
Algorytmy i Struktury Danych, 9. ćwiczenia –
rozwiązania zadań serii 7 BIS

(wersja 1.0.1)

2024-12-04

Zadanie 7.1
Implementacja słownika. a) Dwuwymiarowa tablica. b) Tablica z rosnącymi
blokami.
Rozwiązanie:

a) https://en.wikipedia.org/wiki/Beap

Szukaj(x):: zaczynamy w skrajnie prawy elemencie pierwszego wiersza (k, 1),
będąc w węźle (i, j) jeśli a[i− 1, j] ≥ x to przejdź do (i− 1, j) wpp. przejdź
do (i, j + 1).

Wstaw(x):: wstawiamy nową wartość w wolne miejsce na ostatniej przekątnej,
po czym wykonujemy operację analogiczną do heapUp, czyli jeśli a[i, j] <
min(a[i− 1, j], a[i, j − 1]) to zamieniamy a[i, j] z większą z wartości a[i−
1, j], a[i, j − 1] i kontynuujemy poprawienie.

Usuń(x):: zastępujemy usuwaną wartość używając y — ostatniego klucza z
ostatniej przekątnej, jeśli x ≥ y to postępujemy analogicznie jak przy
wstawianiu, jeśli x ≤ y to wykonujemy operację analogiczną do heapDown,
czyli jeśli a[i, j] > min(a[i+1, j], a[i, j+1]) to zamieniamy a[i, j] z mniejszą
z wartości a[i+ 1, j], a[i, j + 1] i kontynuujemy poprawienie.

b) Dla bloku zawierającego przesunięty cyklicznie ciąg rosnący, możemy w
czasie O(log n):

• znaleźć minimum

• znaleźć maksimum

• sprawdzić czy blok zawiera dany klucz x

Szukaj(x):: czas O(log2 n), za pomocą wyszukiwania binarnego znajdź blok
taki, że min(Bi) ≤ x ≤ max(Bi). Sprawdź czy Bi zawiera x.

1

https://en.wikipedia.org/wiki/Beap

Szukaj(x):: czas O(logn), za pomocą wyszukiwania binarnego znajdź dwa
sąsiednie bloki Bi i Bi+1, które mogą zawierać klucz x a następnie sprawdź
w czasie O(log n) czy klucz występuje w którymś z nim.
Korzystamy z faktu, że dla dowolnego elementy y z bloku Bj :

• jeśli y < x to element x na pewno nie występuje w B1, . . . , Bj−1,

• jeśli y > x to element x na pewno nie występuje w Bj+1, Bj+2, . . .,

Te obserwacje pozwalają kontynuowanie wyszukiwania binarnego tak długo
jak zares składa się z co najmniej trzech bloków. Ponieważ możemy porów-
nywać z dowolnym elementem z bloku (np. pierwszym) i unikamy ustalania
min /max, to koszt porównania x z jednym blokiem to O(1).

Wstaw(x):: czas O(
√
n logn), za pomocą wyszukiwania binarnego znajdź blok

taki, że min(Bi) ≤ x ≤ max(Bi), wstaw x do bloku Bi przesuwając pozo-
stałe elementy, wypchnij max(Bi) do bloku Bi+1 (co spowoduje reakcję
łańcuchową i przesłanie dalej max(Bj)). Ponieważ dopuszczamy przesunię-
cia cykliczne w blokach stąd obsługa każdego z max(Bi),max(Bi+1), . . .
wymaga tylko czasu O(logn).

Usuń(x):: analogicznie jak wstawianie, ale brakujący element zastępujemy
przez min(Bi+1).

Zadanie 7.2
Danych jest n par liczb całkowitych, które się różnią na każdej pozycji. Pierwsze
elementy par to klucze, zaś drugie to priorytety. Innymi słowy, mamy n różnych
kluczy i n różnych priorytetów.

a) Jednoznaczność drzewa które jest zarówno BST jak i kopcem typu MAX.

b) Konstrukcja drzewa z a) poprzez O(n) rotacji jeśli drzewo wejściowe jest
BST.

c) Algorytm znajdujący w czasie liniowym ciąg rotacji dla b).

Rozwiązanie:

a)

• Korzeń = element r z największym priorytetem.

• Jedno z dzieci korzenia = element e z największym priorytetem spośród
pozostałych elementów. Jeśli r.key > e.key, to e musi być lewym dzieckiem,
w innym przypadku prawym dzieckiem.

• Drugie dziecko = element f z największym priorytetem pośród elementów
z kluczem mniejszym niż r.key (jeśli f jest lewym dzieckiem, tzn. jeśli
r.key < e.key) lub w innym przypadku spośród elementów z kluczem
większym niż r.key.

2

Wybór korzenia jest jednoznaczny. Wybór dzieci też jednoznaczny. Rekurencyjnie
pokazujemy jednoznaczność wyboru pozostałych wierzchołków. (Nota bene:
Czasem korzeń może mieć tylko jedno dziecko, np. drzewo może okazać się
ścieżką.)

b) Dowolne drzewo BST możemy za pomocą co najwyżej n− 1 rotacji prze-
kształcić w listę (tzn. drzewo, którego każdy węzeł wewnętrzny ma tylko pra-
wego syna). Niech ST to sekwencja rotacji przekształcająca T w listę, niech
SMAX to sekwencja rotacji przekształcająca TMAX w listę, rozwiązaniem będzie
ST + reverse(Smax).

c)

1. Rozwiązanie: Jak punkt b (czyli wygeneruj sekwencję rotacji zamieniającą
drzewo BST na listę i dodaj odwróconą sekwencję rotacji zamieniającą kopiec
BST na listę). Musimy pokazać jednak liniowy algorytm, który dla zadanego
drzewa BST wygeneruje kopiec:
Algorytm 1: Obliczanie Kopca

Input: drzewo BST o kluczach k1, . . . , kn i priorytetach p1, . . . , pn
Output: Drzewo K z porządkiem BST wg kluczy k1, . . . , kn i

porządkiem kopcowym (MAX) wg priorytetów p1, . . . , pn
K=drzewo o jednym węźle (k1, p1)
foreach i ∈ {2, . . . , n} do

niech v1, . . . , vk skrajnie prawa ścieżka w drzewie K (v1 = root(K))
j = k
while j > 0 and pi > p(vj) do

j = j − 1

wstaw do K nowy węzeł (ki, pi) jako prawe dziecko vj (jeśli j = 0
jako nowy korzeń), lewy syn to vj+1 (jeśli j < k)

2. Rozwiązanie: Algorytm na dwa kroki:

1. Zamieniamy wejściowe BST za pomocą rotacji na ścieżkę skierowaną cał-
kowicie na prawo.

2. Zaczynając od korzenia, wykonujemy po kolej dla każdego wierzchołka
Up-Heap używając do tego rotacji.

Dowód poprawności : Ponieważ używaliśmy tylko rotacji, to wyjściowe drzewo
jest nadal BST. Krok 2) zapewnia nam że drzewo jest też kopcem.

Trzeba jeszcze pokazać że kroki 1) i 2) możemy zrobić w czasie O(n). Ponieważ
każdy krok naszego algorytmu to rotacja, wystarczy pokazać że wykonujemy w
sumie O(n) rotacji.

Krok 1): Niech π będzie ścieżką zaczynającą się przy korzeniu i idącą maksy-
malnie tylko w prawo. (Z początku może być że π jest tylko korzeniem.) Dopóki π
nie zawiera wszystkie wierzchołki, to musi zawierać jakiś wierzchołek v z lewym
dzieckiem. Rotujemy w prawo wokół v. Przez to π staje się dłuższe o jeden
wierzchołek. Więc po najwyżej n− 1 rotacjach π zawiera wszystkie wierzchołki.

3

Krok 2): Up-heap dla danego wierzchołka v działa w ten sposób że tak długo
jak priorytet ojca v jest mniejszy, to wykonujemy rotację w lewo wokół tegoż ojca.
Skutkuje to tym że ojciec stanie się dzieckiem v (bo v był prawym dzieckiem
ojca), a dziadek wierzchołka v stanie się nowym ojcem v. Ponieważ wszyscy
(aktualni) przodkowie v leżą na ścieżce π, to v będzie prawym dzieckiem nowego
ojca.

Obserwujemy że podgraf oparty na wierzchołkach, dla których już wywołali-
śmy Up-Heap, jest zarówno drzewem BST jak i kopcem. Ponadto przy każdej
rotacji ścieżka π maleje o jeden wierzchołek a nowe już nie dochodzą. Więc w
sumie nie może być więcej niż n− 1 rotacji.

Zadanie 7.3
Pokaż, w jaki sposób wykonywać wydajnie operacje Join i Split na AVL-drzewach
wyszukiwań binarnych:
Rozwiązanie:

Algorytm 2: Join(T, x, T ′) w czasie O(logn)

WLOG height(T) ≥ height(T ′)
Zlokalizuj na skrajnie prawej ścieżce T wierzchołek v, taki, że
height(Tv) = height(T ′)

zastąp Tv przez drzewo o korzeniu z kluczem x, lewym synem Tv i prawy
synem T ′

popraw zbalansowanie wierzchołków na ścieżce od x do korzenia T .
Jeśli dokładniej przeanalizujemy czas działania Join to zauważmy, że ta

operacja działa w czasie O(1 + |h(T)− h(T ′)|).
Split(T, x) w czasie O(log n):: Zlokalizuj węzeł x, po jego usunięciu drzewo

rozpada się na O(log n) drzew (i pojedynczych kluczy) mniejszych / większych
od x. Te dwie rodziny drzew można scalić w T<x, T>x używając Join (uwaga
scalamy drzewa w kolejności od najmniejszych do największych).

Zadanie 7.4
Zaprojektuj strukturę danych dla dynamicznego zbioru domkniętych przedziałów
liczbowych S, umożliwiającą wydajne wykonywanie operacji:

Search(S, [a, b]):: podaj wskaźnik do wystąpienia [a,b] w S; jeśli [a,b] nie ma w
S odpowiedzią jest NULL

Insert(S, [a, b]):: S := S ∪ {[a, b]}

Delete(S, [a, b]):: S := S {[a, b]}

Intersect(S, [a, b]):: sprawdź, czy w S jest przedział z niepustym przecięciem z
[a, b]

Rozwiązanie: Search/Insert/Delete można zaimplementować za pomocą zwy-
kłego drzewa które utrzymuje pary (a, b) w porządku leksykograficznym.

Operacja Intersect:

4

Utrzymujemy dodatkowe drzewo, które będzie utrzymywało krotki (x, f)
(z porządkiem leksykograficznym), gdzie x to współrzędna na osi X a f to
flaga {0, 1}. Każdej krotce przypisana jest jej wartość wart. Jeśli w trakcie
działania algorytmu wartość jakiejś krotki będzie równa 0, to jest ona usuwana z
drzewa. Dodatkowo wzbogacamy drzewo dwa dodatkowe atrybuty: suma - suma
wszystkich wartości z poddrzewa (łącznie z wartością bieżącego węzła), maxPref
- maksymalna suma z prefiksu wszystkich wartości z całego poddrzewa.
Dodatkowe atrybuty możemy aktualizować za pomocą wzorów:

suma(v) = suma(left(v)) + wart(v) + suma(right(v))

maxPref(v) = max


maxPref(left(v))

suma(left(v)) + wart(v)

suma(left(v)) + wart(v) +maxPref(right(v))

Gdy do struktury danych dodawany jest nowy przedział [a, b] to zmieniamy
wartość krotek:

• dla krotki v = (a, 0) zmieniamy wart(v) := wart(v) + 1, jeśli taka krotka
nie istnieje to ją dodajemy (z wartościa 1)

• dla krotki v = (b, 1) zmieniamy wart(v) := wart(v)− 1, jeśli taka krotka
nie istnieje to ją dodajemy (z wartościa -1)

Analogicznie przy usuwaniu przedziału [a, b]:

• dla krotki v = (a, 0) zmieniamy wart(v) := wart(v)− 1, jeśli taka krotka
nie istnieje to ją dodajemy (z wartościa -1)

• dla krotki v = (b, 1) zmieniamy wart(v) := wart(v) + 1, jeśli taka krotka
nie istnieje to ją dodajemy (z wartościa +1)

Uwaga! przy aktualizacji krotek musimy pamiętać aby usuwać te węzły drzewa
których wartość wart(v) = 0.

Za pomocą dodatkowych atrybutów jesteśmy w stanie w czasie O(log n)
zaimplementować następujące operacje:

• suma(x, f) - suma wartości wszystkich krotek nie większych niż (x, f),
możemy zuważyć, że w naszym przypadku suma(x, 0) oznacza liczbę przy-
działów które zawierają wartość x,

• maxPref(x0, f0, x1, f1) - maksymalna suma prefiksowa wartości wszyst-
kich krotek nie mniejszych niż (x0, f0) i nie większych niż (x1, f1)

Operacja Intersect(a,b) sprowadza się do warunku logicznego:

maxPref(a, 0, b, 0) > 0

Ewentualnie można też sprawdzać, czy suma(a, 0) > 0 lub suma(b, 0), lub
istnieje krotka (x, 0) : a ≤ x ≤ b taka, że wart((x, 0)) > 0.

5

Zadanie 7.5
Zaprojektuj strukturę danych dla dynamicznego ciągu liczbowego x1, x2, . . . , xn

umożliwiającą wydajne wykonywanie następujących operacji:

Ini():: zainicjuj ciąg jako pusty

Delete(i):: usuń i-ty element ciągu

Insert(i,a):: wstaw liczbę a jako i-ty element ciągu

Find(i):: wskaż i-ty element ciągu

ParitySum():: podaj sumę wszystkich elementów na pozycjach parzystych w
ciągu

Rozwiązanie: Drzewo czerwono-czarne z elementami wstawianymi wg. liczby
elementów w poddrzewie. Dodatkowe atrybuty:

• klucz (ale bez porządku BST),

• liczba elementów w poddrzewie,

• suma elementów o indeksach parzystych w poddrzewie,

• suma elementów o indeksach nieparzystych w poddrzewie,

Zadanie 7.6
Niech A będzie skończonym, dynamicznie zmieniającym się ciągiem, którego ele-
mentami są liczby ze zbioru {−1, 0, 1}. Podciąg kolejnych elementów A nazwiemy
dobrym, gdy suma jego elementów jest równa 0. Podciąg jest super-dobry, gdy
jest dobry i suma elementów w każdym jego prefiksie jest nieujemna.
Przykład: W ciągu A = [1, 1, 0,−1, 0, 0, 1,−1, 1, 1,−1], podciąg −1, 1, 1,−1 jest
dobry, ale nie super-dobry. Super-dobrym podciągiem jest na przykład 1, 0,−1.

a) Zaproponuj algorytm, który w czasie liniowym obliczy długość najdłuższego
super-dobrego podciągu danego ciągu A.

b) Zaproponuj strukturę danych, która pozwoli na wydajne wykonywanie
następujących operacji na A:

Ini(A):: A := []; wykonywana tylko raz, na początku

Insert(A,e,i):: wstaw nowy element e jako i-ty element w A, 1 ≤ i ≤
|A|+ 1

Delete(A,i):: usuń i-ty element z A, 1 ≤ i ≤ |A|
SuperGood(A,i,j):: sprawdź, czy podciąg A[i, . . . , j] jest super-dobry,

1 ≤ i ≤ j ≤ |A|

Rozwiązanie:

6

a) Niech psum[i] =
∑i

j=1 a[i].
Obserwacje:

• maksymalne (w sensie zawierania) ciągi superdobre nie mają części wspól-
nej,

• jeśli a[i..j] jest maksymalnym ciągiem superdobrym, to i = 1 lub a[i− 1] =
−1,

• jeśli a[i..j] jest maksymalnym ciągiem superdobrym, to i = j lub psum[j−
1] > psum[j],

Niech Ax = {i : psum[i] = x}, dla każdego x możemy w czasie O(|Ax|) spraw-
dzić maksymalne ciągi superdobre a[i..j], dla i, j ∈ Ax. Ponieważ

∑
x |Ax| = n

to cały algorytm ma złożoność O(n).

b) Wzbogacamy węzły drzewa o: count:: liczba elementów w poddrzewie, sum::
suma elementów w poddrzewie, minpsum:: minimalna suma prefiksowa ciągu
elementów w poddrzewie,

Każdy z tych atrybutów możemy aktualizować w czasie O(1):

• count(v) = 1 + count(left(v)) + count(right(v))

• sum(v) = key(v) + sum(left(v)) + sum(right(v))

• minpsum(v) = min


minpsum(left(v))

sum(left(v)) + key(v)

sum(left(v)) + key(v) +minpsum(right(v))

7

