Algorytmy i Struktury Danych, 9. ¢wiczenia —
rozwigzania zadan serii 7 BIS
(wersja 1.0.1)

2024-12-04

Zadanie 7.1

Implementacja stownika. a) Dwuwymiarowa tablica. b) Tablica z rosnacymi
blokami.

Rozwigzanie:

a) https://en.wikipedia.org/wiki/Beap

Szukaj(x):: zaczynamy w skrajnie prawy elemencie pierwszego wiersza (k, 1),
bedac w wezle (i, j) jesli ali — 1, j] > x to przejdz do (i — 1, j) wpp. przejdz
do (4,5 +1).

Wstaw(x):: wstawiamy nowa wartoS¢ w wolne miejsce na ostatniej przekatnej,
po czym wykonujemy operacje analogiczna do heapUp, czyli jesli a[i, j] <
min(afi — 1, j], a[¢, j — 1]) to zamieniamy a[i, j] z wieksza z wartosci a[i —
1,7],ali, j — 1] 1 kontynuujemy poprawienie.

Usun(x):: zastepujemy usuwang warto$é uzywajac y — ostatniego klucza z
ostatniej przekatnej, jesli x > y to postepujemy analogicznie jak przy
wstawianiu, jesli x < y to wykonujemy operacje analogiczna do heapDown,
czyli jedli afi, j] > min(ali+1,], a[¢, 7+ 1]) to zamieniamy ali, j] z mniejsza
z wartosci ali + 1, 5], afi, 7 + 1] 1 kontynuujemy poprawienie.

b) Dla bloku zawierajacego przesuniety cyklicznie ciag rosnacy, mozemy w
czasie O(logn):

e znalez¢é minimum

e znalez¢ maksimum

e sprawdzi¢ czy blok zawiera dany klucz x

Szukaj(x):: czas O(log?n), za pomoca wyszukiwania binarnego znajdz blok
taki, ze min(B;) < x < max(B;). Sprawdz czy B; zawiera z.

https://en.wikipedia.org/wiki/Beap

Szukaj(x):: czas O(logn), za pomoca wyszukiwania binarnego znajdz dwa
sasiednie bloki B; i B;y1, ktére moga zawieraé klucz = a nastepnie sprawdz
w czasie O(logn) czy klucz wystepuje w ktéryms z nim.
Korzystamy z faktu, ze dla dowolnego elementy y z bloku B;:

e jedli y < x to element x na pewno nie wystepuje w By, ..., B;_1,

e jedli y > x to element x na pewno nie wystepuje w Bjiq, Bjio,. ..,

Te obserwacje pozwalaja kontynuowanie wyszukiwania binarnego tak dtugo
jak zares sklada sie z co najmniej trzech blokéw. Poniewaz mozemy porow-
nywaé z dowolnym elementem z bloku (np. pierwszym) i unikamy ustalania
min / max, to koszt poréwnania x z jednym blokiem to O(1).

Wstaw (x):: czas O(y/nlogn), za pomoca wyszukiwania binarnego znajdz blok
taki, ze min(B;) < z < max(B;), wstaw x do bloku B; przesuwajac pozo-
state elementy, wypchnij max(B;) do bloku B;;1 (co spowoduje reakcje
tancuchows i przestanie dalej max(B;)). Poniewaz dopuszczamy przesunie-
cia cykliczne w blokach stad obstuga kazdego z max(B;), max(B;t1),. ..
wymaga tylko czasu O(logn).

Usuri(x):: analogicznie jak wstawianie, ale brakujacy element zastepujemy
przez min(B;t1).

Zadanie 7.2

Danych jest n par liczb catkowitych, ktore sie r6znia na kazdej pozycji. Pierwsze
elementy par to klucze, za$ drugie to priorytety. Innymi stowy, mamy n réznych
kluczy i n réznych priorytetow.

a) Jednoznaczno$¢ drzewa ktore jest zarowno BST jak i kopcem typu MAX.

b) Konstrukcja drzewa z a) poprzez O(n) rotacji jesli drzewo wejSciowe jest
BST.

¢) Algorytm znajdujacy w czasie liniowym ciag rotacji dla b).

Rozwigzanie:

a)
e Korzenn = element r z najwiekszym priorytetem.

e Jedno z dzieci korzenia = element e z najwiekszym priorytetem sposrod
pozostatych elementow. Jesli r.key > e.key, to e musi by¢ lewym dzieckiem,
w innym przypadku prawym dzieckiem.

e Drugie dziecko = element f z najwiekszym priorytetem posrdd elementow
z kluczem mniejszym niz r.key (jesli f jest lewym dzieckiem, tzn. jesli
r.key < e.key) lub w innym przypadku sposrod elementéw z kluczem
wiekszym niz r.key.

Wybér korzenia jest jednoznaczny. Wybér dzieci tez jednoznaczny. Rekurencyjnie
pokazujemy jednoznacznosé wyboru pozostalych wierzchotkow. (Nota bene:
Czasem korzen moze mie¢ tylko jedno dziecko, np. drzewo moze okazaé sie

Sciezka.)

b) Dowolne drzewo BST mozemy za pomoca co najwyzej n — 1 rotacji prze-
ksztalci¢ w liste (tzn. drzewo, ktorego kazdy wezel wewnetrzny ma tylko pra-
wego syna). Niech Sp to sekwencja rotacji przeksztalcajaca T w liste, niech
Sy ax to sekwencja rotacji przeksztalcajaca Thy 4x w liste, rozwiazaniem bedzie
St + reverse(Smaz)-

<)

1. Rozwigzanie: Jak punkt b (czyli wygeneruj sekwencje rotacji zamieniajaca
drzewo BST na liste i dodaj odwrdcona sekwencje rotacji zamieniajaca kopiec
BST na liste). Musimy pokaza¢ jednak liniowy algorytm, ktory dla zadanego
drzewa BST wygeneruje kopiec:

Algorytm 1: Obliczanie Kopca

Input: drzewo BST o kluczach ki, ..., k&, i priorytetach p1,...,p,
Output: Drzewo K z porzadkiem BST wg kluczy kq,...,k, 1
porzadkiem kopcowym (MAX) wg priorytetow p1,...,pn
K=drzewo o jednym wezle (k1,p1)
foreach i € {2,...,n} do
niech vy, ..., v, skrajnie prawa $ciezka w drzewie K (v1 = root(K))
ji=k
while j > 0 and p; > p(v;) do
[j=j-1
wstaw do K nowy wezet (k;, p;) jako prawe dziecko v; (jesli j =0
jako nowy korzen), lewy syn to vjq (jesli j < k)

2. Rozwiagzanie: Algorytm na dwa kroki:

1. Zamieniamy wejsciowe BST za pomoca rotacji na $ciezke skierowana cat-
kowicie na prawo.

2. Zaczynajac od korzenia, wykonujemy po kolej dla kazdego wierzchotka
Up-Heap uzywajac do tego rotacji.

Dowdd poprawnosci : Poniewaz uzywaliSmy tylko rotacji, to wyjsciowe drzewo
jest nadal BST. Krok 2) zapewnia nam ze drzewo jest tez kopcem.

Trzeba jeszcze pokazaé ze kroki 1) 1 2) mozemy zrobi¢ w czasie O(n). Poniewaz
kazdy krok naszego algorytmu to rotacja, wystarczy pokazaé¢ ze wykonujemy w
sumie O(n) rotacji.

Krok 1): Niech 7 bedzie Sciezka zaczynajaca sie przy korzeniu i idaca maksy-
malnie tylko w prawo. (Z poczatku moze by¢ ze 7 jest tylko korzeniem.) Dopdki 7
nie zawiera wszystkie wierzcholki, to musi zawiera¢ jakis§ wierzchotek v z lewym
dzieckiem. Rotujemy w prawo wokél v. Przez to w staje sie dtuzsze o jeden
wierzchotek. Wiec po najwyzej n — 1 rotacjach m zawiera wszystkie wierzchotki.

Krok 2): Up-heap dla danego wierzcholka v dziala w ten sposob ze tak dlugo
jak priorytet ojca v jest mniejszy, to wykonujemy rotacje w lewo wokot tegoz ojca.
Skutkuje to tym ze ojciec stanie sie dzieckiem v (bo v byl prawym dzieckiem
ojca), a dziadek wierzchotka v stanie si¢ nowym ojcem v. Poniewaz wszyscy
(aktualni) przodkowie v leza na $ciezce 7, to v bedzie prawym dzieckiem nowego
ojca.

Obserwujemy ze podgraf oparty na wierzchotkach, dla ktérych juz wywotali-
$my Up-Heap, jest zaréwno drzewem BST jak i kopcem. Ponadto przy kazdej
rotacji Sciezka m maleje o jeden wierzchotek a nowe juz nie dochodza. Wiec w
sumie nie moze by¢ wiecej niz n — 1 rotacji.

Zadanie 7.3

Pokaz, w jaki sposob wykonywaé¢ wydajnie operacje Join i Split na AVIL-drzewach
wyszukiwan binarnych:

Rozwigzanie:

Algorytm 2: Join(T, z,T") w czasie O(logn)
WLOG height(T) > height(T")
Zlokalizuj na skrajnie prawej Sciezce T wierzchotek v, taki, ze
height(T,) = height(T")
zastap T, przez drzewo o korzeniu z kluczem x, lewym synem 7T, i prawy
synem 1"
popraw zbalansowanie wierzchotkéw na Sciezce od x do korzenia T'.

Jesli doktadniej przeanalizujemy czas dzialania Join to zauwazmy, ze ta
operacja dziata w czasie O(1 + |h(T) — h(T")|).

Split(T, x) w czasie O(logn):: Zlokalizuj wezel z, po jego usunieciu drzewo
rozpada sie na O(logn) drzew (i pojedynczych kluczy) mniejszych / wiekszych
od z. Te dwie rodziny drzew mozna scali¢ w T<,, T, uzywajac Join (uwaga
scalamy drzewa w kolejnosci od najmniejszych do najwiekszych).

Zadanie 7.4

Zaprojektuj strukture danych dla dynamicznego zbioru domknietych przedziatow
liczbowych S, umozliwiajaca wydajne wykonywanie operacji:

Search(S, [a,b]):: podaj wskaznik do wystapienia [a,b] w S; jesli [a,b] nie ma w
S odpowiedzia jest NULL

Insert(S,[a,b]):: S :=SU{[a,b}
Delete(S, [a,b]):: S := S {[a,b]}

Intersect(S, [a, b]):: sprawdz, czy w S jest przedzial z niepustym przecieciem z
[a, 0]

Rozwiazanie: Search/Insert/Delete mozna zaimplementowaé za pomoca zwy-
klego drzewa ktore utrzymuje pary (a,b) w porzadku leksykograficznym.
Operacja Intersect:

Utrzymujemy dodatkowe drzewo, ktore bedzie utrzymywalto krotki (z, f)
(z porzadkiem leksykograficznym), gdzie x to wspoélrzedna na osi X a f to
flaga {0,1}. Kazdej krotce przypisana jest jej wartos¢ wart. Jesli w trakcie
dziatania algorytmu wartos¢ jakiejs krotki bedzie rowna 0, to jest ona usuwana z
drzewa. Dodatkowo wzbogacamy drzewo dwa dodatkowe atrybuty: suma - suma
wszystkich wartosci z poddrzewa (lacznie z wartodcia biezacego wezta), max Pref
- maksymalna suma z prefiksu wszystkich wartosci z catego poddrzewa.
Dodatkowe atrybuty mozemy aktualizowaé¢ za pomoca wzoroéw:

suma(v) = suma(left(v)) + wart(v) + suma(right(v))

maxPref(left(v))
mazPref(v) = max { suma(left(v)) + wart(v)
suma(left(v)) + wart(v) + mazPref (right(v))

Gdy do struktury danych dodawany jest nowy przedzial [a,b] to zmieniamy
wartosé krotek:

e dla krotki v = (a,0) zmieniamy wart(v) := wart(v) + 1, jesli taka krotka
nie istnieje to ja dodajemy (z wartoscia 1)

e dla krotki v = (b, 1) zmieniamy wart(v) := wart(v) — 1, jesli taka krotka
nie istnieje to ja dodajemy (z wartoscia -1)

Analogicznie przy usuwaniu przedziatu [a, b]:

e dla krotki v = (a,0) zmieniamy wart(v) := wart(v) — 1, jesli taka krotka
nie istnieje to ja dodajemy (z wartoscia -1)

e dla krotki v = (b, 1) zmieniamy wart(v) := wart(v) + 1, jesli taka krotka
nie istnieje to ja dodajemy (z wartoscia +1)

Uwaga! przy aktualizacji krotek musimy pamietaé aby usuwac te wezly drzewa
ktorych wartos¢ wart(v) = 0.

Za pomoca dodatkowych atrybutow jesteSmy w stanie w czasie O(logn)
zaimplementowaé nastepujace operacje:

o suma(x, f) - suma wartosci wszystkich krotek nie wigkszych niz (z, f),
mozemy zuwazy¢, ze w naszym przypadku suma(x,0) oznacza liczbe przy-
dzialow ktore zawieraja warto$é x,

e maxPref(xg, fo, 1, f1) - maksymalna suma prefiksowa wartosci wszyst-
kich krotek nie mniejszych niz (g, fo) i nie wiekszych niz (z1, f1)

Operacja Intersect(a,b) sprowadza sie do warunku logicznego:
mazPref(a,0,b,0) >0

Ewentualnie mozna tez sprawdzaé, czy suma(a,0) > 0 lub suma(b,0), lub
istnieje krotka (x,0) : a < x < b taka, ze wart((x,0)) > 0.

Zadanie 7.5

Zaprojektuj strukture danych dla dynamicznego ciagu liczbowego z1,x2, ..., 2z,
umozliwiajaca wydajne wykonywanie nastepujacych operacji:

Ini():: zainicjuj ciag jako pusty

Delete(i):: usun i-ty element ciagu

Insert(i,a):: wstaw liczbe a jako i-ty element ciagu
Find(i):: wskaz i-ty element ciagu

ParitySum():: podaj sume wszystkich elementéw na pozycjach parzystych w
ciagu

Rozwigzanie: Drzewo czerwono-czarne z elementami wstawianymi wg. liczby
elementéw w poddrzewie. Dodatkowe atrybuty:

e klucz (ale bez porzadku BST),
e liczba elementéw w poddrzewie,
e suma elementéw o indeksach parzystych w poddrzewie,

e suma elementéw o indeksach nieparzystych w poddrzewie,

Zadanie 7.6

Niech A bedzie skoniczonym, dynamicznie zmieniajacym sie ciggiem, ktorego ele-
mentami sa liczby ze zbioru {—1, 0, 1}. Podciag kolejnych elementoéw A nazwiemy
dobrym, gdy suma jego elementéw jest rowna 0. Podciag jest super-dobry, gdy
jest dobry i suma elementéw w kazdym jego prefiksie jest nieujemna.

Przyklad: W ciagu A =[1,1,0,-1,0,0,1,—1,1,1, —1], podciag —1,1,1, —1 jest
dobry, ale nie super-dobry. Super-dobrym podciagiem jest na przyktad 1,0, —1.

a) Zaproponuj algorytm, ktory w czasie liniowym obliczy dtugosé¢ najdtuzszego
super-dobrego podciagu danego ciagu A.

b) Zaproponuj strukture danych, ktora pozwoli na wydajne wykonywanie
nastepujacych operacji na A:
Ini(A):: A := [|; wykonywana tylko raz, na poczatku

Insert(A,e,i):: wstaw nowy element e jako i-ty element w A, 1 < i <
|Al +1

Delete(A,i):: usun i-ty element z A, 1 <1i < |A|

SuperGood(A,i,j):: sprawdz, czy podciag Ali,...,j] jest super-dobry,
1<i<j<|A]

Rozwigzanie:

a) Niech psumli] = Z;Zl ali].
Obserwacje:
e maksymalne (w sensie zawierania) ciagi superdobre nie maja czesci wspol-
nej,
e jesli afi..j] jest maksymalnym ciagiem superdobrym, to i = 1 lub a[i — 1] =
—1,

e jesli afi..j] jest maksymalnym ciagiem superdobrym, to ¢ = j lub psum[j —
1] > psumlj],
Niech A, = {i : psum[i] = x}, dla kazdego x mozemy w czasie O(|A,|) spraw-

dzi¢ maksymalne ciagi superdobre ali..j], dla i,j € A,. Poniewaz) |A,| =n
to caly algorytm ma ztozonosé¢ O(n).

b) Wzbogacamy wezly drzewa o: count:: liczba elementéw w poddrzewie, sum::
suma elementow w poddrzewie, minpsum:: minimalna suma prefiksowa ciagu
elementéw w poddrzewie,

Kazdy z tych atrybutéw mozemy aktualizowac¢ w czasie O(1):

e count(v) = 1+ count(left(v)) + count(right(v))
o sum(v) = key(v) + sum(left(v)) + sum(right(v))

minpsum(left(v))
e minpsum(v) = min < sum(left(v)) + key(v)
sum(left(v)) + key(v) + minpsum(right(v))

