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This document is structured as follows:

� Section S1 (page 2) presents the details of the experimental procedure;

� Section S2 (page 3) presents the results of experiments with real-life networks;

� Section S3 (page 5) presents supplementary figures.
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S1 Details of the Experimental Procedure

The detailed pseudocode of the experimental procedure is presented as Algorithm 1. In the loop in lines
from 1 to 4, we generate the diffusion process with source v† that infects at least 10% of the network nodes.
In line 5 we select the initially infected nodes that are discovered by the party running the tracing process,
and that will be the starting points of tracing. In lines from 6 to 9 we initialize the variables used during
the tracing process, which takes place in the loop in lines from 10 to 23, as long as we do not run out of
the budget b∗. In a single execution of the loop, we will trace contacts of βtr nodes, and newly detected
infections will be collected using variable D∗ initialized in line 11. Tracing contacts of a given node takes
place in a single execution of the loop in lines from 12 to 22. In line 14 we select the node v∗, the contacts
of which will be traced. We add v∗ to the set of traced nodes in line 15, and we compute the last day of the
tracing window t0 in line 16 (we will trace the contacts of v∗ on day t0 and δ preceding days). In line 17 we
identify the contacts of v∗ within the tracing window that v∗ remembers. Out of these, we randomly select
10, and we test them for infection in the loop in lines from 18 to 21. More precisely, in line 19 we add w
(a contact of v∗) to the set of tested nodes H, and if it is infected (which is checked in line 20), we record
this fact in line 21. After tracing the contacts of βtr nodes, the newly detected infections are added to the
set of known infections D in line 23. Only now can we trace the contacts of nodes in D∗. The results of the
tracing process are returned in line 24.

Algorithm 1 The experimental procedure.

Input: Temporal networks G = (V,K, T ), diffusion model M , tracing budget b, tracing breadth parameter βtr,
tracing window offset parameter ω⃗tr, tracing window size δ.

Output: The set of infected nodes I, the set of recovered nodes R, and the set of detected nodes D
1: repeat
2: v† ← select uniformly at random from V ▷ the source of infection
3: I,R, τ ←M(v†, t) ▷ the set of infected nodes, the set of recovered nodes, and the infection times
4: until |I| ≥ |V |/10
5: D0 ← uniformly at random select 10 of the 5% most recently infected nodes
6: D ← D0 ▷ The set of detected nodes
7: H ← D0 ▷ The set of tested nodes
8: F ← ∅ ▷ The set of traced nodes
9: b∗ ← b ▷ The remaining budget

10: while b∗ > 0 do
11: D∗ ← ∅
12: for i← 1, . . . , βtr do
13: if b∗ > 0 then
14: v∗ ← argminv∈D\F τ(v) ▷ Node the contacts of which will be traced
15: F ← F ∪ {v∗}
16: t0 ← max(τ(v∗) + ω⃗tr, T ) ▷ The last day of the tracing window
17: C ← {w ∈ KG(v

∗) : ∃(v∗,w,t)∈Kt0 − δ < t ≤ t0∧ coin toss with probability e−0.001(T−t)}
18: for w ∈ randomly select 10 from C \Hβtr,ω⃗tr do
19: H ← H ∪ {w}
20: if w ∈ I ∪R then
21: D∗ ← D∗ ∪ {w}
22: b∗ ← b∗ − 1

23: D ← D ∪D∗

24: return I, R,D
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S2 Experiments with Real-Life Networks

In this section, we present the results of our experiments with real-life temporal networks. In particular, we
consider the following datasets:

� Hospital [6]—a network of contacts between patients and health care workers in a geriatric unit of a
university hospital collected using wearable proximity sensors, consisting of 73 nodes and 1, 381 edges;

� Dormitory [2]—a network of contacts of students living in a dormitory collected via Bluetooth,
consisting of 74 nodes and 2, 516 edges;

� Office [1]—a network of face-to-face contacts of staff of an office building collected using RFID badges,
consisting of 219 nodes and 16, 725 edges;

� Primary school [5]—a network of contacts of students and teachers in a primary school collected via
radio frequency identification devices consisting of 238 nodes and 5, 541 edges;

� Conference [4]—a network of face-to-face contacts between attendees of a medical conference collected
using RFID badges, consisting of 403 nodes and 65, 355 edges;

� Copenhagen [3]—a network of contacts of university students collected via Bluetooth as part of the
Copenhagen Networks Study, consisting of 672 nodes and 21, 318 edges.

For each of these networks we perform the same experimental procedure as for the random networks in the
main article.

The results of our simulations are presented in Figure S1. As can be seen, the results are largely consistent
with those presented for large random networks in Figure 3 in the main article. In particular, adjusting the
tracing breadth parameter βtr seems to be more impactful than the tracing window offset parameter ω⃗tr,
with greater values of βtr resulting in identifying more infections, but being further away from detecting the
source.
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Primary school Conference Copenhagen
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Figure S1: The effectiveness of tracing for varying βtr and ω⃗tr in real-life networks. In each
plot, the x-axis corresponds to the tracing breadth parameter βtr (with greater values indicating more focus
on the breadth). The y-axis corresponds to the tracing window offset parameter ω⃗tr (with greater values
indicating the window shifted to the future). The plots in the first and third row present the number of
infected detected by the tracing process, colours closer to red indicate more effective detection. The plots
in the second and fourth row present the number of edges between the earliest detected infection and the
actual source. The colour closer to blue indicates more effective detection. Each pair of plots shows results
for different real-life network, with tracing budget b = 10. The results are presented as an average of over
100 simulations, with a new infection process generated for every simulation.
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S3 Supplementary Figures
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Figure S2: The infection curves in our experiments. In each plot, the x-axis corresponds to the time
of the infection process expressed in days, while the y-axis corresponds to the number of nodes in a given
state. The results are presented for networks with 10, 000 nodes generated using different models, either
Barabási-Albert, Erdős-Rényi, or Watts-Strogatz. The results are presented as an average of over 1, 000
simulations, with a new network generated for every simulation.
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Figure S3: The comparison of the effectiveness of source detection while contact tracing to
other source detection algorithms. In the plot, each group of bars corresponds to different method of
source detection, while the y-axis corresponds to the distance from the detected source to the real source.
The results are presented for networks with 10, 000 nodes generated using different models, either Barabási-
Albert, Erdős-Rényi, or Watts-Strogatz, with tracing budget b = 100, tracing breadth βtr = 10. The results
are presented as an average of over 1, 000 simulations, with a new network generated for every simulation.
The error bars correspond to the 95% confidence intervals.
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Figure S4: The effectiveness of tracing when changing infectious period. In each plot, the x-axis
corresponds to the infectious period γ−1 of the infection expressed in days, while the y-axis corresponds to
either the percentage of infected nodes that got detected or the distance to the real source. The results are
presented for networks with 10, 000 nodes generated using different models, either Barabási-Albert, Erdős-
Rényi, or Watts-Strogatz, with tracing budget b = 100, tracing breadth βtr = 10. The results are presented
as an average of over 1, 000 simulations, with a new network generated for every simulation. The colored
areas correspond to the 95% confidence intervals.
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