Reversal Distance for Strings with Duplicates

¹Petr Kolman ²Tomek Waleń

¹Faculty of Mathematics and Physics Charles University in Prague

²Wydział Matematyki, Informatyki i Mechaniki Warsaw University

September 15, 2006

Reversal distance

reversal ho(i,j)

of a string $A = a_1 \dots a_n$, $1 \le i < j \le n$, transforms the string A into a string $A' = a_1 \dots a_{i-1}a_ja_{j-1} \dots a_ia_{j+1} \dots a_n$

Reversal distance RD(A, B) of strings A and B

• minimum number of reversals that transform A into B

Example

A =	abcccbbbadd	$\rho(3,9)$	
	ababbb <mark>cccdd</mark>	ho(7, 11)	
	<pre>ababbbddccc</pre>	$\rho(1,2)$	
	baabbbddccc	ho(1,6)	
	bbbaabddccc	= B	$\Rightarrow RD(A, B) = 4$

3

イロト イポト イヨト イヨト

Sorting by reversals

Known results

- permutations:
 - unsigned SBR is NP-hard (Caprara 1997)
 - signed SBR is in P (Hannenhalli, Pevzner 1997)
- strings (finding the reversal distance of strings A and B):
 - SBR is NP-hard for binary strings (Christie, Irving 2001),
 - O(log n log* n)-approximation (Cormode et al. 2002),
- strings restricted variant (k-SBR), every letter occurs at most k times,
 - O(1) approximations for 2-SBR and 3-SBR (Chen et al. 2005, Chrobak et al. 2004, Goldstein et al. 2005)
 - $O(k^2)$ approximation for k-SBR (Kolman 2005)

New contribution

O(k) approximation for k-SBR in linear time

Definitions

• partition of a string A - a sequence $\mathcal{P} = (P_1, P_2, \dots, P_m)$ of strings whose concatenation is equal to A, that is $P_1P_2 \dots P_m = A$;

- *P*₁, *P*₂, ..., *P*_m are *blocks*
- size of \mathcal{P} = number of blocks
- common partition of A and B a pair (P, Q) such that P is a partition of A, Q is a partition of B and P is a permutation of Q
- *minimum common string partition* problem (MCSP) find a common partition of strings A and B of minimum size

Example	
	A = abcccbbbadd B = bbbaabddccc

P. Kolman, T. Waleń (UW)

Definitions

• partition of a string A - a sequence $\mathcal{P} = (P_1, P_2, \dots, P_m)$ of strings whose concatenation is equal to A, that is $P_1P_2 \dots P_m = A$;

- *P*₁, *P*₂, ..., *P_m* are *blocks*
- size of \mathcal{P} = number of blocks
- common partition of A and B a pair (P, Q) such that P is a partition of A, Q is a partition of B and P is a permutation of Q
- *minimum common string partition* problem (MCSP) find a common partition of strings A and B of minimum size

Example			
		ab ccc bbba dd bbba ab dd ccc	

P. Kolman, T. Waleń (UW)

- k-MCSP each letter occurs at most k times,
- signed MCSP (two blocks C and D match each other if C = D or C = -D, where -D is the reversal of D),
- the α approximation for the (signed) k-MCSP gives O(α) approximation for the k-SBR

A few more definitions

- duo (sub)string of length two
- duos(S) the set of all duos of string S, i.e. duos(abbab) = {ab, ba, bb},
- cutting a duo xy cut the every occurrence of xy after the character x,

- k-MCSP each letter occurs at most k times,
- signed MCSP (two blocks C and D match each other if C = D or C = -D, where -D is the reversal of D),
- the α approximation for the (signed) k-MCSP gives O(α) approximation for the k-SBR

A few more definitions

- duo (sub)string of length two
- duos(S) the set of all duos of string S, i.e.
 duos(abbab) = {ab, ba, bb},
- cutting a duo xy cut the every occurrence of xy after the character x,

- k-MCSP each letter occurs at most k times,
- signed MCSP (two blocks C and D match each other if C = D or C = -D, where -D is the reversal of D),
- the α approximation for the (signed) k-MCSP gives O(α) approximation for the k-SBR

A few more definitions

- duo (sub)string of length two
- duos(S) the set of all duos of string S, i.e.
 duos(abbab) = {ab, ba, bb},
- cutting a duo xy cut the every occurrence of xy after the character x,

axybcdxyxybxy

P. Kolman, T. Waleń (UW)

- k-MCSP each letter occurs at most k times,
- signed MCSP (two blocks C and D match each other if C = D or C = -D, where -D is the reversal of D),
- the α approximation for the (signed) k-MCSP gives O(α) approximation for the k-SBR

A few more definitions

- duo (sub)string of length two
- duos(S) the set of all duos of string S, i.e.
 duos(abbab) = {ab, ba, bb},
- cutting a duo xy cut the every occurrence of xy after the character x,

ax ybcdx yx ybx y

P. Kolman, T. Waleń (UW)

Algorithm outline

input: strings A, B1. compute the set of the consensus duos Φ 2. $A, B \leftarrow$ for each duo $xy \in \Phi$, cut all occurrences of xy in A, Boutput: (A, B)

Example

A = abaab B = ababa

 $\Phi = \{aa, ba\}$ is the set of consensus duos

Algorithm outline

input: strings A, B1. compute the set of the consensus duos Φ 2. $A, B \leftarrow$ for each duo $xy \in \Phi$, cut all occurrences of xy in A, B**output:** (A, B)

Example

A = abaab B = ababa

 $\Phi = \{aa, ba\} \text{ is the set of consensus duos}$ $\mathcal{A} = ab \ a \ ab$ $\mathcal{B} = ab \ ab \ a$

Algorithm outline

input: strings A, B1. compute the set of the consensus duos Φ 2. $A, B \leftarrow$ for each duo $xy \in \Phi$, cut all occurrences of xy in A, B**output:** (A, B)

Example

A = abaab B = ababa

$$\begin{split} \Phi &= \{aa, \ ba\} \text{ is the set of consensus duos} \\ \mathcal{A} &= \{ab, \ a, \ ab\} \quad \mathcal{A}_{OPT} = \{aba, \ ab\} \\ \mathcal{B} &= \{ab, \ ab, \ a\} \quad \mathcal{B}_{OPT} = \{ab, \ aba\} \end{split}$$

Let #substr(A, S) - number of occurrences of substring S in string A. If xy is a duo, such that #substr $(A, xy) \neq \#$ substr(B, xy), then in every common partition of A/B, at least one occurrence of xy is cut.

Example

Observation 2

If X is a substring, such that #substr $(A, X) \neq \#$ substr(B, X), then in every common partition of A/B, at least one occurrence of X is cut.

Let #substr(A, S) - number of occurrences of substring S in string A. If xy is a duo, such that #substr $(A, xy) \neq \#$ substr(B, xy), then in every common partition of A/B, at least one occurrence of xy is cut.

Example	
	c <mark>bcccbccbc</mark> ddd cdddccc <mark>bccbc</mark> b

Observation 2

If X is a substring, such that #substr $(A, X) \neq \#$ substr(B, X), then in every common partition of A/B, at least one occurrence of X is cut.

P. Kolman, T. Waleń (UW)

Let #substr(A, S) - number of occurrences of substring S in string A. If xy is a duo, such that #substr $(A, xy) \neq \#$ substr(B, xy), then in every common partition of A/B, at least one occurrence of xy is cut.

Example		
		c <mark>b cccbccb c</mark> ddd cddd ccc <mark>bccb c</mark> b

Observation 2

If X is a substring, such that #substr $(A, X) \neq \#$ substr(B, X), then in every common partition of A/B, at least one occurrence of X is cut.

P. Kolman, T. Waleń (UW)

Let #substr(A, S) - number of occurrences of substring S in string A. If xy is a duo, such that #substr $(A, xy) \neq \#$ substr(B, xy), then in every common partition of A/B, at least one occurrence of xy is cut.

Example

$$A = cb \operatorname{cccbccb} cddd$$
$$B = cddd \operatorname{cccbccb} cb$$

Observation 2

If X is a substring, such that #substr $(A, X) \neq \#$ substr(B, X), then in every common partition of A/B, at least one occurrence of X is cut.

P. Kolman, T. Waleń (UW)

Algorithm HS

input: strings A, B

1. construct an instance (U, S) of the Hitting Set problem:

$$U \leftarrow duos(A) \cup duos(B)$$

$$\mathcal{T} \leftarrow \{X \mid \# \mathsf{substr}(A, X) \neq \# \mathsf{substr}(B, X)\}$$

$$S \leftarrow \{duos(X) \mid X \in T\}$$

- 2. solve (approximately) the Minimum Hitting Set problem: $\Phi \leftarrow$ a hitting set for (U, S)
- 3. transform the hitting set into a common partition:

 $\mathcal{A}, \mathcal{B} \leftarrow \text{ for each duo } xy \in \Phi, \text{ cut all occurrences of } xy \text{ in } A, B$ output: $(\mathcal{A}, \mathcal{B})$

Example

 $\begin{aligned} A &= abaab \ B = ababa \\ U &= \{aa, ab, ba\} \\ T &= \{aa, ba, aab, aba, baa, bab, abaa, abab, baba, abaab, ababa\} \\ S &= \{\{aa\}, \{ba\}, \{aa, ab\}, \{aa, ba\}, \{ab, ba\}, \{aa, ab, ba\}\} \\ \Phi &= \{aa, ba\} \text{ is a hitting set for } (U, S) \\ \mathcal{A} &= \{ab, a, ab\} \\ \mathcal{B} &= \{ab, ab, a\} \end{aligned}$

Lemma

The partition $(\mathcal{A}, \mathcal{B})$ found by algorithm HS is a common partition of \mathcal{A}, \mathcal{B} .

Proof: by contradiction Let #blocks(\mathcal{P}, S) - num. of blocks $P_i = S$ in partition $\mathcal{P} = (P_1, \dots, P_m)$. Let X be the longest block s.t. #blocks(\mathcal{A}, X) $\neq \#$ blocks(\mathcal{B}, X)

$$\#\mathsf{blocks}(\mathcal{A},X) = \#\mathsf{substr}(\mathcal{A},X) - \sum_{Y \in \mathcal{A}: X \sqsubset Y} \#\mathsf{substr}(Y,X) \cdot \#\mathsf{blocks}(\mathcal{A},Y)$$

$$\#\mathsf{blocks}(\mathcal{B}, X) = \#\mathsf{substr}(\mathcal{B}, X) - \sum_{Y \in \mathcal{B}: X \sqsubset Y} \#\mathsf{substr}(Y, X) \cdot \#\mathsf{blocks}(\mathcal{B}, Y)$$

By choice of X: #blocks $(\mathcal{A}, Y) = \#$ blocks (\mathcal{B}, Y) for each Y s.t. $X \sqsubset Y$ $\Rightarrow \#$ substr $(\mathcal{A}, X) \neq \#$ substr (\mathcal{B}, X)

However, X was not cut by the algorithm – a contradiction.

P. Kolman, T. Waleń (UW)

Difficulties

- The hitting set problem is NP-hard
- It is also hard to approximate (no O(1)-approximation).

Idea

Exploit the structure of the sets

- each set corresponds to a substring of A or B
- "is a substring of" defines a partial order on the set T

Minimum elements

X is a minimum element of T if no $Y \in T$ is a proper substring of X Let $T_{\min} \leftarrow$ minimum elements of $T = \{X \mid \# substr(A, X) \neq \# substr(B, X)\}$

Lemma

If $X \in T_{\min}$ then there exists an occurrence of X in A or in B that goes over cut from the optimal solution.

Proof: by contradiction: for $X \in T_{\min}$, assume that no occurrence of it in A and B goes over an optimal break every occurrence of X in A and B is a substring of a block of the optimal partition

 \Rightarrow X occurres the same number of times in A and B

$$\Rightarrow X \notin T \Rightarrow X \notin T_{\min}$$

Procedure for hitting set

$$T = \{X \mid \# substr(A, X) \neq \# substr(B, X)\}$$

$$T_{min} \leftarrow minimum elements of T$$

$$\Phi \leftarrow \emptyset$$

for each $X \in T_{min}$
if $duos(X) \cap \Phi = \emptyset$ then add the first and last duo of X to Φ

Lemma

$$|\Phi| \leq 4 \cdot |OPT|$$

Proof outline

For each duo from Φ , charge some cut in the optimal solution. Each cut from the optimal solution will be charged at most 2 times.

P. Kolman, T. Waleń (UW)

Lemma

The algorithm HS computes a 4k-approximation of the minimum common partition of A and B.

Linear-time implementation

Exploits linear-time algorithms for

- suffix trees
- special case of disjoint set union problem

Theorem

There exists an algorithm that computes in linear time $\Theta(k)$ -approximation for signed, unsigned and reversed k-MCSP and for signed and unsigned k-SBR.

Results

- O(k)-approximation for the k-MCSP,
- the approximation for the *k*-SMCSP, gives the *O*(*k*) approximation for the *k*-SBR,
- the running time O(n)

Challenges

• Find a better approximation, e.g., $O(\log k)$