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Hiding from Centrality Measures:
A Stackelberg Game Perspective

Marcin Waniek, Jan Woźnica, Kai Zhou, Yevgeniy Vorobeychik, Tomasz P. Michalak, Talal Rahwan

Abstract—Centrality measures can rank nodes in a social network according to their importance. However, in many cases, a node may
want to avoid being highly ranked by such measures, e.g., as is the case with terrorist networks. In this work, we study a confrontation
between the seeker—the party analyzing a social network using centrality measures—and the evader—a node attempting to decrease
its ranking according to such measures. We analyze the possible outcomes of modifying, i.e., adding or removing, a single edge by the
evader, showing that even without complete knowledge about the network, the effects of the modification on the evader’s ranking can
often be predicted. We study the computational complexity of finding a set of modifications that reduce the evader’s centrality ranking in
an optimal way, proving that these decision problems are NP-complete. Moreover, we provide a 2-approximation for the degree
centrality, and logarithmic approximation boundaries for the closeness and betweenness centralities. Finally, we define and investigate
a Stackelberg game between the seeker and the evader, providing a Mixed Integer Linear Programming formulation of finding an
equilibrium. Altogether, we provide a thorough analysis of the strategic aspects of hiding from centrality measures in social networks.

Index Terms—Centrality measure, Stackelberg game, social network, complexity analysis.

✦

1 INTRODUCTION

E VER since the dawn of the Internet Age, a rapidly
growing amount of information about our daily lives

is uploaded to the Web. A plethora of this data, such as our
conversations, our likes and dislikes, and even our relation-
ships can be represented using network structures. Simulta-
neously with this process, we can observe the development
of an increasing number of social network analysis tools and
techniques capable of inferring various information from the
data publicly available online. This raises a privacy-related
concern, as members of social networks are no longer able
to keep their sensitive information private.

One of the most widely-used social network analysis
tools are centrality measures [1], [2]. A centrality measure is
an algorithm that estimates the relative importance of nodes
in a network. In other words, with the use of centrality
measures, it is possible to identify the key players in a
network, where the exact notion of importance depends
on the centrality measure of choice. However, there exist
situations in which such key players might not want to be
identified. We have already mentioned the issues pertaining
to the privacy of Internet users. At first glance, the fact that
an average social media user might prefer to evade analysis
performed with centrality measures may seem unimportant.
However, when we consider the situation of opposition
bloggers in authoritarian regimes, the consequences of being
identified as the most important node in the network may
be much more dire. These circumstances allow us to sym-
pathize with a member of the social network who wishes to
avoid being detected by a centrality measure. Nevertheless,
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one can present a scenario in which an ability to evade
centrality measures presents a grave danger to public safety.
In particular, centrality analysis is often used to pinpoint the
leaders of criminal [3] and terrorist [4] organizations. In such
situations we would like to diminish the probability that the
actual ringleader of the network avoids detection.

Given this ethical asymmetry of possible real-life scenar-
ios, in our analysis we consider an abstract model of hiding
from centrality measures in a social network. More specif-
ically, we consider a confrontation between the seeker—a
third party who uses centrality measures to pinpoint the
most important nodes in the network—and the evader—a
member of the social network who wishes to avoid being
detected by the seeker. In this work, we assume that the
seeker and evader are aware of each others’ existence (see
Section 5.1 for the comparison with previous works on
hiding from centrality measures where this assumption was
not in place). This turns our model into a game-theoretic
setting, where both players try to achieve their goals by
applying carefully selected strategies. The set of strategies
of the seeker consists of centrality measures that can be
used to find the most important nodes in the network. On
the other hand, the strategies of the evader take the form
of adding or removing some of the edges to mislead the
centrality analysis performed by the seeker.

To be more precise, in our work we consider a number
of research questions. First, assuming limited knowledge about
the network structure, is it possible to predict the effect of adding
or removing a given edge on the evader’s ranking? We answer
this question theoretically in Section 4 and empirically in
Section 7.2. Second, is it possible for the evader to find an optimal
way of hiding? We resolve this issue in Section 5 by ana-
lyzing the computational complexity of the problem faced
by the evader. Third, what is the outcome of the confrontation
between the seeker and the evader? To address this question,
we formally define a Stackelberg game between the seeker
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and the evader in Section 6 and study its equilibria in
Section 7.3. Altogether, our work presents an exploration
of the strategic aspects of hiding from centrality measures
in a social network.

The motivation for our work is twofold. From the per-
spective of the seeker, the results of our work could give
law enforcement agencies a fresh insight into the possible
ways in which members of criminal and terrorist organiza-
tions avoid detection. This insight is particularly crucial, as
centrality measures are one of the key tools for analyzing
covert networks. From the perspective of the evader, our
work could be of use to the members of communities that
are discriminated against, such as specific ethnic groups in
authoritarian regimes. Careful rewiring of the social net-
work structure might help the leaders of such communities
elude harsh repressions.

A preliminary version of this work was published in
the Proceedings of the 20th Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS 2021) [5]. The
new results added in this extended version are:

• Theoretical analysis of whether the addition or re-
moval of a given edge can increase or decrease the
ranking of the evader, and what can be the magni-
tude of this change (Section 4).

• The approximation version of the problem and the
analysis of its computational complexity for different
centrality measures (Section 5.2).

• A formal proof that the MIQP and MILP formu-
lations of the seeker-evader game equilibrium are
equivalent (Section 6.2).

• An empirical analysis of the sensitivity of centrality
measures (Section 7.2).

• Experiments with the seeker-evader game in the Am-
bassador network, as well as Newman and Prüfer
random network generation models (Section 7.3).

2 RELATED WORK

Our article is part of the literature on using edge per-
turbations to manipulate network properties. The purpose
of these interventions could be minimizing the average
distance between nodes [6], promoting health-related be-
haviors [7], and reducing the number of small dense sub-
groups [8]. The body of literature that is most relevant to
our setting considers the task of strategically manipulating
centrality measures. Some works focus on the problem of
adding edges to increase the closeness centrality of a given
node [9], or to increase multiple centralities at the same
time [10].

In this work, we attempt not to increase, but rather to
decrease the value of centrality, in the hope of hiding a
selected node. This problem was considered for both the
centrality value of a selected evader [11], as well as for the
ranking position of a group of network’s leaders [12], [13],
[14]. Another facet of the problem that was analyzed in the
literature is the axiomatic characterization of the centrality
measures that are resilient to manipulation [15]. While most
works considers standard network structure, some examine
networks that consist of multiple layers [16], or temporal
networks where edges exists only at specific moments [17].

TABLE 1
Summary of the notation used in the article.

Symbol Meaning

V The set of network nodes
E The set of network edges

N(vi) The set of neighbors of vi
κ(vi) The degree of vi

Π(vi, vj) The set of shortest paths between vi and vj
d(vi, vj) The distance between vi and vj

v† The evader
V̄ The set of all nodes other than v†

V̈ The set of all nodes other than v† and its neighbors
ζ†1 The set of all edges incident with v†

ζ†2 The set of all edges between the neighbors of v†

ζ†3 The set of all edges not belonging to ζ†1 or ζ†2
cdg(G, vi) The degree centrality of vi in G
ccl(G, vi) The closeness centrality of vi in G
cbt(G, vi) The betweenness centrality of vi in G
cbt(G, vi) The eigenvector centrality of vi in G
ι(G, vi) The influence of vi over G

b The number of edges that can be added or removed
Â The set of edges that can be added to the network
R̂ The set of edges that can be removed from the network
δ Required nodes with centrality greater than v†

ϕ The type of the evader
UR
e The evader’s utility coming from the centrality ranking

UI
e The evader’s utility coming from the influence value

Ue The aggregated utility of the evader

A related body of literature concerns itself with hiding
from other types of social network analysis tools. These
types of evasion techniques are often motivated by the
need of privacy protection [18]. Social media users who
do not wish some of their undisclosed relationship to be
uncovered, might be interested in heuristic solutions de-
signed to mislead link prediction algorithms [19], [20], [21].
Others might want to counter the analysis performed using
node similarity measures [22]. A group of people might
wish to avoid being identified as a closely-knit faction by
community detection algorithms [11], [23], [24]. Yet another
class of techniques allow to hide the identity of the source of
network diffusion from the source detection algorithms [25].
Some techniques have also been propose to prevent the
inference of an edge type in signed networks where each
relation is tagged as either positive or negative [26].

In an even wider perspective, our study is a part of the
literature on adversarial attack and defense in networks [27],
[28]. Many of the works are focused on attacking machine
learning methods processing the network data, either by
manipulating the data they are trained on (poisoning at-
tack) [29], [30], [31] or by manipulating the input to an
already trained algorithm (evasion attack) [32], [33], [34].
Another example of such adversarial setting is a confronta-
tion between an attacker trying to spread a diffusion process
in a network and a defender trying to stop it [35].

3 PRELIMINARIES

In this section, we present the basic network notation and
concepts that will be used throughout the article. For the
convenience of the reader, Table 1 provides a summary of
the notation used in the article.
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3.1 Basic Network Notation

Let G = (V,E) denote a network, where V = {v1, . . . , vn}
is the set of n nodes and E ⊆ V × V is the set of edges.
We denote by (vi, vj) an edge between the nodes vi and
vj . In this work we focus on undirected networks, i.e.,
we do not discern between edges (vi, vj) and (vj , vi). We
also assume that networks do not contain self-loops, i.e.,
∀vi∈V (vi, vi) /∈ E. We denote by NG(vi) the set of neighbors
of vi, i.e., NG(vi) = {vj ∈ V : (vi, vj) ∈ E}. We denote
by κG(vi) the degree of vi, i.e., κG(v) = |NG(v)|. We denote
by NG(vi, vj) the set of common neighbors of vi and vj , i.e.,
NG(vi, vj) = {vk ∈ V : (vi, vk) ∈ E ∧ (vj , vk) ∈ E}.
To make the notation more readable, we will often omit
the network itself from the notation whenever it is clear
from the context, e.g., by writing N(vi) instead of NG(vi).
This applies not only to the notation presented thus far, but
rather to all notation in this article.

A path in (V,E) is an ordered sequence of nodes,
p = ⟨vi1 , . . . , vik⟩, in which every two consecutive nodes are
connected by an edge inE. The length of a path is equal to the
number of edges therein. For any pair of nodes, vi, vj ∈ V ,
we denote by Π(vi, vj) the set of all shortest paths between
vi and vj , and we denote by d(vi, vj) the distance between vi
and vj , i.e., the length of a shortest path between vi and vj .

We will often focus on a particular node v† ∈ V , called
the evader. Let V̄ denote the set of all nodes other than v†,
i.e., V̄ = V \ {v†}. Furthermore, let V̈ denote the set of
all nodes other than v† and the neighbors of v†, i.e., V̈ =
V \ ({v†} ∪ N(v†)). Next, we define three classes of edges
denoted by ζ†1 , ζ†2 and ζ†3 . The first class, ζ†1 , consists of every
edge incident with v†, i.e., ζ†1 = {v†} × V̄ . The second class,
ζ†2 , consists of every edge whose ends are both neighbors of
v†, i.e., ζ†2 = N(v†) ×N(v†). The third class, ζ†3 , consists of
every remaining edge, i.e., ζ†3 = V̄ × V̈ . Notice that although
the elements of each such class will be referred to as “edges”,
they may or may not be present in any given network. This
is unlike the elements of E, which are the edges that are
present in the network G = (V,E).

3.2 Centrality Measures

A centrality measure is a function, c(G, vi), that expresses the
relative importance of any given node vi in the network
G [1]. In this work we consider four fundamental central-
ity measures, namely degree, closeness, betweenness, and
eigenvector.

Degree centrality [36] quantifies the importance of a node
based on the number of its neighbors. Formally, the normal-
ized degree centrality of a node vi ∈ V in a network G is:

cdg(G, vi) =
|N(vi)|
n− 1

.

Closeness centrality [37] assigns the importance of a node
based on an average distance to all other nodes. Formally,
the normalized closeness centrality of a node vi ∈ V is:

ccl(G, vi) =
n− 1∑

vj∈V d(vi, vj)
.

Betweenness centrality [38], [39] measures the importance
of a given node in the context of network flow. The normal-
ized betweenness centrality of a node vi ∈ V is:

cbt(G, vi) =
2

(n− 1)(n− 2)

∑
vj ,vk∈V \{vi}

|{p ∈ Π(vj , vk) : vi ∈ p}|
|Π(vj , vk)|

.

Eigenvector centrality [40] quantifies the importance of
a given node based on the importance of its neighbors.
Formally, the eigenvector centrality of a node vi is:

ceg(G, vi) = χ∗
i

where χ∗ is the eigenvector corresponding to the largest
eigenvalue of the adjacency matrix of the network G.

3.3 Influence Models
The propagation of influence in a network can be described
in terms of node activation. At the beginning of the process
only a selected set of nodes (known as the seed set) is
activated. Inactive nodes can become activated when they
are sufficiently influenced by their neighbors. Assume that
the process consists of discrete rounds. We then denote by
I(t) ⊆ V the set of active nodes in round t, where I(1) is
the seed set. The influence model under consideration de-
termines the exact conditions of a node becoming active. In
this work we consider two models of influence: independent
cascade and linear threshold.

In the independent cascade [41] model, every pair of nodes
is assigned an activation probability, p : V × V → [0, 1]. In
every round t > 1 every node vi ∈ V that became active in
round t − 1 activates each inactive neighbor vj ∈ N(vi) \
I(t − 1) with probability p(vi, vj). The process ends when
there are no newly activated nodes, i.e., I(t) = I(t− 1).

In the linear threshold [42] model, every node vi ∈ V
is assigned a threshold value tvi sampled from the set
{0, . . . , |N(vi)|} according to some probability distribution.
In every round, t > 1, every inactive node vi becomes active
if |I(t− 1) ∩N(vi)| ≥ tvi . The process ends when there are
no newly activated nodes, i.e., when I(t) = I(t− 1).

In either model, the influence of a node, vi, on another
node, vj , is denoted by ι(G, vi, vj) and is defined as the
probability that vj gets activated given the seed set {vi}.
We assume that ι(G, vi, vi) = 0 for all vi ∈ V . We define
the influence of vi over the entire network as ι(G, vi) =∑

vj∈V ι(G, vi, vj). When referring to the influence of a
given node, we mean the influence over the entire network.

4 POSSIBLE CHANGES IN CENTRALITY RANKING

We first focus on the question of how adding a specific
edge to the network or removing a specific edge from the
network can affect the centrality c ranking of a given node
v† ∈ V ? Can the centrality ranking both increase and de-
crease after a given network modification? And what about
the magnitude of this change, can it be arbitrarily large, or is
it strictly limited? Importantly, we focus on the ranking of v†

according to centrality c, rather than on the centrality value
of v according to c. The ranking is the position of v† in the
list of all nodes, sorted according to their centrality values.
We assume that nodes with the same centrality value have
the same ranking.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

TABLE 2
Summary of our results concerning possible ranking changes. For any
given evader v† ∈ V , we study three classes of edges: ζ†1 , ζ†2 and ζ†3 ,
and three centrality measures: degree, closeness and betweenness.

For every class and every measure, we investigate the potential impact
of adding or removing an edge from that class on the centrality ranking

of v†. The “⇑ k” (resp. “⇓ k”) mark indicates that the increase (resp.
decrease) in ranking can be arbitrarily large, while the “⇑ 2” (resp.

“⇓ 2”) mark indicates that the ranking can only increase (resp.
decrease) by at most two positions. The “⇑ ✗” (resp. “⇓ ✗”) mark

indicates that the ranking increase (resp. decrease) is impossible.

Adding e
to the network

Removing e
from the network

Degree ⇑ k ⇓ ✗ ⇑ ✗ ⇓ k

e ∈ ζ†1 Closeness ⇑ k ⇓ k ⇑ k ⇓ k
Betweenness ⇑ k ⇓ k ⇑ k ⇓ k

Degree ⇑ ✗ ⇓ 2 ⇑ 2 ⇓ ✗

e ∈ ζ†2 Closeness ⇑ ✗ ⇓ k ⇑ k ⇓ ✗
Betweenness ⇑ k ⇓ k ⇑ k ⇓ k

Degree ⇑ ✗ ⇓ 2 ⇑ 2 ⇓ ✗

e ∈ ζ†3 Closeness ⇑ k ⇓ k ⇑ k ⇓ k
Betweenness ⇑ k ⇓ k ⇑ k ⇓ k

In our analysis we divide the edges that can be added
to or removed from the network into three classes: edges
incident with the evader ζ†1 , edges between the neighbors
of the evader ζ†2 , and the remaining edges ζ†3 (all three
classes are formally defined in Section 3.1). The reason for
this division is the fact that the evader who would like
to strategically control their centrality ranking has varying
levels of control over different edges. The edges on which
the evader can exercise the greatest control are those of
which the evader belongs to, i.e., the edges from the class
ζ†1 . The addition of this type of edge can be interpreted
as performing a telephone call with someone, while the re-
moval of this type of edge can represent removing someone
from a list of friends on a social media platform. We can
assume that the evader has a smaller amount of control over
edges between their neighbors, i.e., the edges from the class
ζ†2 . The addition of this type of edge can be interpreted as
introducing two friends to each other, while the removal of
this type of edge can represent asking two associates to cease
contacts with each other. Finally, we can assume that the
evader has the least amount of control over edges outside
of their direct network vicinity, i.e., the edges from the class
ζ†3 . The addition of this type of edge can be interpreted as
inviting two strangers to the same event, while the removal
of this type of edge can represent deleting data about a
certain connection from a database.

We can state the question that we intend to investigate
as follows: Given a centrality measure c, a network G = (V,E),
an evader v† ∈ V , and a class of edges ζ† ∈ {ζ†1 , ζ†2 , ζ†3}, can the
addition or removal of an edge e ∈ ζ† to the network increase or
decrease the ranking of v† according to c? Our findings on this
matter are summarized in Table 2. Due to space limitations,
the proofs of our results can be found in Section S1 of the
supplementary materials.

TABLE 3
The summary of our computational complexity results.

Centrality Local Hiding Minimum Local Hiding

Degree NP-complete We show a 2-approximation

Closeness NP-complete
Cannot be approximated within
(1− ϵ) ln |Â ∪ R̂| for any ϵ > 0

Betweenness NP-complete
Cannot be approximated within
(1− ϵ) ln |Â ∪ R̂| for any ϵ > 0

5 COMPUTATIONAL COMPLEXITY ANALYSIS

Having analyzed the possible outcomes of adding or remov-
ing a single edge from the network, we now analyze the
computational complexity of a problem of selecting the best
subset of edges to hide the evader from centrality measures.
Table 3 summarizes our results.

5.1 Decision Version of the Problem

We first formally define the computational problem faced
by the evader who can perform only local changes.

Definition 1 (Local Hiding). This problem is defined by a tuple
(G, v†, b, c, δ, Â, R̂), where G = (V,E) is a network, v† ∈ V
is the evader, b ∈ N is a budget specifying the maximum number
of edges that can be added or removed, c is a centrality measure,
Â ⊆ N(v†) × N(v†) is the set of edges allowed to be added,
R̂ ⊆ {v†} × N(v†) is the set of edges allowed to be removed,
and δ ∈ N is the safety margin. The goal is to identify a set of
edges to be added, A∗ ⊆ Â, and a set of edges to be removed,
R∗ ⊆ R̂, such that |A∗| + |R∗| ≤ b and the resulting network
(V, (E ∪ A∗) \ R∗) contains at least δ nodes with centrality c
greater than that of the evader.

As can be seen from the definition, we focus on two
kinds of network modifications: removing edges incident
with the evader, and adding edges between the neighbors of
the evader. This choice is informed by the results presented
in Section 4. As can be seen in Table 2, when it comes to
the edges incident with the evader, i.e., edges belonging to
the class ζ†1 , only the removal operation can decrease the
evader’s ranking according to all three centrality measures
(notice how the addition cannot affect the degree centrality
in a beneficial way). Similarly, when considering edges
between the evader’s neighbors, i.e., edges belonging to the
class ζ†2 , only the addition of such edges has a chance of
making the evader more hidden from all three measures
(the removal can hide the evader from neither the degree
nor the closeness centrality). We could also consider adding
edges outside of the direct network vicinity of the evader,
i.e., edges belonging to the class ζ†3 , as this operation can
also result in decreasing the ranking of the evader according
to all three centrality measures. However, as discussed in
Section 4, the evader typically has the least amount of
control over such edges. Hence, for the sake of realism of the
problem, we focus on the modifications of edges belonging
to the first two classes.

Let us now comment on the practical aspects of execut-
ing network modifications as part of the evader’s strategy.
In most cases, the evader may remove edges that they
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are a part of relatively easily, e.g., by ceasing contact with
a specific acquaintance. On the other hand, the addition
of edges between neighbors might be more demanding.
In fact, forming connections with friends of friends (i.e.,
triadic closure) is one of the driving mechanisms of social
network formation [43], [44]. What is more, research has
shown that two-thirds of Facebook users are willing to
accept friend requests from complete strangers [45], sug-
gesting they might be even more likely to accept invitations
from friends of friends. Nevertheless, to accommodate for
situations in which some of the edge additions or removals
are impossible to implement, we introduce sets Â and R̂
that precisely designate which network changes the evader
is able to perform.

We now discuss the key differences between the above
problem of Local Hiding and the problem of Disguising
Centrality studied by Waniek et al. [11]. First, instead of
seeking the optimal way of decreasing the value of the
evader’s centrality (which may not provide sufficient cover,
especially if they are still ranked among the top nodes in
the network), we want the position of the evader in the
centrality-based ranking of all nodes to drop below δ. Sec-
ond, we assume that the evader is only capable of rewiring
edges within their network neighborhood—an assumption
that holds in many realistic settings, e.g., the evader is
able to disconnect herself from any of her friends, or even
ask two of them to befriend one another, but is unable to
connect to a complete stranger at will, or ask two strangers
to befriend or unfriend one another. We also comment on
the key differences between our Local Hiding problem and
the problem of Hiding Leaders studied by Waniek et al. [12],
[14] in the context of constructing covert networks. First,
the authors divide the nodes into leaders and the followers,
where the changes in the network are allowed only among
the followers. Second, they only allow edges to be added
among the followers, meaning that no edge can be removed
from the network.

Below we present the proof of one of our results. Due
to space limitations, the remaining proofs can be found in
Section S2 of the supplementary materials.

Theorem 1. The problem of Local Hiding is NP-complete given
the degree centrality.

Proof. The problem is trivially in NP, since after the addition
of a given set of edges A∗ and the removal of a given set of
edges R∗ it is possible to compute the degree centrality of
all nodes in polynomial time.

Next, we prove that the problem is NP-hard. To this
end, we give a reduction from the NP-complete problem
of Finding k-Clique, where the goal is to determine whether
there exist k nodes in G that form a clique.

Given an instance of the problem of Finding k-Clique,
defined by k ∈ N and a networkG = (V,E), let us construct
a network, H = (V ′, E′), as follows (an example of this
construction is presented in Figure 1):

• V ′ = {v†} ∪ V ∪⋃
vi∈V

⋃|N(vi)|
j=1 {xi,j} ∪

⋃k−2
i=1 {zi},

• E′ =
⋃

vi∈V {(vi, v†)} ∪ ⋃
xi,j∈V ′{(vi, xi,j)} ∪⋃

zi∈V ′{(zi, v†)} ∪
⋃

(vi,vj)/∈E{(vi, vj)}.

Now, consider an instance (H, v†, b, c, δ, Â, R̂) of the
Local Hiding problem where H = (V ′, E′) is the network

𝐺𝐺 𝐻𝐻

𝒗𝒗𝟏𝟏

𝒗𝒗𝟒𝟒 𝒗𝒗𝟐𝟐
𝒗𝒗𝟑𝟑

𝒗𝒗𝟏𝟏

𝒗𝒗𝟒𝟒 𝒗𝒗𝟐𝟐
𝒗𝒗𝟑𝟑

𝒛𝒛𝟏𝟏
𝒗𝒗†

𝒙𝒙𝟒𝟒,𝟏𝟏

𝒙𝒙𝟐𝟐,𝟏𝟏

𝒙𝒙𝟐𝟐,𝟐𝟐

𝒙𝒙𝟏𝟏,𝟏𝟏 𝒙𝒙𝟏𝟏,𝟐𝟐 𝒙𝒙𝟏𝟏,𝟑𝟑

𝒙𝒙𝟑𝟑,𝟏𝟏 𝒙𝒙𝟑𝟑,𝟐𝟐

Fig. 1. An example of the construction used in the proof of Theorem 1 for
k = 3. Some edges are printed grey for better readability. Green dotted
lines correspond to the edges allowed to be added.

we just constructed, v† is the evader, b = k(k−1)
2 , c is the

degree centrality measure, δ = k, Â = E, and R̂ = ∅.
From the definition of the problem we know that the

edges to be added to H must be chosen from E, i.e., from
the network in the Finding k-Clique problem. Out of these
edges, we need to choose a subset, A∗ ⊆ E, as a solution
to the Local Hiding problem (as R̂ = ∅, we are not allowed
to remove any edges). In what follows, we will show a cor-
respondence between a solution to the constructed instance
of the Local Hiding problem and a solution to the given
instance of the Finding k-Clique problem.

First, note that v† has the highest degree in H , which
is n + k − 2. Thus, in order for A∗ to be a solution to the
constructed Local Hiding problem instance, the addition of
A∗ to H must increase the degree of at least k nodes in V
such that each of them has a degree of at least n + k − 1
(notice that the addition of A∗ only increases the degrees
of nodes in V , since we already established that A∗ ⊆ E).
Since the degree of every node vi in H equals n (because
of the way H is constructed), then in order to increase the
degree of k such nodes to n + k − 1, each of them must be
an end of at least k − 1 edges in A∗.

Assume that there exists a solution V ∗ to the given
instance of the Finding k-Clique problem, i.e., a subset
V ∗ ⊆ V of size k forming a clique in G. We will show that
V ∗×V ∗ is a solution to the constructed instance of the Local
Hiding problem. Since the nodes in V ∗ form a clique in G,
we have that V ∗ × V ∗ ⊆ E. Since Â = E, we also have that
V ∗ × V ∗ ⊆ Â. Finally, since the nodes in V ∗ form a clique
in G, the addition of V ∗ × V ∗ to H increases the degree of
each of the k nodes in V ∗ by exactly k − 1. We showed that
if there exists a solution to the given instance of the Finding
k-Clique problem, then there also exists a solution to the
constructed instance of the Local Hiding problem.

Assume that there exists a solution to the constructed
instance of the Local Hiding problem, i.e., A∗ ⊆ Â the
addition of which to H increases the degree of at least k
nodes in V by at least k − 1. However, since the budget
is b = k(k−1)

2 , then the only possible choice of A∗ is the
one that increases the degree of exactly k nodes in V by
exactly k−1 each. Hence, the edges in A∗ induce a clique of
size k in Â. However, since Â = E, the same edges also
induce a clique of size k in G. We showed that if there
exists a solution to the constructed instance of the Local
Hiding problem, then there also exists a solution to the given
instance of the Finding k-Clique problem

We proved that a solution to the given instance of the
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Finding k-Clique problem exists if and only if there exists
a solution to the constructed instance of the Local Hiding
problem.

5.2 Approximation Version of the Problem

Having discussed the decision version of the Local Hiding
problem, let us now define its approximation version.

Definition 2 (Minimum Local Hiding). This problem is de-
fined by a tuple (G, v†, c, δ, Â, R̂), where G = (V,E) is a
network, v† ∈ V is the evader, c is a centrality measure,
Â ⊆ N(v†) × N(v†) is the set of edges allowed to be added,
R̂ ⊆ {v†}×N(v†) is the set of edges allowed to be removed, and
δ ∈ N is the safety margin. The goal is to identify a set of edges
to be added, A∗ ⊆ Â, and a set of edges to be removed, R∗ ⊆ R̂,
such that |A∗| + |R∗| is minimal and the resulting network
(V, (E ∪ A∗) \ R∗) contains at least δ nodes with centrality
c greater than that of the evader.

Notice that while in the Local Hiding problem we asked
whether or not there exists a solution within a certain bud-
get, in the Minimum Local Hiding problem we are looking
for a solution that is as small as possible (hence, we are
accepting solutions that are not of the optimal size). This
key difference results in distinct way of analyzing this class
of problems, as we will see in the proofs below.

Due to space limitations, the proofs of our results can be
found in Section S2 of the supplementary materials.

6 THE SEEKER-EVADER GAME

Having analyzed the computational complexity of the prob-
lem faced by the evader, we now move to defining the
confrontation between the seeker and the evader as a game.

6.1 The Game Definition

The game takes place between two players: the seeker who
is a party analyzing a social network, and the evader who
is one of the nodes of the social network analyzed by the
seeker. The seeker uses a centrality measure to identify the
most important node of the social network, while the evader
wishes to avoid being pinpointed as the most important
node.

We model this confrontation as a Stackelberg game [46].
A Stackelberg game is a game between two players, a
leader and a follower. The leader moves first, selecting one
of their strategies. This move is observed by the follower,
who then select one of their strategies as a response. In our
case, the leader player is the seeker, whose set of strategies
CS consists of the centrality measures that can be used to
analyze the network. The follower player is the evader,
who observes the centrality measure used by the seeker
and selects a strategy from the set ΞE . Each strategy of the
evader consists of removing some edges from the network
and adding some edges to the network.

We now discuss the utility functions of both players,
starting with this of the evader. In the theoretical analysis
presented so far we focused our attention on the problem
of lowering the centrality ranking of the evader. Here, we
introduce another factor that can motivate the evader, i.e.,
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Fig. 2. The evader’s utility functions given d = 20 and k = 3
d

. The
dashed blue lines represent the inflection points of both functions.

their influence over the network, measured using one of the
models presented in Section 3.3.

Let c ∈ CS be the strategy selected by the seeker, and let
ξ ∈ ΞE be the strategy selected by the evader. We define the
utility of the evader as:

Ue(ϕ, c, ξ) = ϕUR
e (c, ξ) + (1− ϕ)U I

e (ξ)

where:

• UR
e (c, ξ) is the evader’s utility coming from their

ranking position according to the centrality measure
c selected by the seeker, in the network resulting
from introducing network modification ξ,

• U I
e (ξ) is the evader’s utility coming from the change

in her influence over the network after introducing
network modification ξ,

• ϕ ∈
{

1
m+1 , . . . ,

m
m+1

}
= Φ is the type of the evader

(with m being the number of types) determining
whether the evader is more focused on their ranking
position or their influence.

Next, we discuss the formulas of UR
e (c, ξ) and U I

e (ξ).
Figure 2 presents the plots of both functions. The evader’s
utility based on the centrality ranking is defined as:

UR
e (c, ξ) =

1

α
(
1 + e−k(ρ(c,ξ)−d)

) − β

α
,

where e is Euler’s number, ρ(c, ξ) is the evader’s position in
the ranking of c after executing network modification ξ, k is
the curve steepness, d is the inflection point, β = 1

1+e−k(1−d) ,
and α = 1 − 2β. In our simulations we use the values of
d = 5 and k = 3

d .
Notice that the function defined this way has a number

of desirable properties. First, if the evader is ranked first,
i.e., ρ(c, ξ) = 1, their utility is equal to zero. Second, as
the evader becomes more hidden their utility increases, i.e.,
UR
e (c, ξ) increases with ρ(c, ξ). Third, the function is convex

for ρ(c, ξ) ≤ d, i.e., the marginal gain in utility increases
with the evader’s ranking, until the evader reaches position
d. Fourth, the function is concave for ρ(c, ξ) ≥ d, i.e.,
further decreasing the evader’s ranking beyond position d
has diminishing returns.

The evader’s utility based on the influence is defined as:

U I
e (ξ) =

{
ψ(ξ), if ψ(ξ) > 0

−ψ(ξ)2, if ψ(ξ) ≤ 0

where ψ(ξ) is the relative change in the evader’s influence
after executing the strategy ξ, i.e., ψ(ξ) = ι(ξ)−ι0

ι0
with ι0
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and ι(ξ) denoting the evader’s influence before and after
executing the strategy ξ respectively.

Let us now comment on the properties of the function
defined this way. First, U I

e (ξ) is concave for ψ(ξ) ≤ 0, i.e.,
the marginal loss in utility grows with the loss in influence.
Intuitively, this can be interpreted as the evader who does
not mind a negligible loss of influence, but strongly opposes
a significant decrease. Second, throughout its domain the
value of U I

e (ξ) has a similar order of magnitude to the
value of UR

e (c, ξ), meaning that the aggregated utility of
the evader Ue(ϕ, c, ξ) is not dominated by any of those two
utilities.

We now describe the utility function of the seeker. The
seeker-evader game is a zero-sum game. Hence, the goal of
the seeker is to minimize the total utility of the evader, i.e.,
the utility of the seeker is Us(ϕ, c, ξ) = −Ue(ϕ, c, ξ). We
assume that the utility functions of both players and the
distribution of the evader types are common knowledge,
while the actual type of the evader is unknown to the seeker.

6.2 Finding the Optimal Strategies

We now formulate the problem of identifying the optimal
strategies of the seeker and the evader as a mixed-integer
quadratic program (MIQP). As a reminder, the set of strate-
gies of the seeker consists of centrality measures that can
be used to analyze the network, while the set of strategies
of the evader consists of different ways of rewiring the
network. Let t(ϕ) be the probability that the evader type
is ϕ. Since the seeker knows the distribution of the evader’s
types, but not the actual type, they are likely to use a mixed
strategy, trying to optimize the choice of centrality based
on different types of the evader they might be facing. Let
p(c) be the probability that the seeker plays pure strategy
c ∈ CS . Moreover, let q(ϕ, ξ) be the probability that an
evader of type ϕ plays pure strategy ξ ∈ ΞE . Notice that
since the evader observes the strategy chosen by the seeker
and moves second, they can restrict their choice to pure
strategies, i.e., we have that ∀ϕ∈Φ∀ξ∈ΞE

q(ϕ, ξ) ∈ {0, 1}.
The problem of finding the optimal strategies can now be
formulated as follows.

Definition 3 (MIQP formulation). The mixed-integer quadratic
program finding the optimal strategies is:

max
p,q,a

∑
ϕ∈Φ

∑
c∈CS

∑
ξ∈ΞE

t(ϕ)p(c)q(ϕ, ξ)Us(ϕ, c, ξ)

subject to
∑
c∈CS

p(c) = 1 (i)

∀ϕ∈Φ

∑
ξ∈ΞE

q(ϕ, ξ) = 1 (ii)

∀ϕ∈Φ∀ξ∈ΞE
a(ϕ) ≥

∑
c∈CS

p(c)Ue(ϕ, c, ξ) (iii)

∀ϕ∈Φ∀ξ∈ΞE
a(ϕ) ≤ (1− q(ϕ, ξ))η +

∑
c∈CS

p(c)Ue(ϕ, c, ξ)

(iv)
∀c∈CS

p(c) ∈ [0, 1]

∀ϕ∈Φ∀ξ∈ΞE
q(ϕ, ξ) ∈ {0, 1}

∀ϕ∈Φ a(ϕ) ∈ R

Constraints (i) and (ii) define the probability distribu-
tions over strategies of both players. Notice that since
∀ϕ∈Φ∀ξ∈ΞE

q(ϕ, ξ) ∈ {0, 1}, the constraint (ii) implies that
for a given ϕ ∈ Φ we have q(ϕ, ξ) = 1 for exactly one
strategy ξ, and q(ϕ, ξ) = 0 for all other strategies. Moreover,
η ∈ R is an arbitrarily large number. It implies that if
q(ϕ, ξ∗) = 1, i.e., if ξ∗ ∈ ΞE is the strategy selected by
the evader, we get:

a(ϕ) =
∑
c∈CS

p(c)Ue(ϕ, c, ξ
∗).

Similarly, if q(ϕ, ξ′) = 0, i.e., if ξ′ ∈ ΞE is not the strategy
selected by the evader, then constraint (iv) is automatically
satisfied. Hence, constraints (iii) and (iv) imply that for a
given ϕ ∈ Φ the strategy selected by the evader maximizes
their expected payoff.

Assume to the contrary, i.e., that there exist strategies
ξ′, ξ∗ ∈ ΞE such that q(ϕ, ξ∗) = 1, q(ϕ, ξ′) = 0, and∑

c∈CS
p(c)Ue(ϕ, c, ξ

′) >
∑

c∈CS
p(c)Ue(ϕ, c, ξ

∗), i.e., the
strategy ξ′ that is not get selected has a better expected
payoff than the selected strategy ξ∗. However, this would
violate constraint (iii), which requires that:

a(ϕ) =
∑
c∈CS

p(c)Ue(ϕ, c, ξ
∗) ≥

∑
c∈CS

p(c)Ue(ϕ, c, ξ
′).

Therefore, such strategies ξ′, ξ∗ ∈ ΞE cannot exist, and the
evader plays the strategy maximizing their expected payoff.

In order to solve the problem efficiently, we linearize
it based on procedure described by Paruchuri et al. [47].
The main idea of the procedure is based on introducing
the variable z(ϕ, c, ξ) = p(c)q(ϕ, ξ). The problem can then
be formulated as a mixed-integer linear program (MILP) as
follows.

Definition 4 (MILP formulation). The mixed-integer linear
program finding the optimal strategies is:

max
z,q,a

∑
ϕ∈Φ

∑
c∈CS

∑
ξ∈ΞE

t(ϕ)z(ϕ, c, ξ)Us(ϕ, c, ξ)

subject to ∀ϕ∈Φ

∑
c∈CS

∑
ξ∈ΞE

z(ϕ, c, ξ) = 1 (1)

∀ϕ∈Φ

∑
ξ∈ΞE

q(ϕ, ξ) = 1 (2)

∀ϕ∈Φ∀c∈CS

∑
ξ∈ΞE

z(ϕ, c, ξ) =
∑
ξ∈ΞE

z(0, c, ξ) (3)

∀ϕ∈Φ∀ξ∈ΞE

∑
c∈CS

z(ϕ, c, ξ) = q(ϕ, ξ) (4)

∀ϕ∈Φ∀ξ∈ΞE
a(ϕ) ≥

∑
c∈CS

Ue(ϕ, c, ξ)
∑

ξ′∈ΞE

z(ϕ, c, ξ′)

(5)
∀ϕ∈Φ∀ξ∈ΞE

a(ϕ) ≤ (1− q(ϕ, ξ))η

+
∑
c∈CS

Ue(ϕ, c, ξ)
∑

ξ′∈ΞE

z(ϕ, c, ξ′) (6)

∀ϕ∈Φ∀c∈CS
∀ξ∈ΞE

z(ϕ, c, ξ) ∈ [0, 1]

∀ϕ∈Φ∀ξ∈ΞE
q(ϕ, ξ) ∈ {0, 1}

∀ϕ∈Φ a(ϕ) ∈ R

The formal proof that the linearized version of the for-
mulation indeed describes the same problem as the MIQP
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TABLE 4
Characteristics of the real-life datasets considered in our simulations.

Network Nodes Edges All strategies Undominated
strategies

WTC 36 64 10, 902 205
Madrid 70 98 3, 213 124
Bali 17 63 30, 913 30
Ambassador 16 69 52, 462 123
Facebook 44 138 32, 567 92

formulation can be found in Section S3 of the supplementary
materials.

7 EMPIRICAL ANALYSIS

In this section we present the results of our simulations. We
first detail the network datasets and random network gen-
eration models that we use. Then, we describe the results of
our experiments with the sensitivity of centrality measures.
Finally, we present the experimental analysis of the seeker-
evader game.

7.1 Network Datasets and Models
In our experiments we consider the following real-life net-
work datasets (their characteristics are presented in Table 4):

• WTC [48]—the network of terrorists responsible for
the 9/11 attacks in 2001.

• Madrid [49]—the network of terrorists responsible
for the 2004 Madrid train bombings.

• Bali [50]—the network of terrorists responsible for
the 2002 Bali bombing.

• Ambassador [51]—the network of terrorists respon-
sible for the Philippines ambassador Jakarta resi-
dence bombing in 2000.

• Facebook [52]—ego network of a student of one of
the American colleges.

We also consider the following random network models:

• Barabási-Albert networks [53]—preferential attach-
ment networks with scale-free degree distribution. In
our experiments we add 5 links with each new node
(which results in the expected degree of 10) and we
set the size of the initial clique to 5.

• Erdős-Rényi networks [54]—networks with the
structure of a random graph. In our experiments we
set the expected average degree to 10

• Watts-Strogatz networks [55]— networks exhibiting
the small world property. In our experiments we set
the expected average degree to 10 and the probability
of rewiring to 1

4 .
• Newman networks [56]—networks with the scale-

free structure, but without the preferential attach-
ment property, generated using the configuration
model. In our experiments we set the configuration
model parameter to 2.3.

• Prüfer networks [57]—random trees generated us-
ing Prüfer sequences. We use sequences where each
element is chosen uniformly at random from set
{1, . . . , n}.

7.2 Sensitivity of Centrality Measures

In Section 4 we investigated what changes in ranking are
possible after addition or removal of an edge belonging to
one of the three classes: edges incident with the evader
ζ†1 , edges between the neighbors of the evader ζ†2 , and
other edges ζ†3 . However, even though our analysis resolved
whether the ranking change can happen or not, it remains
unclear how probable it is to happen. To resolve this issue,
we now perform empirical analysis.

The networks that we consider are described in Sec-
tion S4 of the supplementary materials. We use the real-
life networks as they are, whereas for each of the random
models we generate 1, 000 networks with 100 nodes. For
network under consideration G = (V,E) (whether real-
life or random) we compute the initial rankings of degree,
closeness, betweeness, and eigenvector centralities. For each
pair of nodes v, w ∈ V we consider a network G′ resulting
from either adding (v, w) to G (in case (v, w) /∈ E), or
removing (v, w) from G (in case (v, w) ∈ E). We then
compute the rankings of all centralities in G′ and for every
node in the network we record how its ranking positions
changed as a result of adding or removing (v, w) (notice
that for every node in the network the edge (v, w) belongs
either to class ζ†1 , ζ†2 , or ζ†3).

Some of the results of our simulations are presented in
Figure 3, the remaining results can be found in Figures S7
and S8 in the supplementary materials. As it can be seen
from the figures, in the vast majority of cases we are able
to predict whether the ranking will increase or decrease
with high certainty. For example, the removal of an edge
belonging to the class ζ†1 almost always results in a decrease
in ranking, while the addition of such edge in an increase.
For edges belonging to classes ζ†2 and ζ†3 the possibility that
the ranking will not change at all becomes significant (in-
deed, it is often the most probable outcome). However, if we
disregard network modifications that do not affect centrality
rankings, either the decrease or the increase in ranking is
much more probable than its counterpart in most cases.
Hence, even without knowledge necessary to compute the
centrality ranking, e.g., information about the structure of
the entire network, we can usually predict how a given
network modification will affect the centrality rankings.

There remains a question about the magnitude of the
ranking change, i.e., even if we can predict whether the
centrality ranking of the evader will increase or decrease,
can we predict the number of positions by which it will
change? Figure 4 presents some of our results regarding
the magnitude of the ranking change, the remaining results
can be found in Figure S9 in the supplementary materials.
As can be seen from the figure, adding or removing edges
belonging to the class ζ†1 , i.e., edge incident with the evader,
not only gives the greatest chance of predicting whether the
ranking will increase or decrease, but also said change will
have the greatest magnitude. Class ζ†2 offers significantly
smaller ranking changes, with class ζ†3 being the least effec-
tive in shifting the ranking of the evader. From the point
of view of the evader these results are promising, as edges
belonging to the class ζ†1 are also those the evader has the
greatest amount of control over.
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Fig. 3. Percentage of the edge modifications that result in a given change in the evader’s centrality ranking. Results for random networks are
presented as an average over 1000 networks with 100 nodes and the average degree of 10 generated using each model. Labels present values
rounded to the nearest percent, values below 0.5% have been omitted for readability.

7.3 Seeker-Evader Game Experiments

In this section we present an empirical analysis of the
seeker-evader game. We first describe the experimental pro-
cedure, before presenting results for real-life and random
networks.

For a given networkG = (V,E) we first select the evader
v† ∈ V as the node with the highest average position in
rankings generated by the four centrality measures consid-
ered in this study, i.e., degree, closeness, betweenness, and
eigenvector centralities. We then generate strategies of the
evader. The exact set of strategies under consideration de-
pends on whether we consider real-life or random networks
and is described in detail below.

For each evader strategy, we then execute it on the
original network and compute the evader’s ranking posi-
tions according to all four centrality, as well as the evader’s
influence according to the independent cascade model with
the activation probability p = 0.1, and the linear thresh-

old model with the uniform distribution of thresholds. We
consider the set of evader’s types Φ = {.25, .50, .75}. For
each evader type, we compute the value of Ue using the
formula presented in Section 6.1, with the influence value of
the evader being taken as an average over the two influence
models mentioned above.

Finally, we compute the equilibrium of the seeker-evader
game by using the MILP formulation presented in Sec-
tion 6.2. To this end, we utilize the PuLP library version
2.6.0 in Python version 3.7.9.

We now empirically analyze the seeker-evader game
in real-life networks. Given the reasonable size of these
networks, we are able to generate all possible strategies
of the evader with the budget of at most b = 4 (for
WTC and Madrid datasets) or at most b = 3 (for the
other datasets). In other words, we generate all k-subsets
of edges between the evader and their neighbors R̂ (that
can be removed from the network) and non-edges between
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Fig. 4. Magnitude of the change in the evader’s centrality ranking. The first row presents results for real-life networks. Results in the second row are
presented as an average over 1000 networks with 100 nodes and the average degree of 10 generated using each model. Error bars (very narrow in
some cases) correspond to 95% confidence intervals. Scales in each row are fixed for easier comparison.

the neighbors of the evader Â (that can be added to the
network) for k ≤ b. To speed up the MILP computation, we
remove all evader strategies that are dominated by another
strategy, i.e., we remove a strategy if another strategy is
at least as good according to all four centrality measures
and both influence measures. The number of remaining
(undominated) strategies is presented in the last column of
Table 4. Notice that increasing the size of the network causes
the growth of the set of potential evader strategies, but does
not affect the effectiveness of the equilibria computation
once the effective strategies against each centrality measure
have been identified. Here, we consider smaller networks
to be able to exhaustively search the space of all strategies.
Below, we use MILP to compute equilibria in networks up
to 100, 000 nodes while focusing on a set of particularly
effective evader strategies.

First, we investigate the utility of the evader Ue depend-
ing on the composition of the strategy, i.e., the number of
removed edges from R̂, and the number of added edges
from Â. Figure S10 in the supplementary materials presents
the value of Ue with the ranking of the evader taken as
the average ranking over the four centrality measures. As
it can be seen from the figure, the greatest utility of the
evader is consistently achieved for strategies that focus on
edge removal, as opposed to edge addition. What is more,
greater utility can be achieved by the evaders focused on
their centrality ranking (greater values of ϕ), rather than by
the evaders focused on their influence (smaller values of ϕ).

The results regarding the equilibria of the seeker-evader
game are presented in Figure S11 in the supplementary
materials. As it can be seen, in most networks the mixed
strategy of the seeker involves almost exclusively using a
particular centrality (the only exceptions being the WTC

network). However, the exact centrality used by the seeker
strongly depends on the network under consideration. Sim-
ilarly, the evader usually uses the same strategy in a given
network, no matter their type. The exact strategy choice
depends on the network, although strong preference for
the strategies focused on edge removal can be observed.
As for the utility of the evader, we can see that evaders
with greater values of ϕ, i.e., evaders more focused on the
centrality ranking rather than influence value, are able to
achieve better expected utility.

We now move to the empirical analysis of the seeker-
evader game in random networks. In our simulations we
generate networks with 100, 000 nodes. Given the signif-
icant size of the networks, we are unable to generate all
possible strategies of the evader. Instead, we consider the
repeated use of the hiding heuristic ROAM (Remove One,
Add Many) proposed by Waniek et al. [11]. A single ex-
ecution of ROAM with budget k (which we will denote
ROAM(k)) comprises of removing the connection between
the evader v† and their neighbor with the greatest degree
v∗, followed by connecting v∗ to k− 1 other neighbors of v†

with the lowest degrees. In our experiments with random
networks we assume the total hiding budget of b = 12, and
we consider evader strategies consisting of repeatedly exe-
cuting one of the strategies ROAM(1), ROAM(2), ROAM(3),
or ROAM(4). In other words, we consider the following four
evader strategies:

• executing ROAM(1) twelve times, which in total
removes twelve edges from the network,

• executing ROAM(2) six times, which in total removes
six edges from the network and adds six edges to the
network,

• executing ROAM(3) four times, which in total re-
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Fig. 5. Utility of the evader in random networks. Each column corresponds to a different network generation model. The first row presents the values
of the utility based on centrality ranking UR

e (c, ξ) and the utility based on the influence UI
e (ξ). The second row presents the values of the aggregated

utility Ue(ϕ, c, ξ, ) for different types of evaders. In each plot the x-axis corresponds to the heuristic used by the evader, while the y-axis corresponds
to the utility value. The results are presented as an average over 100 networks with 100, 000 nodes and the average degree of 10 generated for
each model. The colored areas (very narrow) represent 95% confidence intervals.

moves four edges from the network and adds eight
edges to the network,

• executing ROAM(4) three times, which in total re-
moves three edges from the network and adds nine
edges to the network,.

Figure 5 presents the results regarding the utility of the
evader with the ranking of the evader taken as the average
ranking over the four centrality measures. As can be seen,
running ROAM(k) heuristic with greater values of k (i.e.,
focusing on edge addition, as opposed to edge removal) is
slightly detrimental to the utility corresponding to centrality
ranking, but it significantly improves the utility correspond-
ing to the influence value. As for the evader types, we
observe similar results to those in the real-life networks,
with the evaders focused on their centrality ranking (greater
values of ϕ), attaining greater utility values than the evaders
focused on the influence (smaller values of ϕ). Altogether,
the utility of the evader seems to be driven by their desire
to maintain the influence over the network, as in terms of
hiding from centrality measures, the considered strategies
offer comparable performance. This is consistent with our
findings regarding the equilibria of the game.

Figure 6 presents the results pertaining to the equilibria
of the seeker-evader game in random networks. As it can
be seen, the centrality measure used by the seeker varies
significantly between the network types. As for the evader’s
strategy, ROAM(4) is the most commonly used, although for
all network structures other ways of hiding are also in use.
As for the utility of the evader, we can observe that evaders
who are more focused on the centrality ranking rather than
influence value achieve greater expected utility.

8 CONCLUSIONS

In this work, we analyzed the problem of strategically de-
creasing the evader’s centrality ranking in a social network

by performing local edge perturbations. First, we investi-
gated what ranking changes are possible after adding or
removing a single edge, depending on whether that edge
is incident with the evader, between two of the evader’s
friends, or outside the evader’s local neighborhood. In the
case of degree centrality it is usually easy to predict both
the direction of the ranking change (i.e., whether the ranking
increases or decreases) and its magnitude (i.e., by how many
positions does the ranking change). However, in the case of
closeness and betweenness centrality measures, it is most
often impossible to make such predictions. Second, we an-
alyzed the computational complexity of the problem faced
by the evader when adding or removing multiple edges,
rather than a single one, to reduce the evader’s ranking.
We found that identifying the best possible way of hiding
from a given centrality measure is most probably impossible
(i.e., the corresponding decision problems are NP-complete),
and that optimal solution is usually difficult to approxi-
mate (although we were able to identify a 2-approximation
algorithm for the degree centrality). Third, we modeled
the confrontation between the seeker and the evader as a
Stackelberg game. We not only defined the strategies and
the utility functions of both players, but we also showed a
mixed-integer linear programming formulation of identify-
ing an equilibrium. Fourth, we used simulations on real-life
and randomly generated networks to study the effect of a
single edge addition or removal on the evader’s ranking. We
found that even if it is impossible to predict said effect with
absolute certainty, based on our results it is possible to make
an educated guess in the vast majority of cases. Finally, we
perform an empirical analysis of the seeker-evader game on
networks. We found that while the exact strategies used by
both players vary significantly between settings, the evader
usually favors strategies including edge removal. Moreover,
evaders who are more focused on their centrality ranking,



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12
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as opposed to their influence value, can generally achieve
greater utility. Altogether, our study provides a broad analy-
sis of the strategic aspects of hiding from centrality measures
in social networks.

Our work can be extended in a number of ways. First,
in this study, we focus on the case of a single evader. How-
ever, one could consider a setting with multiple evaders,
either cooperating with each other (i.e., wishing to hide
as a group) or confronting each other (i.e., working to-
wards exposing their opponents to the seeker while at the
same time remaining hidden), with each variant of the
setting posing unique challenges. In the case of cooperat-
ing evaders, the strategy space available to them would
grow significantly, potentially requiring new computational
methods to find effective sets of network modification, while
the seeker might apply group centrality measures rather
than the standard tools considered in this work. On the
other hand, the case of adversarial evaders would greatly
complicate the computation of equilibria, changing the de-
cision of the evader from simply selecting the best response
to taking into consideration the strategic incentives of all
other evaders. Second, we considered the most popular
centrality measures, as they are most widely implemented
in actual software used for network analysis. However, one

could study a broader portfolio of centrality measures, e.g.,
those based on game theory [58]. Alternatively, one could
consider a similar setting in an different network class,
e.g., in temporal networks [59] or multilayer networks [60].
Finally, equivalents of the seeker-evader game presented
in this work can be developed for other social network
analysis tools that already have hiding tools against unsus-
pecting seeker. Potential candidates include link prediction
algorithms [19], [20], [21], node similarity measures [22],
community detection algorithms [11], [23], [24], and source
detection algorithms [25].
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[5] M. Waniek, J. Woźnica, K. Zhou, Y. Vorobeychik, T. Rahwan,
and T. P. Michalak, “Strategic evasion of centrality measures,”
in Proceedings of the 20th International Conference on Autonomous
Agents and MultiAgent Systems, ser. AAMAS ’21. Richland, SC:
International Foundation for Autonomous Agents and Multiagent
Systems, 2021, p. 1389–1397.

[6] M. Papagelis, “Refining social graph connectivity via shortcut
edge addition,” ACM Transactions on Knowledge Discovery from Data
(TKDD), vol. 10, no. 2, pp. 1–35, 2015.

[7] B. Wilder, H.-C. Ou, K. de la Haye, and M. Tambe, “Optimizing
network structure for preventative health.” in AAMAS, 2018, pp.
841–849.

[8] B.-Y. Hsu, C.-Y. Shen, and X. Yan, “Network intervention for
mental disorders with minimum small dense subgroups,” IEEE
Transactions on Knowledge and Data Engineering, vol. 33, no. 5, pp.
2121–2136, 2019.

[9] P. Crescenzi, G. D’angelo, L. Severini, and Y. Velaj, “Greedily
improving our own closeness centrality in a network,” ACM
Transactions on Knowledge Discovery from Data (TKDD), vol. 11,
no. 1, pp. 1–32, 2016.

[10] H.-J. Hung, W.-C. Lee, D.-N. Yang, C.-Y. Shen, Z. Lei, and S.-
M. Chow, “Efficient algorithms towards network intervention,”
in Proceedings of The Web Conference 2020, 2020, pp. 2021–2031.

[11] M. Waniek, T. P. Michalak, M. J. Wooldridge, and T. Rahwan,
“Hiding individuals and communities in a social network,” Nature
Human Behaviour, vol. 2, no. 2, p. 139, 2018.

[12] M. Waniek, T. P. Michalak, T. Rahwan, and M. Wooldridge, “On
the construction of covert networks,” in Proceedings of the 16th
Conference on Autonomous Agents and MultiAgent Systems. In-
ternational Foundation for Autonomous Agents and Multiagent
Systems, 2017, pp. 1341–1349.

[13] P. Dey and S. Medya, “Covert networks: How hard is it to hide?”
in Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems. Montreal, Canada: IFAAMAS,
2019, pp. 628–637.

[14] M. Waniek, T. P. Michalak, M. Wooldridge, and T. Rahwan, “How
members of covert networks conceal the identities of their lead-
ers,” ACM Transactions on Intelligent Systems and Technology (TIST),
vol. 13, no. 1, pp. 1–29, 2021.

[15] T. Was, M. Waniek, T. Rahwan, and T. Michalak, “The manipula-
bility of centrality measures-an axiomatic approach,” in Proceed-
ings of the 19th International Conference on Autonomous Agents and
MultiAgent Systems. Auckland, New Zealand: AAMAS, 2020, pp.
1467–1475.

[16] M. Waniek, T. Michalak, and T. Rahwan, “Hiding in multilayer
networks,” in Proceedings of the AAAI Conference on Artificial Intel-
ligence, vol. 34. New York, USA: AAAI, 2020, pp. 1021–1028.

[17] M. Waniek, P. Holme, and T. Rahwan, “Hiding in temporal
networks,” IEEE Transactions on Network Science and Engineering,
vol. 9, no. 3, pp. 1645–1657, 2022.

[18] W. Jin, Y. Li, H. Xu, Y. Wang, S. Ji, C. Aggarwal, and J. Tang,
“Adversarial attacks and defenses on graphs: A review, a tool and
empirical studies,” 2020.

[19] S. Yu, M. Zhao, C. Fu, J. Zheng, H. Huang, X. Shu, Q. Xuan, and
G. Chen, “Target defense against link-prediction-based attacks via
evolutionary perturbations,” IEEE Transactions on Knowledge and
Data Engineering, vol. 33, no. 2, pp. 754–767, 2019.

[20] M. Waniek, K. Zhou, Y. Vorobeychik, E. Moro, T. P. Michalak, and
T. Rahwan, “How to hide one’s relationships from link prediction
algorithms,” Scientific reports, vol. 9, no. 1, pp. 1–10, 2019.

[21] K. Zhou, T. P. Michalak, M. Waniek, T. Rahwan, and Y. Vorob-
eychik, “Attacking similarity-based link prediction in social net-
works,” in Proceedings of the 18th International Conference on Au-
tonomous Agents and Multi-Agent Systems. Montreal, Canada:
AAMAS, 2019, p. 305–313.

[22] P. Dey and S. Medya, “Manipulating node similarity measures in
networks,” 2020.

[23] J. Li, H. Zhang, Z. Han, Y. Rong, H. Cheng, and J. Huang, “Ad-
versarial attack on community detection by hiding individuals,”
in Proceedings of The Web Conference 2020, 2020, pp. 917–927.

[24] J. Jia, B. Wang, X. Cao, and N. Z. Gong, “Certified robustness of
community detection against adversarial structural perturbation
via randomized smoothing,” in Proceedings of The Web Conference
2020, 2020, pp. 2718–2724.

[25] M. Waniek, M. Cebrian, P. Holme, and T. Rahwan, “Social diffu-
sion sources can escape detection,” iScience, 2022.

[26] M. T. Godziszewski, T. P. Michalak, M. Waniek, T. Rahwan,
K. Zhou, and Y. Zhu, “Attacking similarity-based sign prediction,”
in 2021 IEEE International Conference on Data Mining (ICDM).
IEEE, 2021, pp. 1072–1077.

[27] L. Sun, Y. Dou, C. Yang, J. Wang, P. S. Yu, L. He, and B. Li,
“Adversarial attack and defense on graph data: A survey,” arXiv
preprint arXiv:1812.10528, 2018.

[28] W. Jin, Y. Li, H. Xu, Y. Wang, S. Ji, C. Aggarwal, and J. Tang,
“Adversarial attacks and defenses on graphs,” ACM SIGKDD
Explorations Newsletter, vol. 22, no. 2, pp. 19–34, 2021.
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[31] D. Zügner and S. Günnemann, “Adversarial attacks on graph
neural networks via meta learning,” in International Conference on
Learning Representations, 2018.

[32] H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song,
“Adversarial attack on graph structured data,” in International
conference on machine learning. Stockholm, Sweden: PMLR, 2018,
pp. 1115–1124.

[33] H. Wu, C. Wang, Y. Tyshetskiy, A. Docherty, K. Lu, and L. Zhu,
“Adversarial examples for graph data: deep insights into attack
and defense,” in Proceedings of the 28th International Joint Conference
on Artificial Intelligence, 2019, pp. 4816–4823.

[34] Y. Ma, S. Wang, T. Derr, L. Wu, and J. Tang, “Attacking graph con-
volutional networks via rewiring,” arXiv preprint arXiv:1906.03750,
2019.

[35] M. Waniek, T. P. Michalak, and A. Alshamsi, “Strategic attack
& defense in security diffusion games,” ACM Transactions on
Intelligent Systems and Technology (TIST), vol. 11, no. 1, pp. 1–35,
2019.

[36] M. E. Shaw, “Group structure and the behavior of individuals in
small groups,” The Journal of Psychology, vol. 38, no. 1, pp. 139–149,
1954.

[37] M. A. Beauchamp, “An improved index of centrality,” Behavioral
Science, vol. 10, no. 2, pp. 161–163, 1965.

[38] J. M. Anthonisse, “The rush in a directed graph,” Stichting Math-
ematisch Centrum. Mathematische Besliskunde, vol. 71, no. BN 9, pp.
1–10, 1971.

[39] L. C. Freeman, “A set of measures of centrality based on between-
ness,” Sociometry, vol. 40, no. 1, pp. 35–41, 1977.

[40] P. Bonacich, “Power and centrality: A family of measures,” Ameri-
can journal of sociology, vol. 92, no. 5, pp. 1170–1182, 1987.

[41] J. Goldenberg, B. Libai, and E. Muller, “Using complex systems
analysis to advance marketing theory development: Modeling
heterogeneity effects on new product growth through stochastic
cellular automata,” Academy of Marketing Science Review, vol. 9,
no. 3, pp. 1–18, 2001.

[42] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread
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