliczbowy przedział postaci [i, j], i ≤ j. Zaprojektuj
efektywny algorytm sprawdzania, czy zadana rodzina posiada system różnych
reprezentantów, a jeśli tak, to podaje jeden z nich.

Algorytm 10: SystemRóżnychReprezentantów(I)
for i ∈ 1, . . . , n+ 1 do

Make-Set(i)
Last[i] = i

posortuj przedziały I wg. drugiej i pierwszej współrzędnej
for [l, r] ∈ I do

i = Last[Find-Set(l)]
if i ≤ r then

przypisz i jako reprezentanta [l, r]
i′ = Last[Find-Set(i+ 1)]
Union(i, i′)
Last[Find-Set(i′)] = i′

else
BRAK ROZWIĄZANIA

Zadanie 12.1
Dana jest tablica P [0, . . . , n] nieujemnych liczb całkowitych.

a) Zaproponuj algorytm, który efektywnie sprawdzi, czy P jest tablicą prefiksów-
sufiksów z algorytmu KMP dla pewnego słowa nad alfabetem {a, b}?
Uwaga: kolejne symbole słowa są indeksowane od 1.

P [0] odpowiada słowu pustemu.

b) Czy istnieje słowo nad alfabetem {a, b}, dla którego P = [0, 0, 1, 0, 1, 2, 3, 4, 1, 2]
jest tablicą prefiksów-sufiksów?

Rozwiązanie: a) Bez straty ogólności możemy założyć, że rekonstruowane
słowo rozpoczyna się od litery a. Dla dowolnego i > 1, jeśli P [i] = 0 to dodajemy
literę b, wpp. P [i] < i i możemy użyć litery o indeksie P [i] z rekonstruowanego
słowa. Następnie obliczamy tablicę P dla tak otrzymanego słowa i porównujemy
z wejściową tablicą.

b) używajać algorytmu otrzymujemy słowo S = aabaabaaa, które niestety nie
przechodzi weryfikacji (P = [0, 0, 1, 0, 1, 2, 3, 4,5, 2])

6

Zadanie 12.2
W tym zadaniu rozważamy słowa na alfabetem binarnym.

a) Ile wynosi suma elementów tablicy P dla słowa (01)2020?

b) Ile wynosi wysokość drzewa sufiksowego (liczona liczbą krawędzi) dla słowa
(01)2020?

c) Zaprojektuj efektywny algorytm, który dla dodatniej liczby całkowitej k
oraz słów x, y takich, że |x| = k, |y| = k2 sprawdzi, ile jest w y podsłów o
długości k, z których każde różni się od x na dokładnie jednej pozycji.

Rozwiązanie: a)
∑4038

i=1 i, tablica P ma postać [0, 0, 0, 1, 2, 3, 4, 5, . . . , 4038].

b) 2020

c) [rozwiązanie proste dla |y| = k2] Budujemy zbiór słów X = {xi : 1 ≤ i ≤ k}
gdzie xi oznacza słowo x z zanegowanym i-tym znakiem. Uruchamiany algorytm
wyszukiwania wielu wzorców X w tekście y (alg. Aho-Corasick) działający w
czasie O(

∑k
i=1 |xi|+ |y|) = O(k2).

c) [rozwiązanie bardziej ogólne dla dowolnej długości y] Budujemy drzewa sufik-
sowe dla x$y# i Rev(x)$Rev(y)#. Przygotowujemy drzewa do zapytań LCA
(Longest common ancestor) — preprocessing O(n), zapytania O(1). Dla każdej
pozycji i w y możemy w czasie O(1) wyznaczyć l′ = LCP (x, y[i, . . .]) (longest
common prefix) oraz l′′ = LCS(x, y[1, . . . , i+ k − 1]) (longest common suffix).
Jeśli l′+ l′′ = k−1 to y[i, . . . , i+k−1] różni się od x na dokładnie jednej pozycji.

Zadanie 12.3
Pokaż w jaki sposób z pomocą tablic sufiksowych można wydajnie rozwiązać
następujące problemy:

1. znajdź wszystkie wystąpienia słowa q w słowie x

2. znajdź najdłuższe słowo, które pojawia się w x co najmniej 2 razy

3. znajdź najdłuższe wspólne podsłowo słów q i x

Rozwiązanie:
Wszystkie wystąpienia słowa q w słowie x (off-line)
Budujemy tablicę sufiksową (SA) i LCP dla tekstu T = x$q#. Niech i to pozycja
w tablicy sufiksowej, która odpowiada sufiksowi q# (czyli SA[i] = |x| + 2).
Odpowiedzią jest suma zbiorów OCC1 ∪OCC2:

OCC1 = {SA[j] : j < i oraz min(LCP [j + 1, . . . , i]) = |q|}

OCC2 = {SA[j] : j > i oraz min(LCP [i+ 1, . . . , j]) = |q|}

Znajdź najdłuższe słowo, które pojawia się w x co najmniej 2 razy

7

https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_algorithm

Budujemy tablicę sufiksową (SA) i LCP dla tekstu T = x$. Długość najdłuższego
słowa, które występuje co najmniej dwa razy to max(LCP).

Znajdź najdłuższe wspólne podsłowo słów q i x
Budujemy tablicę sufiksową (SA) i LCP dla tekstu T = q$x#. Niech

id(i) =


1 1 ≤ i ≤ |q|
2 |q|+ 2 ≤ i ≤ |q|+ 2 + |x|
NULL wpp

Długość najdłuższgo wspólnego słowa q i x jest wyznaczona przez

max{LCP [i] : 2 ≤ i ≤ |T |, id(SA[i− 1]) ̸ id(SA[i])}

Zadanie 12.4
Powiemy, że dwa ciągi liczb wymiernych a1, a2, . . . , an i b1, b2, . . . , bn są podobne,
gdy istnieje takie c, że bi = c · ai, dla każdego i = 1, 2, . . . , n. Zaprojektuj
wydajny algorytm, który dla danych dwóch ciągów dodatnich liczb wymiernych
x1, x2, . . . , xn oraz y1, y2, . . . , ym, n ≤ m, wyznacza w ciągu y wszystkie pozycje i
takie, że podciąg yi, yi+1, . . . , yi+n−1 oraz ciąg x są podobne. Możesz przyjąć, że
operacje arytmetyczne na liczbach wymiernych wykonywane są w czasie stałym.
Rozwiązanie: Jeśli n = 1 to jedno-elementowy ciąg X występuje na każdej
pozycji w Y .
Jeśli n > 1 i elementy ciągów są różne od 0, to obliczamy nowe ciągi:

X ′ =

[
x2

x1
,
x3

x2
, . . . ,

xn

xn−1

]

Y ′ =

[
y2
y1

,
y3
y2

, . . . ,
ym

ym−1

]
Za pomocą KMP znajdujemy wystąpienia X ′ w Y ′.

Zadanie 12.5
W tym zadaniu rozważamy słowa zbudowane z cyfr 0, 1, . . . , 9. Każde takie słowo
można traktować jako zapis w układzie dziesiętnym pewnej nieujemnej liczby
całkowitej. Zaprojektuj efektywny algorytm, który dla danego niepustego słowa
x:

a) obliczy liczbę wszystkich takich par indeksów (i, j), 1 ≤ i ≤ j ≤ |x|, że
słowo x[i..j] jest zapisem liczby podzielnej przez 3;

b) wyznaczy taką parę indeksów (i, j), 1 ≤ i ≤ j ≤ |x|, że słowo x[i..j] jest
zapisem największej liczby podzielnej przez 3 wśród wszystkich podsłów
słowa x;

8

c) obliczy liczbę wszystkich parami różnych podsłów (różniących się długo-
ścią lub znakami na odpowiadających sobie pozycjach) słowa x będących
zapisami liczb podzielnych przez 3.

Rozwiązanie: Dla ustalenia uwagi, niech S oznacza zadane słowo c1, . . . , cn
(ci ∈ {0, . . . , 9}).

a) Obliczamy tablicę Ile(i, j) dla 0 ≤ i ≤ n, j ∈ {0, 1, 2} oznaczającą liczbę pre-
fiksów S[1, . . . , i] o sumie ≡ j (mod 3). Następnie obliczamy tablicę Wynik(i)
dla 0 ≤ i ≤ n oznaczającą liczbę podsłów S[1, . . . , i] o sumie podzielnej przez 3.

Wynik(i) = Wynik(i− 1) + Ile(i− 1, Suma(i))

b) Dla każdej pozycji i zaznaczamy najdłuższe słowo podzielne przez 3 kończące
się na danej pozycji. Następnie wybieramy tylko słowa o maksymalnej długości.
Za pomocą drzewa sufiksowego wyznaczamy największe leksykograficznie słowo.

c)

Zadanie 12.6
Niech x będzie słowem binarnym o długości co najmniej 2 i zawierającym co
najmniej jedno 0 (zero) oraz co najmniej jedną 1 (jedynkę). Zaprojektuj efektywny
algorytm, który w słowie binarnym x znajduje dwa podsłowa o maksymalnej
długości, które różnią na każdej pozycji.
Rozwiązanie: Obliczamy drzewo sufiksowe dla S′ = x$Neg(x)#. Dla takiego
słowa szukamy najdłuższego słowa, które występuje w S′ co najmniej dwa razy,
raz w x raz w Neg(x). Złożoność czasowa i pamięciowa: O(n).

Zadanie 12.7
Zaprojektuj efektywny algorytm, który dla danych słów x, y nad alfabetem
{d, i, k, s} obliczy ile różnych słów będących cyklicznymi przesunięciami słowa x
jest podsłowami słowa y.
Rozwiązanie: Budujemy drzewo sufiksowe dla słowa S = y$xx#. Znajdujemy
zbiór węzłów drzewa V na głębokości |x| (zbiór powinien zawierać również
węzły, które znajdują się wewnątrz skompresowanych krawędzi drzewa). Dla
każdego wierzchołka v ∈ V sprawdzamy, czy w jego poddrzewie istnieje sufiks
rozpoczynający się we fragmencie xx.

Zadanie 12.8
Zaproponuj efektywny algorytm, który w słowie S o długości n ≥ 3 nad alfabetem
{a, b} znajdzie dwa najdłuższe, takie same podsłowa nie zachodzące na siebie
Przykład
W słowie aaaaaa takie dwa najdłuższe podsłowa to aaa zaczynające się na
pozycji 1 i aaa zaczynające się na pozycji 4.

9

W słowie abbabbbab takie słowa, to np. bbab zaczynające się na pozycji 2 i bbab
zaczynające się na pozycji 6.
Rozwiązanie: Budujemy drzewo sufiksowe S, oraz w każdym węźle u zapisu-
jemy:

• liczbę liści w poddrzewie,

• głębokość (suma wag krawędzi na ścieżce r → u),

• minimalny i maksymalny indeks liścia w poddrzewie.

10

