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Abstract

We say that two sequences x and w of length m are order-isomorphic (of the
same “shape”) if w[i] ≤ w[j] if and only if x[i] ≤ x[j] for each i, j ∈ [1,m]. We
present a simple linear time algorithm for checking if a given sequence y of length
n contains a factor which is order-isomorphic to a given pattern x. A factor is a
subsequence of consecutive symbols of y, so we call our problem the consecutive
permutation pattern matching. The (general) permutation pattern matching
problem is related to general subsequences and is known to be NP-complete.
We show that the situation for consecutive subsequences is significantly different
and present an O(n + m) time algorithm under a natural assumption that the
symbols of x can be sorted in O(m) time, otherwise the time is O(n + m logm).
In our algorithm we use a modification of the classical Knuth-Morris-Pratt string
matching algorithm.
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1. Introduction

The problem of consecutive permutation pattern matching is a natural ex-
tension of the classical permutation pattern matching and a special variant of
the so-called generalized permutation patterns. Several combinatorial results
for this problem were known, see e.g. Elizalde and Noy [9], Warlimont [17, 18];
see also chapter 5 in [12]. However, there was no previous study of algorithmics
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of this problem. We present a linear time algorithm for consecutive permutation
pattern matching.

Patterns in permutations are actively studied mostly from the combinatorial
point of view. This field of study is concentrated on pattern avoidance, that
is, counting the number of permutations not containing a subsequence which is
order-isomorphic to a given pattern. Knuth considered permutations avoiding
the pattern 312 [13], Lovász considered permutations avoiding the pattern 213
[14], and Rotem those that do not contain 231 nor 312 [15], just to mention a
few most famous examples.

There are several algorithmic results related to pattern matching in permu-
tations. Bose et al. [4] showed this problem to be NP-complete. Denote by
m and n the length of the pattern and the text. A general algorithm with
O(n0.47m+o(m)) time complexity was given in [1], and an O∗(1.79n) time al-
gorithm was recently given in [6]. For several special cases polynomial time
algorithms are known. In [4] an O(mn6) time and O(mn4) space algorithm for
the case of a separable pattern is given. A permutation is separable if it avoids
the patterns 2413 and 3142. Afterwards, Ibarra [11] improved this result to
O(mn4) time and O(mn3) space. If both the text and the pattern avoid the
permutation 321, an O(m2n6) time algorithm is known [10]. Note that the case
of an increasing pattern can be reduced to searching for the longest increasing
subsequence, which can be done in O(n log log n) time for permutations [7]. An-
other simpler case, when the permutation pattern has length 4, was shown in
[2] to be solvable in O(n log n) time.

Generalized permutation patterns (also called vincular patterns, see [12])
were introduced by Babson and Steingŕımsson [3] and have proved to have con-
nections to a variety of other combinatorial structures, see the survey [16]. A
generalized pattern is a sequence in which two adjacent symbols may or may
not be separated by a dash. The absence of a dash between two adjacent sym-
bols in a pattern imposes an additional requirement that the corresponding
symbols in the text must be adjacent. Thus an ordinary permutation pattern
p1 p2 p3 . . . pk corresponds to a generalized pattern of the form p1-p2-p3- . . . -pk.
On the other hand, a dashless generalized permutation pattern represents a
consecutive pattern, that must form a factor of the text (less common names:
segmented pattern, segmental pattern, subword pattern, see [12]). Combinato-
rial properties of consecutive permutation patterns were considered in [9, 17, 18].
No previous algorithmic results related to consecutive patterns were known (as
for the generalized patterns, only a W[1]-completeness result was given in [5]).

We present a linear time algorithm for permutation pattern matching of
consecutive patterns. Our algorithm is based on a simple, yet non-trivial, mod-
ification of the Morris-Pratt pattern matching algorithm for strings.

2. Order-isomorphism

We consider sequences over an integer alphabet Σ, x ∈ Σ∗. The positions in
x are numbered from 1 to |x|. Two sequences x, y of the same length are called
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order-isomorphic (or simply isomorphic), written x ≈ y, if

(∀ 1 ≤ i, j ≤ |x|) x[i] ≤ x[j]⇔ y[i] ≤ y[j].

For example, 4 1 4 7 3 5 2 3 4 ≈ 8 1 8 10 6 9 4 6 8. In this section we show a linear
time algorithm for checking isomorphism of two sequences.

For i = 1, . . . , |x| define:

LMaxx[i] = j if x[j] = max{x[k] : k ∈ [1, i− 1], x[k] ≤ x[i]},

if there is no such j then LMaxx[i] = 0, similarly define:

LMinx[i] = j if x[j] = min{x[k] : k ∈ [1, i− 1], x[k] ≥ x[i]},

and LMinx[i] = 0 if no such j exists. If several equally good values of j exist,
an arbitrary one can be selected (we select the greatest good value of j). The
LMax and LMin tables are called location tables, see Table 1. If the pattern is
unambiguous then we omit the index in the notation.

i 1 2 3 4 5 6 7 8 9
x[i] 4 1 4 7 3 5 2 3 4

LMax[i] 0 0 1 3 2 3 2 5 3
LMin[i] 0 1 1 0 3 4 5 5 3

Table 1: The location tables for the pattern x = 4 1 4 7 3 5 2 3 4.

In Lemma 1 we show that location tables can be computed as fast as sorting
all the symbols of the pattern.

Lemma 1. Let x be a sequence of length m and let sort(x) be the time required
to sort all the elements of x. Then location tables of x can be computed in
O(sort(x)) time.

Proof. Let us sort positions of x with respect to their contents (the symbols
they contain). In case of equal contents the smaller positions come first. Let
S be the resulting sequence of positions. Then LMax[j] is the nearest smaller
value to the left of S[i] = j (if there is no such value, LMax[j] = 0), see Table 2.
The LMin table is computed similarly, by taking nearest smaller value to the
right in a sequence S′ constructed exactly as the sequence S but with a reversed
order of positions with equal contents.

x[S[i]] 1 2 3 3 4 4 4 5 7
S[i] 2 7 5 8 1 3 9 6 4

LMax[S[i]] 0 2 2 5 0 1 3 3 3

Table 2: Computation of the LMax table for the pattern from Table 1, as in the proof of
Lemma 1.

It is folklore knowledge that the problem of computing nearest smaller values
for all elements of a sequence, also known as the “all nearest smaller values”
problem, can be solved in linear time by a stack-based algorithm. �
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The following lemma provides a justification for introducing the location
tables in the context of consecutive permutation pattern matching.

Lemma 2. Assume that

x[1 . . t] ≈ y[1 . . t], t < |x|, |y| and a = LMaxx[t + 1], b = LMinx[t + 1].

Then
x[1 . . t + 1] ≈ y[1 . . t + 1] ⇔ y[a] ≤ y[t + 1] ≤ y[b].

In case a or b is equal to 0, we omit the respective inequality in the condition.

Proof. (⇒) By the definition of the location tables, we have x[a] ≤ x[t +
1] ≤ x[b]. Now order-isomorphism of x[1 . . t + 1] and y[1 . . t + 1] implies that
y[a] ≤ y[t + 1] ≤ y[b].

(⇐) We need to show that x[1 . . t + 1] ≈ y[1 . . t + 1]. We have x[1 . . t] ≈
y[1 . . t], hence it suffices to prove that, for i ≤ t,

x[i] ≤ x[t + 1] ⇔ y[i] ≤ y[t + 1].

Assume that x[i] ≤ x[t+1] for some i ∈ {1, . . . , t}. By the definition of the LMax
table, we have x[i] ≤ x[a]; by the order-isomorphism of x[1 . . t] and y[1 . . t], we
have y[i] ≤ y[a]; finally, by the assumption of the lemma, y[a] ≤ y[t + 1], hence
y[i] ≤ y[t+1]. In a similar way we show that x[i] ≥ x[t+1] implies y[i] ≥ y[t+1],
which yields the requested equivalence. �

Let us make a natural assumption that the symbols of x can be sorted in
O(m) time, e.g. they are elements of the set {1, . . . ,mO(1)}. Under this as-
sumption, Lemma 2 (together with Lemma 1) implies an O(1) time incremental
criterion for checking if a sequence is isomorphic to a prefix of the pattern. This
is the basic tool used in the pattern matching algorithm presented in the next
section:

Lemma 3. Let x be a pattern of length m whose symbols can be sorted in O(m)
time. After O(m) time preprocessing one can answer queries of the following
form: “assuming that x[1 . . t] ≈ y[1 . . t], check if x[1 . . t + 1] ≈ y[1 . . t + 1]” for
any sequence y in constant time.

3. Consecutive permutation pattern matching

Let x be a pattern of length m. The order-borders table P for x is defined
as follows:

P [1] = 0, P [i] = max{j < i : x[1 . . j] ≈ x[i− j + 1 . . i]} for i ≥ 2,

see Table 3 as an example.
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i 1 2 3 4 5 6 7 8
x[i] 2 5 1 4 7 3 6 8
P [i] 0 1 1 2 2 3 4 5

Table 3: The order-borders table P for the pattern x = 2 5 1 4 7 3 6 8.

The algorithm computing the order-borders table is similar to the algorithm
computing (regular) borders in the Morris-Pratt algorithm.

Algorithm Compute the table P
P [0] := −1; t := −1;
for i := 1 to m do

invariant: x[1 . . t] ≈ x[i− t . . i− 1]
while t ≥ 0 and x[1 . . t + 1] 6≈ x[i− t . . i] do t := P [t];
t := t + 1; P [i] := t;

The test x[1 . . t+ 1] ≈ x[i− t . . i] can be done in O(1) time due to Lemma 3
and the invariant of the while-loop. The number of such tests is linear which
follows from the complexity analysis of the Morris-Pratt algorithm (note that t
decreases after each comparison). Consequently we obtain the following lemma.

Lemma 4. The order-borders table can be computed in linear time.
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1 2 3 4 5 6 7 8 9 10

Figure 1: An order-occurrence of the pattern 2 1 4 5 3 in the text 5 6 3 8 10 7 1 9 10 8. There is
also a second order-occurrence of this pattern formed by the last 5 symbols of the text.

A pattern x of length m order-occurs at position i of a text y if x ≈ y[i +
1 . . i + m], see also Fig. 1. Let n be the length of y. We can find all order-
occurrences of x in y in linear time using the algorithm below (the pseudocode
resembles the implementation of Morris-Pratt pattern matching algorithm as
given in [8]).
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Algorithm Modified algorithm of Morris and Pratt
i := 0; j := 0;
while i ≤ n−m do begin

invariant: x[1 . . j] ≈ y[i + 1 . . i + j]
while j < m and x[1 . . j + 1] ≈ y[i + 1 . . i + j + 1] do

j := j + 1;
if j = m then write i;
i := i + (j − P [j]); j := max(0, P [j]);

end

Theorem 5 summarizes the linear time algorithm for consecutive permuta-
tion pattern matching.

Theorem 5. All order-occurrences of a pattern in a given text can be computed
in linear time.

Proof. By Lemma 4, the order-borders table for the pattern can be computed
in linear time. Recall that this algorithm involves the computation of location
tables, see Lemma 1.

The procedure for finding order-occurrences mimics the Morris-Pratt pattern
matching algorithm, but instead of testing equality of symbols of the pattern
and the text we check order-isomorphism of a prefix of the pattern and a factor
of the text. Due to the invariant in the pseudocode, each such test can be done
in constant time using Lemma 3. The number of remaining operations in the
pattern matching is linear just as in the original Morris-Pratt algorithm. �
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