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Linear graph

Definition

A linear graph of order n is a vertex-labeled graph where each vertex is
labeled by a distinct label from {1, 2, . . . , n}.

Example



From ncRNA to linear graphs

Definition

nucleotides are represented by vertices,

possible bonds between nucleotides are represented by edges,

non–crossing subset of edges represent possible folding

Example
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Linear graph

Definition

A linear graph is nested if no two edges cross.

Example



The Max-NLS problem

Let G = {G1,G2, . . . ,Gk} be a set of linear graphs.
Find a maximum size common nested linear subgraph of Gi ∈ G.

Example
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Flat linear graph

Definition

A nested linear graph is flat if it contains no branching edges, i.e., it is
composed of an ordered set of stacks.

Example



Level linear graph

Definition

A flat linear graph is level if it is composed of an ordered set of stacks of
the same height.

Example



Approximation of MAX-NLS with MAX-LLS

Theorem (Davydov, Batzoglou, 2004)

The MAX-NLS problem is approximable within ratio O(log2 mopt).
Where mopt is the maximum number of edges of an optimal solution.

Comments

MAX-NLS → MAX-FLS → MAX-LLS
× logmopt × logmopt



Approximation of MAX-NLS with MAX-LLS

Theorem

The MAX-NLS problem is approximable within ratio O(logmopt).
Where mopt is the maximum number of edges of an optimal solution.

Comments

MAX-NLS → MAX-LLS
× logmopt

The O(logm) approximation bound is tight.



Level signature

Definition

Level signature of G is a function such, that:
(i) s(h) is the maximum width of a level subgraph of G with height h;
(ii) if G has no level subgraph of height h, then s(h) = 0.

Example

Maximum level subgraphs of G with height 3 (on the left), and height 2 (on the

right). The level signature of the graph is: s(1) = 5, s(2) = 4, s(3) = 3, s(4) = 0.



Approximation of MAX-NLS with MAX-LLS

Theorem (Davydov, Batzoglou, 2004)

The MAX-LLS problem is solvable in O(k · n5) time.

Theorem

The MAX-LLS problem is solvable in O(k · n2) time.

Outline
1 compute signatures of each graph (dynamic programming),

2 compute common signature,

3 choose best solution.
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A polynomial-time algorithm for fixed |G|

Theorem

The Max-NLS problem is solvable in O(m2k · logk−2 mk · log logmk) time,

where k = |G| and m = max{|E(Gi )| : Gi ∈ G}.

Comments

Geometric representation of linear graphs: d -trapezoids

Max weighted Independent Set in d -trapezoid graphs.

Dynamic programming



MAX-NLS and d–trapezoids

Example



Hardness results

Theorem (Davydov, Batzoglou. 2004)

The Max-NLS problem is NP-complete.

Theorem

The Max-NLS problem for flat linear graphs of height at most 2 is

NP-complete.
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MAX-NLS Problem for ncRNA Generated Linear Graphs

Restricted linear graphs

Graphs produced from the sequences using simple rules.
(i , j) ∈ E iff character S [i ] matches S [j]

Results

For any finite fixed alphabet we can approximate MAX-NLS with O(1)
approximation factor, in O(n · k) time

For ncRNA we can show that the approximation factor is not greater
than 1

4 .
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Conclusions

Faster MAX-NLS/MAX-LLS approximation algorithm O(k · n2)

Better approximation ration proved O(logmopt)

Exact algorithm for MAX-NLS running in
O(m2k · logk−2 mk · log logmk) time

Improved hardness results

O(1) MAX-NLS approximation algorithm for a finite fixed alphabet of
nucleotides, running in O(n · k) time
1
4 MAX-NLS approximation algorithm for ncRNA derived linear graphs


