Reversal Distance for Strings with Duplicates

${ }^{1}$ Petr Kolman ${ }^{2}$ Tomek Waleń
${ }^{1}$ Faculty of Mathematics and Physics
Charles University in Prague
${ }^{2}$ Wydział Matematyki, Informatyki i Mechaniki
Warsaw University

September 15, 2006

Reversal distance

reversal $\rho(i, j)$

of a string $A=a_{1} \ldots a_{n}, 1 \leq i<j \leq n$, transforms the string A into a string $A^{\prime}=a_{1} \ldots a_{i-1} a_{j} a_{j-1} \ldots a_{i} a_{j+1} \ldots a_{n}$

Reversal distance $\operatorname{RD}(A, B)$ of strings A and B

- minimum number of reversals that transform A into B

Example

$A=$ abcccbbbadd $\rho(3,9)$ ababbbcccdd $\quad \rho(7,11)$ ababbbddccc $\quad \rho(1,2)$
baabbbddccc $\rho(1,6)$ bbbaabddccc $=B \quad \Rightarrow \operatorname{RD}(A, B)=4$

Sorting by reversals

Known results

- permutations:
- unsigned SBR is NP-hard (Caprara 1997)
- signed SBR is in P (Hannenhalli, Pevzner 1997)
- strings (finding the reversal distance of strings A and B):
- SBR is NP-hard for binary strings (Christie, Irving 2001),
- $O\left(\log n \log ^{*} n\right)$-approximation (Cormode et al. 2002),
- strings restricted variant ($k-\mathrm{SBR}$), every letter occurs at most k times,
- $O(1)$ approximations for 2-SBR and 3-SBR (Chen et al. 2005, Chrobak et al. 2004, Goldstein et al. 2005)
- $O\left(k^{2}\right)$ approximation for $k-S B R(K o l m a n ~ 2005)$

New contribution

- $O(k)$ approximation for $k-$ SBR in linear time

Minimum common string partition

Definitions

- partition of a string A - a sequence $\mathcal{P}=\left(P_{1}, P_{2}, \ldots, P_{m}\right)$ of strings whose concatenation is equal to A, that is $P_{1} P_{2} \ldots P_{m}=A$;
- $P_{1}, P_{2}, \ldots, P_{m}$ are blocks
- size of $\mathcal{P}=$ number of blocks
- common partition of A and B - a pair $(\mathcal{P}, \mathcal{Q})$ such that \mathcal{P} is a partition of A, \mathcal{Q} is a partition of B and \mathcal{P} is a permutation of \mathcal{Q}
- minimum common string partition problem (MCSP) - find a common partition of strings A and B of minimum size

Example

$A=$ abcccbbbadd
$B=$ bbbaabddccc

Minimum common string partition

Definitions

- partition of a string A - a sequence $\mathcal{P}=\left(P_{1}, P_{2}, \ldots, P_{m}\right)$ of strings whose concatenation is equal to A, that is $P_{1} P_{2} \ldots P_{m}=A$;
- $P_{1}, P_{2}, \ldots, P_{m}$ are blocks
- size of $\mathcal{P}=$ number of blocks
- common partition of A and B - a pair $(\mathcal{P}, \mathcal{Q})$ such that \mathcal{P} is a partition of A, \mathcal{Q} is a partition of B and \mathcal{P} is a permutation of \mathcal{Q}
- minimum common string partition problem (MCSP) - find a common partition of strings A and B of minimum size

Example

$A=a b$ ccc bbba dd
$B=\mathrm{bbba} \mathrm{ab} \mathrm{dd} \mathrm{ccc}$

Minimum common string partition

Variants of MCSP

- k-MCSP - each letter occurs at most k times,
- signed MCSP (two blocks C and D match each other if $C=D$ or $C=-D$, where $-D$ is the reversal of D),
- the α approximation for the (signed) k-MCSP gives $O(\alpha)$ approximation for the k-SBR

A few more definitions

- duo - (sub)string of length two
- duos(S) - the set of all duos of string S, i.e $\operatorname{duos}(a b b a b)=\{a b, b a, b b\}$,
- cutting a duo $x y$ - cut the every occurrence of $x y$ after the character x,

Minimum common string partition

Variants of MCSP

- k-MCSP - each letter occurs at most k times,
- signed MCSP (two blocks C and D match each other if $C=D$ or $C=-D$, where $-D$ is the reversal of D),
- the α approximation for the (signed) k-MCSP gives $O(\alpha)$ approximation for the k-SBR

A few more definitions

- duo - (sub)string of length two
- duos(S) - the set of all duos of string S, i.e. $\operatorname{duos}(a b b a b)=\{a b, b a, b b\}$,
- cutting a duo $x y$ - cut the every occurrence of $x y$ after the character x,

Minimum common string partition

Variants of MCSP

- k-MCSP - each letter occurs at most k times,
- signed MCSP (two blocks C and D match each other if $C=D$ or $C=-D$, where $-D$ is the reversal of D),
- the α approximation for the (signed) k-MCSP gives $O(\alpha)$ approximation for the k-SBR

A few more definitions

- duo - (sub)string of length two
- $\operatorname{duos}(S)$ - the set of all duos of string S, i.e.

$$
d u o s(a b b a b)=\{a b, b a, b b\}
$$

- cutting a duo $x y$ - cut the every occurrence of $x y$ after the character x, axybcdxyxybxy

Minimum common string partition

Variants of MCSP

- k-MCSP - each letter occurs at most k times,
- signed MCSP (two blocks C and D match each other if $C=D$ or $C=-D$, where $-D$ is the reversal of D),
- the α approximation for the (signed) k-MCSP gives $O(\alpha)$ approximation for the k-SBR

A few more definitions

- duo - (sub)string of length two
- duos(S) - the set of all duos of string S, i.e.

$$
d u o s(a b b a b)=\{a b, b a, b b\}
$$

- cutting a duo $x y$ - cut the every occurrence of $x y$ after the character x,

$$
a x \text { ybcdx yx ybx y }
$$

Solving MCSP

Algorithm outline

input: strings A, B

1. compute the set of the consensus duos Φ
2. $\mathcal{A}, \mathcal{B} \leftarrow$ for each duo $x y \in \Phi$, cut all occurrences of $x y$ in A, B output: $(\mathcal{A}, \mathcal{B})$

Example

$A=a b a a b \quad B=a b a b a$
$\phi=\{a a, b a\}$ is the set of consensus duos

Solving MCSP

Algorithm outline

input: strings A, B

1. compute the set of the consensus duos Φ
2. $\mathcal{A}, \mathcal{B} \leftarrow$ for each duo $x y \in \Phi$, cut all occurrences of $x y$ in A, B output: $(\mathcal{A}, \mathcal{B})$

$$
\begin{aligned}
& \text { Example } \\
& \begin{array}{l}
A=a b a a b \quad B=a b a b a \\
\Phi=\{a a, b a\} \text { is the set of consensus duos } \\
\mathcal{A}=a b a a b \\
\mathcal{B}=a b a b a
\end{array}
\end{aligned}
$$

Solving MCSP

Algorithm outline

input: strings A, B

1. compute the set of the consensus duos Φ
2. $\mathcal{A}, \mathcal{B} \leftarrow$ for each duo $x y \in \Phi$, cut all occurrences of $x y$ in A, B output: $(\mathcal{A}, \mathcal{B})$

Example

$A=a b a a b \quad B=a b a b a$
$\Phi=\{a a, b a\}$ is the set of consensus duos
$\mathcal{A}=\{a b, a, a b\} \quad \mathcal{A}_{\text {OPT }}=\{a b a, a b\}$
$\mathcal{B}=\{a b, a b, a\} \quad \mathcal{B}_{O P T}=\{a b, a b a\}$

Solving MCSP - observation

Observation 1

Let \#substr (A, S) - number of occurrences of substring S in string A. If $x y$ is a duo, such that $\# \operatorname{substr}(A, x y) \neq \# \operatorname{substr}(B, x y)$, then in every common partition of A / B, at least one occurrence of $x y$ is cut.

Example

Observation 2

If X is a substring, such that $\# \operatorname{substr}(A, X) \neq \# \operatorname{substr}(B, X)$, then in every common partition of A / B, at least one occurrence of X is cut.

Solving MCSP - observation

Observation 1

Let \#substr (A, S) - number of occurrences of substring S in string A. If $x y$ is a duo, such that $\# \operatorname{substr}(A, x y) \neq \# \operatorname{substr}(B, x y)$, then in every common partition of A / B, at least one occurrence of $x y$ is cut.

Example

$$
\begin{aligned}
& A=c b c c c b c c b c d d d \\
& B=c d d d c c c b c c b c b
\end{aligned}
$$

\square
If X is a substring, such that $\# \operatorname{substr}(A, X) \neq \# \operatorname{substr}(B, X)$, then in every common partition of A / B, at least one occurrence of X is cut.

Solving MCSP - observation

Observation 1

Let \#substr (A, S) - number of occurrences of substring S in string A. If $x y$ is a duo, such that $\# \operatorname{substr}(A, x y) \neq \# \operatorname{substr}(B, x y)$, then in every common partition of A / B, at least one occurrence of $x y$ is cut.

Example

$A=c b$ cccbccb cddd
$B=c d d d$ cccbccb cb
\square
If X is a substring, such that $\# \operatorname{substr}(A, X) \neq \# \operatorname{substr}(B, X)$, then in every common partition of A / B, at least one occurrence of X is cut.

Solving MCSP - observation

Observation 1

Let \#substr (A, S) - number of occurrences of substring S in string A. If $x y$ is a duo, such that $\# \operatorname{substr}(A, x y) \neq \# \operatorname{substr}(B, x y)$, then in every common partition of A / B, at least one occurrence of $x y$ is cut.

Example

$$
\begin{aligned}
& A=c b \text { cccbccb cddd } \\
& B=c d d d \text { cccbccb cb }
\end{aligned}
$$

Observation 2

If X is a substring, such that $\# \operatorname{substr}(A, X) \neq \# \operatorname{substr}(B, X)$, then in every common partition of A / B, at least one occurrence of X is cut.

Algorithm

Algorithm HS

input: strings A, B

1. construct an instance (U, \mathcal{S}) of the Hitting Set problem:
$U \leftarrow \operatorname{duos}(A) \cup \operatorname{duos}(B)$
$T \leftarrow\{X \mid \# \operatorname{substr}(A, X) \neq \# \operatorname{substr}(B, X)\}$
$\mathcal{S} \leftarrow\{\operatorname{duos}(X) \mid X \in T\}$
2. solve (approximately) the Minimum Hitting Set problem:
$\Phi \leftarrow$ a hitting set for (U, \mathcal{S})
3. transform the hitting set into a common partition:
$\mathcal{A}, \mathcal{B} \leftarrow$ for each duo $x y \in \Phi$, cut all occurrences of $x y$ in A, B output: $(\mathcal{A}, \mathcal{B})$

Algorithm HS - example

> Example
> $A=a b a a b B=a b a b a$
> $U=\{a a, a b, b a\}$
> $T=\{a a, b a, a a b, a b a, b a a, b a b, a b a a, a b a b, b a b a, a b a a b, a b a b a\}$
> $S=\{\{a a\},\{b a\},\{a a, a b\},\{a a, b a\},\{a b, b a\},\{a a, a b, b a\}\}$
> $\Phi=\{a a, b a\}$ is a hitting set for (U, \mathcal{S})
> $\mathcal{A}=\{a b, a, a b\}$
> $\mathcal{B}=\{a b, a b, a\}$

Algorithm HS - correctness

Lemma

The partition $(\mathcal{A}, \mathcal{B})$ found by algorithm HS is a common partition of A, B.

Proof: by contradiction
Let \#blocks (\mathcal{P}, S) - num. of blocks $P_{i}=S$ in partition $\mathcal{P}=\left(P_{1}, \ldots, P_{m}\right)$. Let X be the longest block s.t. \#blocks $(\mathcal{A}, X) \neq \# \operatorname{blocks}(\mathcal{B}, X)$
$\# \operatorname{blocks}(\mathcal{A}, X)=\# \operatorname{substr}(A, X)-\sum_{Y \in \mathcal{A}: X \sqsubset Y} \# \operatorname{substr}(Y, X) \cdot \# \operatorname{blocks}(\mathcal{A}, Y)$
\#blocks $(\mathcal{B}, X)=\# \operatorname{substr}(B, X)-\sum_{Y \in \mathcal{B}: X \sqsubset Y} \# \operatorname{substr}(Y, X) \cdot \# \operatorname{blocks}(\mathcal{B}, Y)$
By choice of $X: \# \operatorname{blocks}(\mathcal{A}, Y)=\# \operatorname{blocks}(\mathcal{B}, Y)$ for each Y s.t. $X \sqsubset Y$ $\Rightarrow \# \operatorname{substr}(A, X) \neq \# \operatorname{substr}(B, X)$
However, X was not cut by the algorithm - a contradiction.

Algorithm HS - efficiency

Difficulties

- The hitting set problem is NP-hard
- It is also hard to approximate (no $O(1)$-approximation).

Idea

Exploit the structure of the sets

- each set corresponds to a substring of A or B
- "is a substring of" defines a partial order on the set T

Approximating minimum hitting set

Minimum elements

X is a minimum element of T if no $Y \in T$ is a proper substring of X Let $T_{\text {min }} \leftarrow$ minimum elements of
$T=\{X \mid \# \operatorname{substr}(A, X) \neq \# \operatorname{substr}(B, X)\}$

Lemma

If $X \in T_{\min }$ then there exists an occurrence of X in A or in B that goes over cut from the optimal solution.

Proof: by contradiction: for $X \in T_{\text {min }}$, assume that no occurrence of it in A and B goes over an optimal break every occurrence of X in A and B is a substring of a block of the optimal partition
$\Rightarrow X$ occurres the same number of times in A and B
$\Rightarrow X \notin T \Rightarrow X \notin T_{\text {min }}$

Approximating minimum hitting set

Procedure for hitting set

$T=\{X \mid \# \operatorname{substr}(A, X) \neq \# \operatorname{substr}(B, X)\}$
$T_{\text {min }} \leftarrow$ minimum elements of T
$\phi \leftarrow \emptyset$
for each $X \in T_{\text {min }}$
if $\operatorname{duos}(X) \cap \Phi=\emptyset$ then add the first and last duo of X to Φ

Lemma

$$
|\Phi| \leq 4 \cdot|O P T|
$$

Proof outline

For each duo from Φ, charge some cut in the optimal solution. Each cut from the optimal solution will be charged at most 2 times.

Conclusion

Lemma

The algorithm HS computes a $4 k$-approximation of the minimum common partition of A and B.

Linear-time implementation

Exploits linear-time algorithms for

- suffix trees
- special case of disjoint set union problem

Theorem

There exists an algorithm that computes in linear time $\Theta(k)$-approximation for signed, unsigned and reversed $k-M C S P$ and for signed and unsigned $k-S B R$.

Conclusion

Results

- $O(k)$-approximation for the k-MCSP,
- the approximation for the k-SMCSP, gives the $O(k)$ approximation for the k-SBR,
- the running time $O(n)$

Challenges

- Find a better approximation, e.g., $O(\log k)$

