Approximation of RNA Multiple Structural Alignment

Marcin Kubica¹, Romeo Rizzi², Stéphane Vialette³ and Tomasz Waleń¹

¹Faculty of Mathematics, Informatics and Applied Mathematics Warsaw University, Poland

²Dipartimento di Matematica ed Informatica (DIMI), Università di Udine, Via delle Scienze 208, I-33100 Udine, Italy

³Laboratoire de Recherche en Informatique (LRI), UMR CNRS 8623 Faculté des Sciences d'Orsay - Université Paris-Sud, 91405 Orsay, France

CPM, 2006-07-06

Linear graph

Definition

A linear graph of order n is a vertex-labeled graph where each vertex is labeled by a distinct label from $\{1, 2, ..., n\}$.

From ncRNA to linear graphs

Definition

- nucleotides are represented by vertices,
- possible bonds between nucleotides are represented by edges,
- non-crossing subset of edges represent possible folding

Linear graph

Definition

A linear graph is **nested** if no two edges cross.

Let $\mathcal{G} = \{G_1, G_2, \dots, G_k\}$ be a set of linear graphs. Find a maximum size common nested linear subgraph of $G_i \in \mathcal{G}$.

Let $\mathcal{G} = \{G_1, G_2, \dots, G_k\}$ be a set of linear graphs. Find a maximum size common nested linear subgraph of $G_i \in \mathcal{G}$.

Let $\mathcal{G} = \{G_1, G_2, \dots, G_k\}$ be a set of linear graphs. Find a maximum size common nested linear subgraph of $G_i \in \mathcal{G}$.

Let $\mathcal{G} = \{G_1, G_2, \dots, G_k\}$ be a set of linear graphs. Find a maximum size common nested linear subgraph of $G_i \in \mathcal{G}$.

Flat linear graph

Definition

A nested linear graph is flat if it contains no branching edges, *i.e.*, it is composed of an ordered set of stacks.

Level linear graph

Definition

A flat linear graph is level if it is composed of an ordered set of stacks of the same height.

Approximation of MAX-NLS with MAX-LLS

Theorem (Davydov, Batzoglou, 2004)

The MAX-NLS problem is approximable within ratio $O(\log^2 m_{opt})$. Where m_{opt} is the maximum number of edges of an optimal solution.

Comments

Approximation of MAX-NLS with MAX-LLS

Theorem

The MAX-NLS problem is approximable within ratio $O(\log m_{opt})$. Where m_{opt} is the maximum number of edges of an optimal solution.

Comments

$$\begin{array}{c|c} \hline \mathsf{MAX-NLS} & \to & \hline \mathsf{MAX-LLS} \\ \times \log m_{opt} & \end{array}$$

The $O(\log m)$ approximation bound is tight.

Level signature

Definition

Level signature of G is a function such, that:

- (i) s(h) is the maximum width of a level subgraph of G with height h;
- (ii) if G has no level subgraph of height h, then s(h) = 0.

Example

Maximum level subgraphs of G with height 3 (on the left), and height 2 (on the right). The level signature of the graph is: s(1) = 5, s(2) = 4, s(3) = 3, s(4) = 0.

Approximation of MAX-NLS with MAX-LLS

Theorem (Davydov, Batzoglou, 2004)

The MAX-LLS problem is solvable in $O(k \cdot n^5)$ time.

Theorem

The MAX-LLS problem is solvable in $O(k \cdot n^2)$ time.

Outline

- compute signatures of each graph (dynamic programming),
- 2 compute common signature,
- choose best solution.

Approximation of MAX-NLS with MAX-LLS

Theorem (Davydov, Batzoglou, 2004)

The MAX-LLS problem is solvable in $O(k \cdot n^5)$ time.

Theorem

The MAX-LLS problem is solvable in $O(k \cdot n^2)$ time.

Outline

- compute signatures of each graph (dynamic programming),
- compute common signature,
- choose best solution.

A polynomial-time algorithm for fixed |G|

Theorem

The Max-NLS problem is solvable in $\mathcal{O}(m^{2k} \cdot \log^{k-2} m^k \cdot \log \log m^k)$ time, where $k = |\mathcal{G}|$ and $m = \max\{|\mathbf{E}(G_i)| : G_i \in \mathcal{G}\}.$

Comments

- Geometric representation of linear graphs: d-trapezoids
- Max weighted Independent Set in d-trapezoid graphs.
- Dynamic programming

MAX-NLS and *d*-trapezoids

Hardness results

Theorem (Davydov, Batzoglou. 2004)

The Max-NLS problem is NP-complete.

Theorem

The Max-NLS problem for flat linear graphs of height at most 2 is NP-complete.

Hardness results

Theorem (Davydov, Batzoglou. 2004)

The Max-NLS problem is NP-complete.

Theorem

The Max-NLS problem for flat linear graphs of height at most 2 is **NP**-complete.

MAX-NLS Problem for ncRNA Generated Linear Graphs

Restricted linear graphs

Graphs produced from the sequences using simple rules.

 $(i,j) \in E$ iff character S[i] matches S[j]

Results

- For any finite fixed alphabet we can approximate MAX-NLS with O(1) approximation factor, in $O(n \cdot k)$ time
- For ncRNA we can show that the approximation factor is not greater than $\frac{1}{4}$.

MAX-NLS Problem for ncRNA Generated Linear Graphs

Restricted linear graphs

Graphs produced from the sequences using simple rules.

 $(i,j) \in E$ iff character S[i] matches S[j]

Results

- For any finite fixed alphabet we can approximate MAX-NLS with O(1) approximation factor, in $O(n \cdot k)$ time
- For ncRNA we can show that the approximation factor is not greater than $\frac{1}{4}$.

Conclusions

- Faster MAX-NLS/MAX-LLS approximation algorithm $O(k \cdot n^2)$
- Better approximation ration proved $O(\log m_{opt})$
- Exact algorithm for MAX-NLS running in $\mathcal{O}(m^{2k} \cdot \log^{k-2} m^k \cdot \log \log m^k)$ time
- Improved hardness results
- O(1) MAX-NLS approximation algorithm for a finite fixed alphabet of nucleotides, running in $O(n \cdot k)$ time
- \bullet $\frac{1}{4}$ MAX-NLS approximation algorithm for ncRNA derived linear graphs