Reversal Distance for Strings with Duplicates

IPetr Kolman  2Tomek Walen

1Faculty of Mathematics and Physics
Charles University in Prague

2Wydziat Matematyki, Informatyki i Mechaniki
Warsaw University

September 15, 2006

P. Kolman, T. Walen (UW) Reversal distance September 15, 2006



Reversal distance

reversal p(i, j)

of astring A=a;...a, 1 <i<j<n, transforms the string A into a
string A" = a1 ...2j-13jaj_1...3;aj41...an

Reversal distance RD(A, B) of strings A and B

@ minimum number of reversals that transform A into B

A = abcccbbbadd  p(3,9)
ababbbccedd  p(7,11
ababbbddccc  p(1,2)
baabbbddccc  p(1,6)
bbbaabddccc = = RD(A,B) =4

P. Kolman, T. Walen (UW)

Reversal distance

September 15, 2006

4

2/15



Sorting by reversals

Known results

@ permutations:
@ unsigned SBR is NP-hard (Caprara 1997)
@ signed SBR is in P (Hannenhalli, Pevzner 1997)
@ strings (finding the reversal distance of strings A and B):

s SBR is NP-hard for binary strings (Christie, Irving 2001),
o O(log nlog" n)-approximation (Cormode et al. 2002),

@ strings restricted variant (k-SBR), every letter occurs at most k times,

s O(1) approximations for 2-SBR and 3-SBR (Chen et al. 2005, Chrobak
et al. 2004, Goldstein et al. 2005)
o O(k®) approximation for k-SBR (Kolman 2005)

New contribution
@ O(k) approximation for k-SBR in linear time

P. Kolman, T. Walen (UW) Reversal distance September 15, 2006 3 /15



Minimum common string partition

@ partition of a string A - a sequence P = (P1, P2, ..., Py) of strings
whose concatenation is equal to A, that is P1P> ... P, = A;
@ P1, P>, ..., P, are blocks
@ size of P = number of blocks
@ common partition of A and B - a pair (P, Q) such that P is a
partition of A, Q is a partition of B and P is a permutation of Q

@ minimum common string partition problem (MCSP) - find a common
partition of strings A and B of minimum size

Example

A = abcccbbbadd
B = bbbaabddccc

P. Kolman, T. Walen (UW) Reversal distance September 15, 2006 4 /15



Minimum common string partition

@ partition of a string A - a sequence P = (P1, P2, ..., Py) of strings
whose concatenation is equal to A, that is P1P> ... P, = A;
@ P1, P>, ..., P, are blocks
@ size of P = number of blocks
@ common partition of A and B - a pair (P, Q) such that P is a
partition of A, Q is a partition of B and P is a permutation of Q

@ minimum common string partition problem (MCSP) - find a common
partition of strings A and B of minimum size

Example

A = ab ccc bbba dd
B = bbba ab dd ccc

P. Kolman, T. Walen (UW) Reversal distance September 15, 2006 4 /15



Minimum common string partition

Variants of MCSP

@ k-MCSP - each letter occurs at most k times,
@ signed MCSP (two blocks C and D match each other if C = D or
C = —D, where —D is the reversal of D),

@ the a approximation for the (signed) k-MCSP gives O(«)
approximation for the k-SBR

P. Kolman, T. Walen (UW) Reversal distance September 15, 2006 5/ 15



Minimum common string partition

Variants of MCSP

@ k-MCSP - each letter occurs at most k times,
@ signed MCSP (two blocks C and D match each other if C = D or
C = —D, where —D is the reversal of D),

@ the a approximation for the (signed) k-MCSP gives O(«)
approximation for the k-SBR

A few more definitions
@ duo - (sub)string of length two
@ duos(S) - the set of all duos of string S, i.e.
duos(abbab) = {ab, ba, bb},
@ cutting a duo xy - cut the every occurrence of xy after the character x,

v

P. Kolman, T. Walen (UW) Reversal distance September 15, 2006 5/ 15



Minimum common string partition

Variants of MCSP

@ k-MCSP - each letter occurs at most k times,
@ signed MCSP (two blocks C and D match each other if C = D or
C = —D, where —D is the reversal of D),

@ the a approximation for the (signed) k-MCSP gives O(«)
approximation for the k-SBR

A few more definitions
@ duo - (sub)string of length two
@ duos(S) - the set of all duos of string S, i.e.
duos(abbab) = {ab, ba, bb},
@ cutting a duo xy - cut the every occurrence of xy after the character x,

axybcdxyxybxy

v

P. Kolman, T. Walen (UW) Reversal distance September 15, 2006 5/ 15



Minimum common string partition

Variants of MCSP

@ k-MCSP - each letter occurs at most k times,
@ signed MCSP (two blocks C and D match each other if C = D or
C = —D, where —D is the reversal of D),

@ the a approximation for the (signed) k-MCSP gives O(«)
approximation for the k-SBR

A few more definitions
@ duo - (sub)string of length two
@ duos(S) - the set of all duos of string S, i.e.
duos(abbab) = {ab, ba, bb},
@ cutting a duo xy - cut the every occurrence of xy after the character x,

ax ybedx yx ybx y

v

P. Kolman, T. Walen (UW) Reversal distance September 15, 2006 5/ 15



Solving MCSP

Algorithm outline

input: strings A, B

1. compute the set of the consensus duos ¢

2. A, B+ for each duo xy € ®, cut all occurrences of xy in A, B
output: (A, B)

P. Kolman, T. Walen (UW) Reversal distance September 15, 2006 6 /15



Solving MCSP

Algorithm outline

input: strings A, B

1. compute the set of the consensus duos ¢

2. A, B+ for each duo xy € ®, cut all occurrences of xy in A, B
output: (A, B)

| 5\

Example
A = abaab B = ababa

® = {aa, ba} is the set of consensus duos

A=ab aab
B=abab a

P. Kolman, T. Walen (UW) Reversal distance September 15, 2006 6 /15



Solving MCSP

Algorithm outline

input: strings A, B

1. compute the set of the consensus duos ¢

2. A, B+ for each duo xy € ®, cut all occurrences of xy in A, B
output: (A, B)

Example
A = abaab B = ababa

| 5\

® = {aa, ba} is the set of consensus duos

A ={ab, a, ab} Aopr = {aba, ab}
B = {ab, ab, a} Bopr = {ab, aba}

P. Kolman, T. Walen (UW) Reversal distance September 15, 2006 6 /15



Solving MCSP — observation

Observation 1

Let #substr(A, S) - number of occurrences of substring S in string A.
If xy is a duo, such that #substr(A, xy) # F#substr(B, xy), then in every
common partition of A/B, at least one occurrence of xy is cut.

P. Kolman, T. Walen (UW) Reversal distance September 15, 2006 7/ 15



Solving MCSP — observation

Observation 1

Let #substr(A, S) - number of occurrences of substring S in string A.
If xy is a duo, such that #substr(A, xy) # F#substr(B, xy), then in every
common partition of A/B, at least one occurrence of xy is cut.

A = cbcccbecbeddd
B = cdddcccbecheb

P. Kolman, T. Walen (UW) Reversal distance September 15, 2006 7/ 15



Solving MCSP — observation

Observation 1

Let #substr(A, S) - number of occurrences of substring S in string A.
If xy is a duo, such that #substr(A, xy) # F#substr(B, xy), then in every
common partition of A/B, at least one occurrence of xy is cut.

A = cb cccbeeb cddd
B = cddd cccbeeb cb

P. Kolman, T. Walen (UW) Reversal distance September 15, 2006 7/ 15



Solving MCSP — observation

Observation 1

Let #substr(A, S) - number of occurrences of substring S in string A.
If xy is a duo, such that #substr(A, xy) # F#substr(B, xy), then in every
common partition of A/B, at least one occurrence of xy is cut.

= cb cccbeeb cddd
B = cddd cccbeeb cb

Observation 2

If X is a substring, such that #substr(A, X) # #substr(B, X), then in
every common partition of A/B, at least one occurrence of X is cut.

P. Kolman, T. Walen (UW) Reversal distance September 15, 2006 7/ 15



Algorithm

Algorithm HS
input: strings A, B
1. construct an instance (U, S) of the Hitting Set problem:
U < duos(A) U duos(B)
T < {X | #substr(A, X) # #substr(B, X)}
S+ {duos(X) | X € T}
2. solve (approximately) the Minimum Hitting Set problem:
&+ a hitting set for (U, S)
3. transform the hitting set into a common partition:
A, B« for each duo xy € ®, cut all occurrences of xy in A, B

output: (A, B)

P. Kolman, T. Walen (UW) Reversal distance September 15, 2006 8 /15



Algorithm HS — example

Example
A = abaab B = ababa
U = {aa, ab, ba}

T = {aa, ba, aab, aba, baa, bab, abaa, abab, baba, abaab, ababa}
S = {{zal}, {ba}, {as, ab}, {aa, bal}, {ab, ba}, {22, ab, ba} }
® = {aa, ba} is a hitting set for (U, S)

A= {ab, a, ab}
B = {ab, ab, a}

P. Kolman, T. Walen (UW) Reversal distance September 15, 2006 9 /15



Algorithm HS — correctness
The partition (A, B) found by algorithm HS is a common partition of A, B.

Proof: by contradiction
Let #blocks(P, S) - num. of blocks P; = S in partition P = (P1,..., Pm).
Let X be the longest block s.t. #blocks(.A, X) # #blocks(5, X)

#blocks(A, X) = #substr(A, X)— Z #substr(Y, X)-#blocks(A, Y)

YeAXCY

#blocks(B, X) = #substr(B, X) — Z #substr( Y, X) - #blocks(B, Y)
YeBXCY
By choice of X: #blocks(A, Y) = #blocks(B, Y) for each Y s.t. X C Y
= ##substr(A, X) # #substr(B, X)
However, X was not cut by the algorithm — a contradiction.

v

P. Kolman, T. Walen (UW) Reversal distance September 15, 2006 10 / 15



Algorithm HS — efficiency

Difficulties
@ The hitting set problem is NP-hard

@ It is also hard to approximate (no O(1)-approximation).

Exploit the structure of the sets

@ each set corresponds to a substring of A or B

o "is a substring of" defines a partial order on the set T

P. Kolman, T. Walen (UW) Reversal distance September 15, 2006 11 / 15



Approximating minimum hitting set

Minimum elements

X is a minimum element of T if no Y € T is a proper substring of X
Let Tmin < minimum elements of

T = {X | #substr(A, X) # #substr(B, X)}

Lemma

If X € Tin then there exists an occurrence of X in A or in B that
goes over cut from the optimal solution.

Proof: by contradiction: for X € Tin, assume that no occurrence of it in
A and B goes over an optimal break

every occurrence of X in A and B is a substring of a block of the optimal
partition

= X occurres the same number of times in A and B

= XE€T = X¢E Tmin

4

P. Kolman, T. Walen (UW) Reversal distance September 15, 2006 12 / 15



Approximating minimum hitting set

Procedure for hitting set

T = {X | #substr(A, X) # #substr(B, X)}
Tmin < minimum elements of T
D0
for each X € Thin
if duos(X) N ® = () then add the first and last duo of X to ®

v

Lemma

|| < 4-|OPT|

Proof outline

For each duo from ®, charge some cut in the optimal solution. Each cut
from the optimal solution will be charged at most 2 times.

P. Kolman, T. Walen (UW) Reversal distance September 15, 2006 13 / 15



Conclusion

The algorithm HS computes a 4k-approximation of the minimum common
partition of A and B.

Linear-time implementation

Exploits linear-time algorithms for
o suffix trees

@ special case of disjoint set union problem

Theorem
There exists an algorithm that computes in linear time ©(k)-approximation
for signed, unsigned and reversed k-MCSP and for signed and unsigned
k-SBR.

P. Kolman, T. Walen (UW) Reversal distance September 15, 2006 14 / 15



Conclusion

@ O(k)—approximation for the k-MCSP,

@ the approximation for the k-SMCSP, gives the O(k) approximation for
the k-SBR,

@ the running time O(n)

Challenges
@ Find a better approximation, e.g., O(log k)

September 15, 2006 15 / 15

P. Kolman, T. Walen (UW) Reversal distance



