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This document is structured as follows:

• Supplementary Notes (page 3):

– Section Definitions (page 3) formally defines the relevant centrality measures and influence models,
as well as our optimization problems.

• Supplementary Materials (page 7):

– Section Theoretical Results (page 7) presents the proofs of our hardness results regarding the com-
putational complexity of the optimization problems at hand.

– Section Configuring the ROAM Heuristic (page 12) presents the simulation study based on which
we determined how to choose v0, and how to choose the neighbors of v† to connect to v0 when
running our ROAM heuristic.

– Section Centrality and Influence Results of ROAM (page 13) presents our experiments that quan-
tify the impact of our ROAM heuristic on the centrality and influence of the evader, v†, on 24 different
networks, as opposed to the main article where we only report the results on 3 of those networks.

– Section Concealment Results of DICE (page 15) presents our experiments that quantify the impact
that our DICE heuristic has on the concealment of the group of evaders, V †, and that is given 24
different networks (as opposed to the main article where we only report the results on 3 of those
networks).

– Section Experiments on Running ROAM and DICE Simultaneously (page 17) presents our ex-
periments on running our ROAM and DICE heuristics simultaneously, where the goal is to hide a
community (using DICE) and at the same time hide its leader (using ROAM).

– Section Robustness of ROAM in the Presence of Noise (page 19) quantifies the robustness of
ROAM in the presence of noise, where some of the neighbors of the evader, v†, keep their connections
private, thereby making those connections invisible to v†.

– Section Testing ROAM Against a Commercial Forensic Tool (page 20) tests our ROAM heuris-
tic against a commercial forensic tool, namely UCINET [7]. Specifically, the experiments therein
consider the following centrality measures that are taken from UCINET: Eigenvector centrality, Av-
erage Reciprocal Distance (ARD) centrality, Beta centrality, 2-Local centrality, and 2-Step Reach
centrality.

– Section Testing DICE Against a Commercial Forensic Tool (page 21) tests our DICE heuristic
against the Tabu Search community detection algorithm from UCINET. We chose this particular
algorithm because it is the most relevant to our setting, and can be run using the command-line
interface, unlike the other ones.

– Section Experiments on Running ROAM by Multiple Individuals (page 22) quantifies the impact
of running our ROAM heuristic by multiple evaders at the same time in an uncoordinated fashion.

– Section Experiments with Other Types of Networks (page 23) tests our ROAM and DICE heuris-
tics on other types of social networks, such as co-location and co-membership and financial networks.

• Supplementary Figures (page 26)

• Supplementary References (page 114)
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Supplementary Notes

Definitions
Basic Notation: Let G = (V,E) ∈ G denote a network, where V = {v1, . . . , vn} is the set
of n nodes and E ⊆ V × V is the set of edges, and let G(V ) denote the set of all possible
networks whose set of nodes is V . A path is a sequence of distinct nodes, 〈vl, . . . , vk〉, such that
every two consecutive nodes are connected by an edge. The length of a path is considered to
be the number of edges in that path. For any pair of nodes, vi, vj in G, the set of all shortest
paths between them is denoted by spG(vi, vj), and the distance between them is denoted by
dG(vi, vj), where distance is defined as the length of a shortest path between the two. In case
of an undirected network G we do not discern between edges (vi, vj) and (vj, vi); otherwise the
network is said to be directed. Furthermore, G is said to be connected (strongly connected for
directed networks) if there exists a path between every pair of nodes in G.

We denote by Npred
G (vi) the set of predecessors of vi in G, that is, Npred

G (vi) = {vj ∈ V :
(vj, vi) ∈ E}. On the other hand, we denote by N succ

G (vi) the set of successors of vi in G, i.e.,
N succ
G (vi) = {vj ∈ V : (vi, vj) ∈ E}. Finally, we denote by NG(vi) the set of neighbors of vi in

G, i.e., NG(vi) = Npred
G (vi) ∪N succ

G (vi). For the case of undirected graph, we will assume that
NG(vi) = Npred

G (vi) = N succ
G (vi).

To make the notation more readable, we will often denote two arbitrary nodes by v and w,
instead of vi and vj . Moreover, we will often omit the network itself from the notation whenever
it is clear from the context, e.g., by writing d(v, w) instead of dG(v, w); this applies not only to
the notation presented thus far, but to all notation.

We consider a community structure, CS = {C1, . . . , Ck}, to be a partition of the set of
nodes into disjoint and exhaustive subsets, or communities.1 Formally, it satisfies the following
three conditions: ∀Ci∈CSCi ⊆ V ,

⋃
Ci∈CS Ci = V , and ∀Ci,Cj∈CSCi ∩ Cj = ∅.

Centrality Measures: Formally, a centrality measure [14] is a function c : G(V ) × V → R.
The degree centrality [29] is denoted by cdegr, the closeness centrality [3] is denoted by cclos,
and the betweeness centrality [1, 13] is denoted by cbetw. Specifically, given a node vi ∈ V and
an undirected network, we have:

cdegr(G, vi) =
|NG(vi)|
n− 1

cclos(G, vi) =
n− 1∑

vj∈V dG(vi, vj)

cbetw(G, vi) =
2

(n− 1)(n− 2)

∑
vj ,vk∈V \{vi}

|{p ∈ spG(vj, vk) : vi ∈ p}|
|spG(vj, vk)|

1Some works have considered overlapping community structures [33]. However, as common in the literature,
we restrict our attention to disjoint communities.
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On the other hand, given a directed network, we have:

cdegr(G, vi) =
|Npred

G (vi)|+|N succ
G (vi)|

2(n− 1)

cclos(G, vi) =
1

n− 1

∑
vj∈V

1

dG(vi, vj)

cbetw(G, vi) =
1

(n− 1)(n− 2)

∑
vj ,vk∈V \{vi}

|{p ∈ spG(vj, vk) : vi ∈ p}|
|spG(vj, vk)|

+
|{p ∈ spG(vk, vj) : vi ∈ p}|

|spG(vk, vj)|

Models of Influence: The propagation of influence through the network is often modeled as
follows: when a certain node is sufficiently influenced by its neighbor(s), it becomes “active”,
in which case it starts to influence any “inactive” neighbor(s) it may have, and so on. Of course,
to initiate this propagation process, a set of nodes needs to be activated right from the start; this
set is called the seed set. Assuming that time moves in discrete rounds, we denote by I(t) ⊆ V
the set of nodes that are active at round t, implying that I(1) is the seed set. The way influence
propagates from the seed set to the remaining nodes depends on the influence model under
consideration. Here, the two main models of influence are:

• Independent Cascade [17]: In this model, every pair of nodes is assigned an activation
probability, p : V × V → [0, 1]. Then, in every round, t > 1, every node v ∈ V that
became active in round t− 1 activates every inactive successor, w ∈ N succ(v) \ I(t− 1),
with probability p(v, w). The process ends when there are no new active nodes, i.e., when
I(t) = I(t− 1).

• Linear Threshold [20]: In this model, every node v ∈ V is assigned a threshold value tv
which is sampled (according to some probability distribution) from the set {0, . . . , |Npred(v)|}.
Then, in every round, t > 1, every inactive node v becomes active, i.e., becomes a mem-
ber of I(t), if: |I(t− 1) ∩Npred(v)|≥ tv. The process ends when I(t) = I(t− 1).

In either model, the influence of a node, v, on another, w, is denoted by inf G(v, w) and defined
as the probability that w gets activated given the seed set {v} (we make the common assump-
tion that inf G(v, v) = 0 for all v ∈ V ). The influence of v over the entire network G is then:
inf G(v) =

∑
w∈V inf G(v, w).

First Objective (Disguising a Node): Roughly speaking, given an “evader”, v† ∈ V , and
a limited budget, b, specifying the maximum number of edges that are allowed to be added or
removed, our goal is to first rewire the network so as to minimize the centrality of v†, and then
to further rewire the network so as to “recover” the influence of v† (in an attempt to compen-
sate for any influence that v† might have lost during the centrality-minimization phase). We
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consider two variants of the influence-recovery problem; the first focuses on the influence of v†

over every single node, whereas the second focuses on the influence of v† over the network as
a whole. In both cases, only the addition of edges is considered, since the removal of edges can
only decrease the influence of v†. Next, we formally define the aforementioned problems.

Definition 1 (Disguising Centrality) This problem is defined by a tuple, (G, v†, b, c, R̂, Â),
where G = (V,E) ∈ G is a network, v† ∈ V is the evader (whose centrality is to be min-
imized), b ∈ N is a budget specifying the maximum number of edges that can be added or
removed, c : G × V → R is a centrality measure, R̂ ⊆ E is a set of edges whose removal is
forbidden, Â ⊆ (V × V ) \ E is a set of edges whose addition is forbidden. The goal is then to
identify two sets of edges, R∗ ⊆ (E \ R̂) and A∗ ⊆ (V ×V )\ (E∪ Â), such that: |A∗|+|R∗|≤ b
and G∗ = (V, (E ∪ A∗) \R∗) is connected (strongly connected if G is directed) and G∗ is in:

argmin
G′∈{(V,(E∪A)\R):R⊆(E\R̂),A⊆(V×V )\(E∪Â)}

c(G′, v†).

Definition 2 (Individual Influence recovery) This problem is defined by a tuple, (G, v†, inf , Â, f),
where G = (V,E) ∈ G is a network, v† ∈ V is the evader (whose influence is to be recovered),
inf : G× V → R is an influence measure, Â ⊆ (V × V ) \ E is a set of edges whose addition
is forbidden, and f : V → R specifies the influences to be recovered (i.e., for every vi ∈ V we
want the influence of v† over vi to be at least f(vi)). The goal is then to identify a set of edges,
A∗, that is in:

argmin
A⊆(V×V )\(E∪Â):∀vi∈V inf (V,E∪A)(v

†,vi)≥f(vi)
|A|.

Definition 3 (Global Influence recovery) This problem is defined by a tuple, (G, v†, inf , Â, φ),
where G = (V,E) ∈ G is a network, v† ∈ V is the evader (whose influence is to be recovered),
inf : G× V → R is an influence measure, Â ⊆ (V × V ) \ E is a set of edges whose addition
is forbidden, and φ ∈ R is the total influence to be recovered. The goal is then to identify a set
of edges, A∗, that is in:

argmin
A⊆(V×V )\(E∪Â):inf (V,E∪A)(v

†)≥φ
|A|.

Second Objective (Disguising a Community): Roughly speaking, given a group of “evaders”,
V †, who wish to hide from community detection algorithms, and given a limited budget, b,
specifying the maximum number of edges that are allowed to be added or removed, our goal is
to rewire the network so as to hide V †. To this end, we propose a measure of concealment, µ,
defined for every group of evaders, V † ⊆ V , and every community structure, CS , as follows:2

µ(V †,CS ) = αµ′(V †,CS ) + (1− α)µ′′(V †,CS ),
2When V † is described as a “community” that wishes to hide from community detection algorithms, the term

“community” is used here in its broader sense, and is not meant to imply that V † is a member of CS . In fact, when
measuring how well V † is hidden in CS , it may well be the case that the members of V † are spread out across
multiple communities in CS .
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where α ∈ [0, 1] and:

µ′(V †,CS ) =
|{Ci ∈ CS : Ci ∩ V † 6= ∅}|−1

max(|CS |−1, 1)maxCi∈CS (|Ci ∩ V †|)

µ′′(V †,CS ) =
∑
Ci∈CS

|Ci \ V †|
max(n− |V †|, 1)

.

Note that µ(V †,CS ) ∈ [0, 1] for all V † and CS , with greater values indicating greater levels of
concealment of V † in CS . Having presented our concealment measure, we are now ready to
formally introduce our problem.

Definition 4 (Disguising a Community) This problem is defined by a tuple, (G, V †, alg , b),
where G = (V,E) is a network, V † ⊆ V is the group of evaders, alg is a community-detection
algorithm, and b ∈ N is a budget specifying the maximum number of edges that can be added
or removed. The goal is then to find a set of edges to be added, A∗ ⊆ (V ×V ) \E, and another
to be removed, R∗ ⊆ E, such that |A∗|+|R∗|≤ b and G∗ = (V, (E ∪ A∗) \R∗) is in:

argmax
G′∈{(V,(E∪A)\R) : A⊆(V×V )\E, R⊆E, |A|+|R|≤b}

µ(V †, alg(G′)),

where alg(G) is the community structure returned by the algorithm alg given the network G.

Note that the above optimization problem requires V † to know the exact community-detection
algorithm that the seeker is using. Since such knowledge is hardly available, we avoid this re-
quirement, and instead aim to develop a general-purpose heuristic, designed for no particular
community-detection algorithm.
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Supplementary Materials

Theoretical Results
From the computational point of view, disguising the degree centrality of v† is easy, since the
only way to decrease this centrality is to remove edges connecting v† to its neighbor(s). Next, we
study the problems of disguising closeness centrality and betweenness centrality, followed by
the problem of influence recovery under the Independent-Cascade model and under the Linear-
Threshold model.

Theorem 1 Disguising closeness centrality is NP-complete.

Proof. The decision version of the optimization problem is the following: given a network
G = (V,E), an evader v†, two sets R̂ ⊆ E, Â ⊆ (V × V ) \ E, a budget b ∈ N and a value
x ∈ R, does there exist two sets R∗ ⊆ (E \ R̂) and A∗ ⊆ (V × V ) \ (E ∪ Â) such that
|A∗|+|R∗|≤ b, and the network (V, (E ∪ A∗) \ R∗) is connected (strongly connected if G is
directed) and cclos((V, (E ∪ A∗) \R∗), v†) ≤ x?

This problem is in NP, as given a solution, i.e., two sets A∗ and R∗, we can verify whether
cclos((V, (E∪A∗)\R∗), v†) ≤ x in polynomial time; this only requires computing the closeness
centrality of node v† in network (V, (E ∪ A∗) \R∗).

We will now show that the decision version is NP-hard. To this end, let us denote by q ∈
R the smallest possible closeness centrality of v† in any (strongly) connected network whose
set of nodes is V . One can see that q = 2/n in the case of undirected networks, and q =
(
∑n−1

i=1
1
i
)/(n− 1) in the case of directed network; this happens if and only if:

• the network is a path of which v† is an end (when dealing with undirected networks); or

• the network is a directed cycle (when dealing with directed networks).

Let us denote such a network by Q; the closeness centrality of v† in Q is then q. With this
in mind, the proof involves a reduction from the Hamiltonian cycle problem (i.e., the problem
of determining whether there exists a cycle that visits each node exactly once) to the decision
problem of determining whether it is possible to reduce the closeness centrality of v† to a value
smaller than, or equal to, q.

To this end, given some arbitrary network, G′ = (V ′, E ′), be it directed or undirected, let us
modify G′ so as to obtain a new network, G = (V,E), as illustrated in Figures 1 and 2.

Formally, we do so by choosing some arbitrary node, w ∈ V ′, and then setting:

V = V ′ ∪ {v†, v1, v2}, E = E ′ ∪ {(v†, w), (v1, v2)} ∪ {(v, v1) : v ∈ V ′, v ∈ NG′(w)},

in the case of undirected networks, or setting:

V = V ′ ∪ {v†, v1}, E = E ′ ∪ {(v†, w), (v1, v†)} ∪ {(v, v1) : v ∈ V ′, v ∈ Npred
G′ (w)},
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in the case of directed networks.
We will now show that the Hamiltonian cycle problem in G′ is equivalent to the following

decision problem: Given network G and budget b = |E ′|−|V ′|+|Npred
G′ (w)|, where Â = R̂ = ∅,

determine whether it is possible to reduce the closeness centrality of v† to a value ≤ q, by
removing at most b edges from G. Throughout the remainder of the proof, the edges and nodes
in G that were in G′ will be referred to as “original”.

Firstly, we will show that if G′ has a Hamiltonian cycle then it is possible to obtain Q by
removing |E ′|−|V ′|+|Npred

G′ (w)| edges fromG. To this end, fix a Hamiltonian cycle ofG′, then:

• remove from G all original edges that are not in the Hamiltonian cycle; there are exactly
|E ′|−|V ′| such edges;

• in the Hamiltonian cycle, there are exactly two edges of which w is an end; remove any of
those edges in the undirected network, or the one pointing to w in the directed network;
let us denote the removed edge as (v′, w);

• remove all edges from all predecessors of w to v1, with the exception of (v′, v1); there are
exactly |Npred

G′ (w)|−1 such edges.

In so doing, we have obtained the network Q by removing a total of |E ′|−|V ′|+|Npred
G′ (w)|

edges from G (see Figures 1 and 2).
Secondly, we show that if it is possible to obtain Q by removing |E ′|−|V ′|+|Npred

G′ (w)|
edges fromG, then there exists a Hamiltonian cycle inG′. We will first deal with the undirected
case, before moving on to the directed case.

In the undirected case, observe that nodes v† and v2 each have a degree of 1 in G, since their
only neighbors are w and v1, respectively. Now since Q is connected, and since we obtained
Q by only removing (rather than adding) edges from G, the nodes v† and v2 must each have a
degree of 1 in Q. Consequently, they must be the two ends of Q. This, in turn, implies that v1
must have exactly two neighbors in Q; we know that one of them is v2, let us call the other v′.
This, as well as the fact that v† is only connected to w, implies that the segment of Q between
w and v′ contains all original nodes from G′ and only original edges from G′ (recall that we did
not add any edges between original nodes). Finally, by adding to that segment the original edge
between v′ and w, we obtain a Hamiltonian cycle in G′.

As for the directed case, we observe that node v† has only one successor in Q, namely w,
and only one predecessor in Q, namely v1. We also know that v1 has only one predecessor
in Q; let us call that predecessor v′. These facts imply that the segment of Q between w and
v′ contains all original nodes from G′ and only original edges from G′ (again, recall that we
did not add any edges between original nodes). By adding to that segment the original edge
between v′ and w, we obtain a Hamiltonian cycle in G′.

We have shown that a Hamiltonian cycle in G′ exists if and only if it is possible to reduce
the closeness centrality of v† to q by removing exactly |E ′|−|V ′|+|Npred

G′ (w)| edges from G,
which concludes the proof. 2
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Theorem 2 Disguising betweenness centrality is NP-complete.

Proof. The decision version of the optimization problem is the following: given a network
G = (V,E), an evader v†, two sets R̂ ⊆ E, Â ⊆ (V × V ) \ E, a budget b ∈ N and a value
x ∈ R, does there exist two sets R∗ ⊆ (E \ R̂) and A∗ ⊆ (V × V ) \ (E ∪ Â) such that
|A∗|+|R∗|≤ b, and the network (V, (E ∪ A∗) \ R∗) is connected (strongly connected if G is
directed) and cbetw((V, (E ∪ A∗) \R∗), v†) ≤ x?

This problem is in NP, as given a solution, i.e., two sets A∗ and R∗, we can verify whether
cbetw((V, (E∪A∗)\R∗), v†) ≤ x in polynomial time; this only requires computing the between-
ness centrality of node v† in network (V, (E ∪ A∗) \R∗).

We will now show that the decision version is NP-hard. To this end, we propose a reduction
from the NP-complete Set cover problem. The decision version of this problem is defined by
a universe U = {u1, . . . , ul} and a collection of sets S = {S1, . . . , Sm} such that ∀jSj ⊂ U ,
where the goal is to determine whether there exist k ≤ m elements of S the union of which
equals U .

First, let us create a network G as shown in Figures 3 and 4. More specifically, we create
one node for every Sj ∈ S, one node for every ui ∈ U , and three additional nodes, v†, v0 and
v1. Next, we add (either undirected or directed) edges as follows. We add the edges (v†, v0)
and (v1, v

†), and for every node ui ∈ Sj we add the edges (Sj, ui) and (ui, v1). In case of a
directed network, we also add the edges (ui, Sj) and (v1, ui) for every ui ∈ Sj , as well as the
edge (v0, v1).

Now, consider the problem of disguising the betweenness centrality of v† in G given R̂ = E
and Â = (V ×V )\{(S1, v0), . . . , (Sm, v0)}. Note that v† “controls” (i.e., lies on) every shortest
path to v0, and does not control any shortest path between any other pair of nodes. As such, to
minimize the betweenness centrality of v†, we need to create alternative shortest paths to v0; this
should be done by adding (some of) the edges in {(S1, v0), . . . , (Sm, v0)}, since no other edge
can be added, and no edge can be removed (following the definitions of R̂ and Â). To be more
precise, we can add at most b edges {(S1, v0), . . . , (Sm, v0)}, since we cannot exceed the budget.
After this process, the betweenness centrality of v† may drop to as little as q = 2

(n−1)(n−2) in
the undirected case, or as little as q = 1

(n−1)(n−2) in the directed case; this happens when v† no
longer controls any of the shortest paths to v0 except for the one from v1 to v0. Note that adding
an edge (Sj, v0) creates a new shortest path from every nodes ui ∈ Sj to v0. This implies that
the betweenness centrality of v† can be reduced to q if and only if there exists at most b elements
of S the union of which equals U .

We have just reduced the decision version of the Set Cover problem given k to the fol-
lowing decision problem: Given network G and budget b = k, where R̂ = E and Â =
(V × V ) \ {(S1, v0), . . . , (Sm, v0)}, determine whether it is possible to reduce the closeness
centrality of v† to some value ≤ q, by removing at most b edges from G. 2

Theorem 3 Both the global and the individual influence recovery problems are NP-hard under
the Independent Cascade model.
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Proof. We show a reduction from the NP-complete Set cover problem, defined by a universe
U = {u1, . . . , ul} and a collection of sets S = {S1, . . . , Sm} such that S1 ∪ . . . ∪ Sm = U and
∀jSj ⊆ U , and the goal is to determine whether there exist k ≤ m elements of S the union of
which equals U .

To this end, let us create a network G as illustrated in Figures 5 and 6. In more detail, we
start by creating one node for every Sj ∈ S, one node for every ui ∈ U , and one additional node
v†. After that, for every Sj ∈ S and every ui ∈ Sj , we add the edge (Sj, ui) (either directed or
undirected). In the directed case we additionally add an edge (ui, v

†) for every ui ∈ U .
Consider the influence recovery problem inG under the Independent Cascade model, where:

• Â = (V × V ) \ {(v†, S1), . . . , (v
†, Sm)};

• p : V × V → [0, 1] such that ∀Sj∈S p(v
†, Sj) = 1 and ∀Sj∈S∀ui∈Sj

p(Sj, ui) = 1, and
p(v, w) = 0 for every other pair of nodes;

• for individual influence recovery, ∀ui∈Uf(ui) = 1 and f(v) = 0 for every other node;

• for global influence recovery, φ = k + l.

The goal is then to identify the smallest subset of edges to be added to the network, A ⊆
{(v†, S1), . . . , (v

†, Sm)}, such that either inf (V,E∪A)(v†) ≥ φ in the global variant of the prob-
lem, or ∀vi∈V inf (V,E∪A)(v†, vi) ≥ f(vi) in the individual variant of the problem.

Recall that the influence of v† is measured by setting the seed set as {v†} and calculating the
probability that other nodes get activated. Also recall that under the Independent Cascade model
an active node, v, activates any of its predecessors, w, with probability p(v, w). Importantly,
with the p function defined as above, adding an edge (v†, Sj) for some Si ∈ S makes the
influence of v† on every ui ∈ Sj equal to 1. Furthermore, the above definitions of φ and f imply
that our goal (in both the individual and the global variants of the problem) is achieved if and
only if the influence of v† on every node ui ∈ U equals 1. Consequently, our goal is achieved if
and only if we add to G a set of edges, A ⊆ {(v†, S1), . . . , (v

†, Sm)}, such that:⋃
(v†,Sj)∈A

Sj = U.

Since we are interested in finding the smallest such subset, a solution to the above instance of
the influence recovery problem gives us a solution to the Set Cover problem. 2

Theorem 4 Both the global and the individual influence recovery problems are NP-hard under
the Linear Threshold model.

Proof. We show a reduction from the NP-complete Set cover problem, defined by a universe
U = {u1, . . . , ul} and a collection of sets S = {S1, . . . , Sm} such that S1 ∪ . . . ∪ Sm = U and
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∀jSj ⊆ U , and the goal is to determine whether there exist k ≤ m elements of S the union of
which equals U .

For the directed case, we create a network G as illustrated earlier in Figure 6. As for the
undirected case, we create G as illustrated in Figure 7. In more detail, for every Sj ∈ S, we
create two nodes, namely Sj and Tj , as well as l additional nodes, namely sj,1, . . . , sj,l. We also
create one node for every ui ∈ U , and finally add the evader, v†. As for the edges, for every
Sj ∈ S and every ui ∈ Sj , we add the edge (Tj, ui). Furthermore, for every node sj,i, we add
the edges (Sj, sj,i) and (sj,i, Tj).

Now consider the influence recovery problem in G under the Linear Threshold model,
where:

• Â = (V × V ) \ {(v†, S1), . . . , (v
†, Sm)};

• tv = l for every node v ∈ {T1, . . . , Tm} and tv = 1 for every other node;
• for individual influence recovery, ∀ui∈Uf(ui) = 1 and f(v) = 0 for every other node;
• for global influence recovery, φ = k + l for the directed case, and φ = k(l + 2) + l for

the undirected case.

The goal is then to identify the smallest subset of edges to be added to the network, A ⊆
{(v†, S1), . . . , (v

†, Sm)}, such that either inf (V,E∪A)(v†) ≥ φ in the global variant of the prob-
lem, or ∀vi∈V inf (V,E∪A)(v†, vi) ≥ f(vi) in the individual variant of the problem.

Recall that the influence of v† is measured by setting the seed set as {v†} and calculating the
probability that other nodes get activated. Also recall that under the Linear Threshold model a
node, v, gets activated if the number of its active predecessors exceeds tv. Note that, with tv
defined as above, adding an edge (v†, Sj) in the undirected case leads to the activation of nodes
si,j and Ti, which in turn leads to the activation of every ui ∈ Sj (see Figure 7). Likewise, in the
directed case, adding (v†, Sj) leads to the activation of every ui ∈ Sj (see Figure 6). To put it
differently, when adding (v†, Sj), the influence of v† on every ui ∈ Sj equals 1. Importantly, the
above definitions of φ and f imply that our goal (in both the individual and the global variants
of the problem) is achieved if and only if the influence of v† on every node ui ∈ U equals 1.
Those observations imply that our goal is achieved if and only if we add to G a set of edges,
A ⊆ {(v†, S1), . . . , (v

†, Sm)}, such that: ⋃
(v†,Sj)∈A

Sj = U.

Since we are interested in finding the smallest such subset, a solution to the above instance of
the influence recovery problem gives us a solution to the Set Cover problem. 2
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Configuring the ROAM Heuristic
As mentioned in the main article, the ROAM heuristic involves choosing v0 (the neighbor of
v† whom the heuristic will disconnect from v†), and choosing the b − 1 neighbors of v† whom
the heuristic will connect to v0. We conducted a number of experiments to determine whether
it is more beneficial to choose v0 as the neighbor of v† with the least connections or the most
connections. Likewise, we wanted to determine whether it is more beneficial to choose the
b − 1 neighbors of v† (who will be connected to v0) as the ones with the least connections
or the most connections. Figure 8 compares the different settings given 50 randomly generated
scale-free networks consisting of 100 nodes each, where 3 edges are added with each step of the
generation process (for more details, see [2]); we chose scale-free networks as they have been
shown to resemble real-life networks in many way, especially in terms of degree distribution.
As for the evader, it is chosen to be the node with the lowest sum of centrality rankings (based
on Degree, Closeness, and Betweenness), where ties are broken uniformly at random. As for
the Independent Cascade model, we set the activation probability to be p(v, w) = 0.15 for
every pair of nodes, v, w ∈ V . As for the Linear Threshold model, for every node, v ∈ V , the
threshold value, tv, is sampled uniformly at random from the set {0, . . . , |Npred(v)|}. For both
models, the influence values are approximated using the Monte-Carlo method. In the figure, we
write ROAM-x-y(b), where x can either be “max” or “min” (indicating that v0 is the neighbor
with the most connections or the least connections, respectively) and y can either be “max” or
“min” (indicating that the b− 1 neighbors are chosen to be the ones with the most connections
or the least connections, respectively), whereas b represents the budget (which is set to 3 in
this experiment). Since the results are averaged over 50 random networks, the shaded areas
in the figure represent the 95% confidence intervals. For each network, the ROAM heuristic
is executed multiple, consecutive times; the x-axis in each subfigure represents the number of
executions. As can be seen, while there is no setting that dominates the others, the best overall
performance seems to be achieved by ROAM-max-min(3). Based on this, in all subsequent
experiments on ROAM, we choose v0 as the neighbor of v† with the most connections, and we
connect v0 to the b− 1 neighbors of v† with the least connections.
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Centrality and Influence Results of ROAM
In the main article, due to space constraints, we only presented our experimental results with
ROAM on three networks. In contrast, this section presents our results on 24 different net-
works, including the three considered in the main article. Note that the majority of the networks
considered here are undirected, with the exception of the anonymized fragmetns of Twitter and
Google+, as well as the directed versions of the randomly-generated networks. Before present-
ing our experimental results, we will first briefly explain each network.

Starting with the anonymized fragments of social-media networks, these are all taken from
SNAP—the Stanford Network Analysis Platform [22].3 More specifically, the details of these
anonymized fragments are outlined below:

• Facebook: the small fragment consists of 61 nodes and 272 edges; the medium one con-
sists of 333 nodes and 2523 edges; the large one consists of 786 nodes and 14027 edges;

• Twitter: the small fragment consists of 201 nodes and 2503 edges; the medium one con-
sists of 247 nodes and 8041 edges; the large one consists of 235 nodes and 15957 edges;

• Google+: the small fragment consists of 108 nodes and 2884 edges; the medium one
contains 215 nodes and 7132 edges; the large one consists of 338 nodes and 12341 edges.

We also experimented with ROAM given three different terrorist networks, the details of
which are outlined below:

• the WTC 9/11 terrorist network [21];

• the 2002 Bali attack network [19];

• the 2004 Madrid train bombings network [19].

Finally, we considered three widely-used models of random networks, as detailed below:

• Scale-free networks, generated using the Barabasi-Albert model [2]. We denote any such
network by ScaleFree(x, y), where x is the number of nodes, and y is the number of links
added with each node. For directed networks, we write dScaleFree(x, y), and set the
added links to be directed from each new node to the existing ones.

• Small-world networks, generated using the Watts-Strogatz model [32]. We denote any
such network by SmallWorld(x, y, z), where x is the number of nodes, y is the average
degree, and z is the rewiring probability. For directed networks, we write dSmallWorld(x, y, z),
and take y to be the average out-degree.

3http://snap.stanford.edu/data/#socnets
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• Random graphs generated using the Erdos-Renyi model [12]. We write RandomGraph(x, y),
with x being the number of nodes, and y being the expected average degree. In contrast,
when the network is directed, we write dRandomGraph(x, y), and take y to be the ex-
pected average out-degree.

Each experiment consists of a network, a budget, an evader, and an influence model. We
experiment with a budget of 1, 2, 3, and 4. The evader is assumed to be the one with the
lowest sum of centrality rankings (based on Degree, Closeness, and Betweenness), where ties
are broken uniformly at random. Whenever the Independent Cascade model is used, an acti-
vation probability of 0.15 is assumed on each link. Whenever the Linear Threshold model is
used, a uniform distribution of thresholds is assumed. For both models, the influence values are
approximated using the Monte-Carlo method.

Figures 9 to 16 depict the evader’s ranking after each execution of ROAM. As can be seen,
the heuristic is able to decrease the evader’s ranking according to the three centrality measures
(degree, closeness, and betweenness) with varying levels of success, depending on the network
at hand, and the budget being spent on rewiring the network. Overall, the heuristic seems to be
generally capable of reducing the centrality of the evader given different types of networks, and
given different centrality measures.

Next, we evaluate ROAM in terms of recovering (some of) the influence that the evader,
v†, lost during the evasion process. More precisely, we evaluate the effectiveness of Step 2,
whose main purpose is to recover the influence that v† lost during Step 1 of the heuristic. To this
end, it suffices to calculate the influence of v† given different budgets. To see why this is the
case, recall that the budget, b, is spent as follows: one modification is spent in Step 1, while the
remaining b − 1 modifications are spent in Step 2. This basically means that, by setting b = 1,
we effectively disable Step 2. Conversely, by increasing b, we increase the impact of Step 2,
and thus we expect the evader’s influence to increase accordingly. To verify this, we plotted
the evader’s relative influence value (compared to his or her original influence value before
executing ROAM); this value was measured according to two alternative models of influence,
namely Independent Cascade and Linear Threshold (see Figures 17 to 24). As expected, when
b = 1, the evader’s influence decreases steadily, since Step 2 is disabled. Conversely, when
b > 1, Step 2 is activated, and some of the evader’s lost influence is recovered as a result. Better
still, in some of our experiments, when b > 3 the influence of v† actually exceeds its original
value (i.e., its value before executing ROAM altogether). This means that ROAM is not only
able to hide the evader, but may even boost the evader’s influence, depending on the network
and the budget at hand.

Similar trends were observed when testing ROAM given other directed and undirected net-
works (see Section ) and given other centrality measures taken from a commercial tool for
social network analysis, namely UCINET [7] (see Section ), all of which further demonstrate
the universality of our findings across different networks and centrality measures.
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Concealment Results of DICE
In the main article, we only presented part of our main experimental results with DICE. In
contrast, this section presents all of them. More specifically, the results presented here are for
all the networks that were described earlier in Section .

For each network, we experiment with seven community-detection algorithms implemented
in the igraph [9] package of the R language (version 1.0.1), namely: Eigenvector [23], Be-
tweenness [24], Walktrap [25], Louvain [4], Greedy [8], Infomap [28] and Spinglass [26]. Ev-
ery experiment consists of a network and a community-detection algorithm. The experiment
starts by running the algorithm to obtain a community structure, CS . After that, the group of
evaders, i.e., V †, is chosen to be the element in CS whose size is the median of the sizes of all
communities in CS (ties are broken uniformly at random). Although V † does not necessarily
have to be an element of CS , we choose it this way in order to study the worst case scenario
in which V † is initially exposed completely by the algorithm. We proceed with the experiment
only if 2 < |V †|< n− 2, to avoid extreme cases in which the V † happens to be either extremely
small or extremely large.

The experiment proceeds in rounds, each involving the execution of DICE followed by the
execution of the community-detection algorithm, to measure how well V † is hidden in the new
outcome of the algorithm (to this end we use µ with α = 0.5). We set the number of rounds to
be |V †|. In each round, we disconnect d links from within V † (chosen uniformly at random),
and then connect b − d members of V † to b − d non-members of V † (again chosen uniformly
at random). Due to this randomness in our implementation, DICE may yield different results
in different executions. Thus, we repeat each experiment multiple times, with the shaded areas
representing the 95% confidence interval.

We tested DICE given different networks and different community-detection algorithms; see
Figures 25 to 31. As can be seen, DICE is able to hide the group of evaders, V †, with varying
levels of success, depending on the evaders’ budget and the seeker’s community-detection algo-
rithm. Surprisingly, the parameter d did not seem to have a significant impact on performance.
The same observation was made when running DICE on a wider variety of networks (see Sec-
tion ) and when testing DICE against a commercial tool for social network analysis, namely
UCINET [7] (see Section ). This observation implies that the members of V † can choose at
their discretion how much of the budget is spent on removing internal links, and how much is
spent on adding external links, without worrying about how this may affect their disguise. For
example, the members of V † might be interested in hiding as much as possible, while removing
as few internal links as possible. However, since the addition of an external link is not entirely
under the control of V † (as it requires the consent of a non-member), the number of newly-
added external links may be insufficient for providing a satisfactory level of concealment, in
which case the members can compensate for this by sacrificing more internal links, i.e., by
increasing the parameter d.

Figure 32 illustrates the average value of the concealment measure µ with α = 0.5, taken
over all of our experiments of DICE where b = 4 and d ∈ {0, 2, 4} (the subfigures on the
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righthand side are for directed networks, whereas those on the lefthand side are for undirected
ones). For every subfigure, each row represents a community-detection algorithm, each column
represents a network, and the intensity of the color in each cell represents the average value of
µ, taken over 50 simulations, either by generating a new random network in each simulation, or
by re-running the simulation over and over on the same real-life network (note that our imple-
mentation of DICE is non-deterministic, and may yield different results on the same network).
The missing cells correspond to the cases where V † happened to be either extremely small or
extremely large (recall that we only consider cases where 2 < |V †|< n−2). As can be seen, the
Infomap algorithm [28] seems to be on average the most difficult to fool when it comes to the
undirected networks. In contrast, when it comes to directed networks, Infomap appears to be
slightly easier to fool compared to the only other alternative for directed networks, namely the
Betweenness algorithm [24] (see the right column of Figure 32). The same observations were
made when testing DICE on other directed and undirected networks; see Section .
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Experiments on Running ROAM and DICE Simultaneously
In this section, we study how our ROAM heuristic (which hides a single evader) and our DICE
heuristic (which hides a group of evaders) influence each other. Each of our experiments con-
sists of a community-detection algorithm and a network. The experiment starts by running the
algorithm to obtain a community structure, CS . After that, the group of evaders, i.e., V †, is
chosen to be the element in CS whose size is the median of the sizes of all communities in CS
(ties are broken uniformly at random). Although V † does not necessarily have to be an element
of CS , we choose it this way in order to study the worst case scenario in which V † is initially
exposed completely by the algorithm. We proceed with the experiment only if 2 < |V †|< n−2,
to avoid extreme cases in which the V † happens to be either extremely small or extremely large.
The member of V † with the lowest sum of centrality rankings (based on Degree, Closeness, and
Betweenness) is then chosen as the evader, v†, who is interpreted as the leader of V † and who
will be running the ROAM heuristic.

The experiment proceeds in rounds, each involving the execution of ROAM (to hide v†)
followed by the execution of DICE (to hide V †). At the end of each round:

(a). We measure the effectiveness of ROAM in terms of decreasing the centrality of v†, and
in terms of recovering the influence of v† that was lost during the centrality-minimization
stage;

(b). We measure the effectiveness of DICE in terms of hiding V †. To this end, we first run the
chosen community detection algorithm to obtain a community structure, CS , and then we
compute µ(V †,CS ), where µ is our concealment measure with α = 0.5 (see Section for
more details).

We set the number of rounds to be
⌈
|V †|/b

⌉
, where b is the budget of the DICE heuristic.

In each round, we disconnect d links from within V † (chosen uniformly at random), and then
connect b− d members of V † to b− d non-members of V † (again chosen uniformly at random).
Due to this randomness in our implementation, DICE may yield different results in different ex-
ecutions. Therefore, we repeat each experiment multiple times, and report the 95% confidence
interval.

Figures 33 to 46 present the results of our experiments with ROAM(b) : b = 3 where b
is the budget in each round, and with DICE(b, d) : b = 4; d = 2 where b is the budget of a
single round, and d is the number of removed intra-community edges. Each result is taken as an
average over 50 simulations, with the shaded areas representing the 95% confidence intervals.
Next, we comment on the effectiveness of our heuristics in terms of reducing the centrality of
v†, recovering the influence of v†, and increasing the concealment of V †.

In terms of reducing the centrality of v†, the ROAM heuristics is generally successful on
most of the undirected networks considered in our experiments. In contrast, it seems that di-
rected networks are more difficult to handle compared to the undirected ones. In fact, with di-
rected networks, there are a few cases where running ROAM and DICE simultaneously caused
an increase rather than a decrease in the centrality of v†.
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In terms of the influence of v†, the results are quite mixed. In particular, there are cases
where the drop in influence is substantial, there are cases where the drop is minor, and there
are cases where the influence actually increases. This suggests that hiding the community may
come at the expense of significantly reducing the influence of its leader.

Finally, in terms of increasing the concealment of V †, running our heuristics in parallel
does not appear to have a marked impact on the effectiveness of concealing V †. Furthermore,
as shown in Figure 46, the Infomap algorithm [28] is on average the most difficult to fool
given undirected networks (this is the same observation that was made when running DICE
without ROAM). Note that the missing cells in Figure 46 correspond to the cases where V †

happened to be either extremely small or extremely large (recall that we only consider cases
where 2 < |V †|< n− 2).
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Robustness of ROAM in the Presence of Noise
In this section, we consider a practical implementation concern, which is that of noise. So far, in
all of our experiments we assumed that the evader knows all the connections of each of his/her
neighbors. In practice, however, this may not necessarily be the case. For example, if a typical
user of Facebook were to check his/her list of friends, he/she will probably find some who keep
their own lists of friends private, i.e., not visible to the user. The lack of such information is a
form of noise that could be detrimental to the performance of ROAM.

To study the impact that such noise may have on our heuristic, we ran experiments in which
a certain percentage of the nodes (chosen uniformly at random) keep their connections private,
i.e., not visible to the evader, v†. When faced with such a situation, ROAM chooses v0 as
the neighbor with the most connections, taking into consideration only the neighbors whose
connections are visible to v†. Similarly, when ROAM chooses the b − 1 neighbors with the
least connections (to introduce them to v0), this choice is made starting with the ones whose
connections are visible to v†. If there are fewer than b−1 such neighbors, then ROAM randomly
chooses the remaining ones out of the neighbors whose connections are private. Aside from
this modification, the heuristic proceeds as usual. To avoid any potential confusion between
the two versions of ROAM, we call this latter version “nROAM”, where the “n” stands for
“noise”. When presenting the experimental results, we will write “nROAM(b, p)”, where b
denotes the budget in each execution, and p denotes the percentage of randomly-chosen nodes
whose connections are kept private.

Figures 47 to 56 present the results of our experiments with noise. As expected, this lack
of information affects the performance of ROAM, but the impact is often negligible. More
specifically, in terms of influence recovery, the drop in performance seems negligible in about
70% of our experiments. Similarly, in terms of centrality minimization, the drop in performance
appears to be negligible in about 80% our experiments. These results hold even the majority of
the evader’s neighbors keep their connections private.
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Testing ROAM Against a Commercial Forensic Tool
We now evaluate ROAM against the following centrality measures implemented in a widely
used commercial forensic tool, namely UCINET [7]:
• 2-Local centrality [6]—a node’s centrality sums the normalized degrees of its neighbors.
• Average Reciprocal Distance (ARD) centrality—a node’s centrality is the average recip-

rocal distance to all other nodes in the network.
• Beta centrality [5]—also known as the Bonacich power index, whereby a node’s power

is influenced by the power of its neighbors (here, we set the β parameter to its default
value).
• Eigenvector centrality [5]—whereby the centrality values of nodes are the values from the

eigenvector corresponding to the largest eigenvalue of the network’s adjacency matrix.
• 2-Step Reach centrality—a node’s centrality is the number of nodes that can be reached

in at most two steps from that node.
• Aggregate centrality—a node’s centrality is taken as the average reciprocal of the node’s

position in the ranking produced by each of the other centralities, i.e., the above five
centralities, as well as degree, closeness and betweenness.

As with all other sections, the evader is chosen to be the node with the lowest sum of central-
ity rankings (based on Degree, Closeness, and Betweenness), where ties are broken uniformly
at random. As for the random networks, each result is taken as the average over 50 simulations,
with the shaded areas representing the 95% confidence intervals. As for the directed networks,
we do not report results for Eigenvector centrality, since eigenvectors can be only computed for
symmetric matrices. We also report both the in-degree and the out-degree values for each of
the following centralities: 2-Local, ARD, Beta and 2-Step Reach. Note that we only report the
centrality, not the influence, of the evader. This is because the influence results are exactly the
same as those found in Section (note that ROAM performs the same steps, regardless of the
centrality measure being used).

Figures 59 to 72 depict the evader’s ranking after each execution of ROAM. As can be seen,
the heuristic is able to decrease the evader’s ranking with varying levels of success, depending
on the network at hand, and the budget being spent on rewiring the network. Overall, the results
in this section are very similar to those obtained when testing ROAM against other networks and
other centrality measures (see Sections and ), all of which further demonstrate the universality
of our findings across different networks and centrality measures.
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Testing DICE Against a Commercial Forensic Tool
In this section, we evaluate DICE against a commercial forensic tool, namely UCINET [7],
which is widely used for social network analysis. Note that UCINET’s command-line interface
provides three community detection algorithms:

• Factions, which uses Tabu Search [16];
• Newman community detection algorithm [24];
• Split, which partitions the nodes into exactly two communities.

As far as the Newman algorithm is concerned, we already considered it in all of our previous
DICE experiments; this is the same as the Betweenness algorithm from the igraph package. As
for the Split algorithm, it can only return community structures with exactly two communities,
which is very restrictive in the context of our article. This leaves us with only the Factions al-
gorithm, which is the focus of our next experiments. When running the Factions algorithm, one
has to specify the exact number of communities that it returns. As such, we run this algorithm
multiple times, with the number of communities ranging from 2 to 8. Out of those community
structures, we choose the one that maximizes the normalized modularity [11]. Once we have
chose the community structure, CS , we choose the group of evaders, i.e., V †, as the element in
CS whose size is the median of the sizes of all communities in CS (ties are broken uniformly
at random). The experiment then proceeds in rounds, each involving the execution of DICE
followed by the execution of the community-detection algorithm, to measure how well V † is
hidden in the new outcome of the algorithm (to this end we use µ with α = 0.5). We set the
number of rounds to be

⌈
|V †|/b

⌉
.

Due to computational complexity of the Factions algorithm, we were only able to obtain
results for small networks, consisting of no more tens of nodes each; see Figure 73. As can
be seen, DICE is able to hide the group of evaders with ease. Based on these results, the
Factions algorithm seems on average easier to fool than many of the other community detection
algorithms considered in earlier sections.
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Experiments on Running ROAM by Multiple Individuals
So far, in all of our experiments we assumed that there exists only a single evader that is using
ROAM to decrease his or her centrality. In this section, we study the case in which multiple
such evaders exist, each trying to decrease his or her centrality without any coordination with
the remaining evaders. That is, we run experiments in which multiple evaders are each running
our ROAM heuristic at the same time.

Each experiment starts by choosing an evader v†; this is done just like in all of our previous
experiments with ROAM, i.e., v† is chosen to be the node with the lowest sum of centrality
rankings (based on Degree, Closeness, and Betweenness), where ties are broken uniformly at
random. After that, three additional evaders are chosen to be the three nodes with the lowest
sums of centrality rankings out of all the nodes that are exactly k steps away from v† (again, ties
are broken uniformly at random). In each round, the evaders run the ROAM heuristic in turn; the
order in which they proceed is determined according to their sum of centrality rankings, from
smallest to largest, implying that v† is the first evader to run the heuristic. We write ROAM(b)+k
to refer to the experiment in which ROAM is executed repeatedly, where b is the budget of each
execution of ROAM, and k is the distance between v† and the remaining evaders. As a baseline,
we also run an experiment in which v† is running ROAM alone; we refer to this experiment by
writing ROAM(b).

Figures 74 to 85 depict the resulting centrality and influence of v†. For the random networks,
the figures depict an average taken over 50 simulations, with the shaded areas representing
the 95% confidence intervals. Overall, the closer the additional evaders are to v†, the greater
their impact on the centrality and influence of v†. In many cases, when additional evaders are
running the ROAM heuristic, the process of lowering the centrality of v† becomes less effective.
Interestingly, in many of our experiments, the actions of the additional evaders actually increase,
rather than decrease, the effectiveness of recovering the influence of v†.

22



Experiments with Other Types of Networks
In the previous sections, we evaluated ROAM and DICE on three kinds of networks: (i) social
networks, (ii) terrorist networks, and (iii) random networks. In this section, we evaluate ROAM
and DICE on other kinds of networks:

• Undirected co-membership network of CEOs [15]. This network consists of 26 nodes and
284 edges. Here, two CEOs are connected with an edge if and only if they are members
of the same club.

• Undirected co-membership network of southern women [10]. This network consists of
18 nodes and 139 edges. Here, two women are connected with an edge if and only if they
participated in the same social event.

• Undirected co-location network of students at the St Lucia campus of University of
Queensland [31]. This network is very large, consisting of 20,308 nodes and 664,146
edges. To obtain a network of tractable size, we perform our experiments on the co-
location network of students visiting the 60th most popular location in the dataset. In this
network, two students are connected with an edge if and only if they visited this location
at the same time. We ended up with a network consisting of 302 nodes and 1,149 edges.

• Undirected email communication network of University at Rovira i Virgili (URV) studied
in [18], which contains 1,669 users including faculty, researchers, technicians, managers,
administrators, and graduate students. Since this network is not connected, we run our
experiments on the giant component therein, consisting of 1,133 nodes and 5,451 edges.

• Directed network of transactions between Bitcoin users [27]. The Bitcoin network is
massive, with 881,678 nodes and 1,607,976 edges. To obtain a network of tractable size,
we performed our experiments on the largest connected component of network of users
who performed transaction in May 2010. We ended up with a network consisting of 753
nodes and 859 edges.

• Directed network of countries trading manufactures of metal in 1994 [30]. This network
consists of 80 nodes and 998 edges.

As for ROAM, every experiment consists of a network, a budget, an evader, and an influence
model. More specifically, we experiment with a budget of 1, 2, 3, and 4. The evader, v†, is
assumed to be the one with the lowest sum of centrality rankings (based on Degree, Closeness,
and Betweenness), where ties are broken uniformly at random. Whenever the Independent
Cascade model is used, an activation probability of 0.15 is assumed on each link. On the other
hand, whenever the Linear Threshold model is used, a uniform distribution of thresholds is
assumed (see Section for more details). For both models, the influence values are approximated
using the Monte-Carlo method. In each of these experiments, the ROAM heuristic is executed
multiple, consecutive times, to see how this affects the centrality and influence of the evader.
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Figures 86 and 87 depict the evader’s ranking after each execution of ROAM. As can be
seen, both in directed and undirected networks, the heuristic is able to decrease the evader’s
ranking according to the three centrality measures (degree, closeness, and betweenness) with
varying levels of success, depending on the network at hand, and the budget being spent on
rewiring the network. Note that these results are consistent with our findings from previous
sections.

Next, we evaluate ROAM in terms of recovering (some of) the influence that the evader,
v†, lost during the evasion process. More precisely, we evaluate the effectiveness of Step 2,
whose main purpose is to recover the influence that v† lost during Step 1 of the heuristic. To this
end, it suffices to calculate the influence of v† given different budgets. To see why this is the
case, recall that the budget, b, is spent as follows: one modification is spent in Step 1, while the
remaining b − 1 modifications are spent in Step 2. This basically means that, by setting b = 1,
we effectively disable Step 2. Conversely, by increasing b, we increase the impact of Step 2,
and thus we expect the evader’s influence to increase accordingly. To verify this, we plotted
the evader’s relative influence value (compared to his or her original influence value before
executing ROAM); this value was measured according to two alternative models of influence,
namely Independent Cascade and Linear Threshold (see Figures 88 and 89). As expected,
when b = 1, the evader’s influence decreases steadily, since Step 2 is disabled. Conversely,
when b > 1, Step 2 is activated, and some of the evader’s lost influence is recovered as a result.
Better still, in some of our experiments, when b > 3 the influence of v† actually exceeds its
original value (i.e., its value before executing ROAM altogether). This means that ROAM is
not only able to hide the evader, but may even boost the evader’s influence, depending on the
network and the budget at hand. Again, these results are consistent with our findings from other
sections.

As for DICE, every experiment consists of a network and a community-detection algorithm.
The experiment starts by running the algorithm to obtain a community structure, CS . After
that, the group of evaders, i.e., V †, is chosen to be the element in CS whose size is the median
of the sizes of all communities in CS (ties are broken uniformly at random). Although V † does
not necessarily have to be an element of CS , we choose it this way in order to study the worst
case scenario in which V † is initially exposed completely by the algorithm. We proceed with the
experiment only if 2 < |V †|< n−2, to avoid extreme cases in which the V † happens to be either
extremely small or extremely large. The experiment then proceeds in rounds, each involving the
execution of DICE followed by the execution of the community-detection algorithm, to measure
how well V † is hidden in the new outcome of the algorithm (to this end we use µ with α = 0.5).
We set the number of rounds to be |V †|. In each round, we disconnect d links from within V †

(chosen uniformly at random), and then connect b − d members of V † to b − d non-members
of V † (again chosen uniformly at random). Due to this randomness in our implementation,
DICE may yield different results in different executions. Therefore, we repeat each experiment
multiple times, with the shaded areas representing the 95% confidence interval.

Figures 90 and 91 depict the results of our experiments with DICE given different networks
and different community-detection algorithms. As the figure shows, DICE is able to hide the
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group of evaders, V †, with varying levels of success, depending on the evaders’ budget and
the seeker’s community-detection algorithm. Surprisingly, both on directed and undirected net-
works, the parameter d did not seem to have a significant impact on performance. The same
observation was made when running DICE on other networks (see Section ) and when testing
DICE against a commercial tool for social network analysis, namely UCINET [7] (see Section ).
This observation implies that the members of V † can choose at their discretion how much of
the budget is spent on removing internal links, and how much is spent on adding external links,
without worrying about how this may affect their disguise.

Figure 92 illustrates the average value of the concealment measure µ with α = 0.5, taken
over all of our experiments of DICE where b = 4 and d ∈ {0, 2, 4}. In particular, each row rep-
resents a community-detection algorithm, each column represents a network, and the intensity
of the color in each cell represents the average value of µ, taken over 50 simulations, either by
generating a new random network in each simulation, or by re-running the simulation over and
over on the same real-life network (recall that our implementation of DICE is non-deterministic,
and may yield different results on the same network). The missing cells corresponds to the cases
where V † happened to be either extremely small or extremely large (recall that we only con-
sider cases where 2 < |V †|< n − 2). Given undirected networks, the Infomap [28] algorithm
seems to be the most difficult to fool. These results suggest that Infomap should be the algo-
rithm of choice from the seeker’s perspective. In contrast, given directed networks, Infomap is
in fact the easiest algorithm to fool, suggesting that the seeker’s algorithm of choice should be
the Betweenness algorithm [24] when dealing with directed networks. Again, these results are
consistent with our findings from previous sections.
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Supplementary Figures
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Supplementary Figure 1: The main steps of reducing the Hamiltonian cycle problem to the problem
of determining whether the closeness centrality of v† can be reduced to a value ≤ q in an undirected
network.
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Supplementary Figure 2: The main steps of reducing the Hamiltonian cycle problem to the problem of
determining whether the closeness centrality of v† can be reduced to a value≤ q in a directed network.
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Supplementary Figure 3: Undirected network
used to reduce the Set cover problem to our prob-
lem of disguising the betweenness centrality of
v†. To solve both problems, we consider adding
(some of) the dashed edges.
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Supplementary Figure 4: A directed network
used to reduce the Set cover problem to our prob-
lem of disguising the betweenness centrality of
v†. To solve both problems, we consider adding
(some of) the dashed edges.
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Supplementary Figure 5: Undirected network
used to reduce the Set cover problem to our influ-
ence recovery problem. To solve both problems,
we consider adding (some of) the dashed edges.
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Supplementary Figure 6: A directed network
used to reduce the Set cover problem to our influ-
ence recovery problem. To solve both problems,
we consider adding (some of) the dashed edges.
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Supplementary Figure 7: Undirected network used to reduce the Set cover problem to our influence
recovery problem under the Linear Threshold model. To solve both problems, we consider adding (some
of) the dashed edges.
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Supplementary Figure 8: Comparing different settings of ROAM on 50 randomly generated
scale-free networks consisting of 100 nodes, with 3 edges added in each step of the generation
process. For each such network, ROAM is executed multiple, consecutive times (the x-axis
represents the number of executions). The subfigures show the evader’s ranking (according
to different centrality measures), and the relative change in its influence value (according to
different influence models).
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Supplementary Figure 9: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the evader’s ranking
(according to the centrality measures). Results are shown for ROAM(b) : b = 1, 2, 3, 4, where
b is the budget in each execution.
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Supplementary Figure 10: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the evader’s ranking
(according to the centrality measures). Results are shown for ROAM(b) : b = 1, 2, 3, 4, where
b is the budget in each execution.

31



Degree Ranking Closeness Ranking Betweenness Ranking

W
T

C
9/

11

2

4

6

8

10

12

0 1 2 3 4
No. of executions

R
an

ki
ng

5

10

15

0 1 2 3 4
No. of executions

R
an

ki
ng

0

5

10

15

20

0 1 2 3 4
No. of executions

R
an

ki
ng

B
al

ia
tta

ck

5

10

15

0 2 4 6 8
No. of executions

R
an

ki
ng

5

10

15

0 2 4 6 8
No. of executions

R
an

ki
ng

2

4

6

8

0 2 4 6 8
No. of executions

R
an

ki
ng

M
ad

ri
d

bo
m

bi
ng

5

10

0 1 2 3 4 5 6
No. of executions

R
an

ki
ng

1

2

3

4

5

6

7

0 1 2 3 4 5 6
No. of executions

R
an

ki
ng

5

10

15

20

0 1 2 3 4 5 6
No. of executions

R
an

ki
ng

ROAM(1) ROAM(2) ROAM(3) ROAM(4)

Supplementary Figure 11: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the evader’s ranking
(according to the centrality measures). Results are shown for ROAM(b) : b = 1, 2, 3, 4, where
b is the budget in each execution.
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Supplementary Figure 12: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the evader’s ranking
(according to the centrality measures). Results are shown for ROAM(b) : b = 1, 2, 3, 4, where
b is the budget in each execution.
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Supplementary Figure 13: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the evader’s ranking
(according to the centrality measures). Results are shown for ROAM(b) : b = 1, 2, 3, 4, where
b is the budget in each execution.
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Supplementary Figure 14: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the evader’s ranking
(according to the centrality measures). Results are shown for ROAM(b) : b = 1, 2, 3, 4, where
b is the budget in each execution.
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Supplementary Figure 15: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the evader’s ranking
(according to the centrality measures). Results are shown for ROAM(b) : b = 1, 2, 3, 4, where
b is the budget in each execution.
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Supplementary Figure 16: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the evader’s ranking
(according to the centrality measures). Results are shown for ROAM(b) : b = 1, 2, 3, 4, where
b is the budget in each execution.
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Supplementary Figure 17: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the relative change
in the evader’s influence value (according to the influence models). Results are shown for
ROAM(b) : b = 1, 2, 3, 4, where b is the budget in each execution.
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Supplementary Figure 18: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the relative change
in the evader’s influence value (according to the influence models). Results are shown for
ROAM(b) : b = 1, 2, 3, 4, where b is the budget in each execution.
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Supplementary Figure 19: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the relative change
in the evader’s influence value (according to the influence models). Results are shown for
ROAM(b) : b = 1, 2, 3, 4, where b is the budget in each execution.
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Supplementary Figure 20: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the relative change
in the evader’s influence value (according to the influence models). Results are shown for
ROAM(b) : b = 1, 2, 3, 4, where b is the budget in each execution.
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Supplementary Figure 21: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the relative change
in the evader’s influence value (according to the influence models). Results are shown for
ROAM(b) : b = 1, 2, 3, 4, where b is the budget in each execution.
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Supplementary Figure 22: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the relative change
in the evader’s influence value (according to the influence models). Results are shown for
ROAM(b) : b = 1, 2, 3, 4, where b is the budget in each execution.
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Supplementary Figure 23: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the relative change
in the evader’s influence value (according to the influence models). Results are shown for
ROAM(b) : b = 1, 2, 3, 4, where b is the budget in each execution.
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Supplementary Figure 24: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the relative change
in the evader’s influence value (according to the influence models). Results are shown for
ROAM(b) : b = 1, 2, 3, 4, where b is the budget in each execution.
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Supplementary Figure 25: Consecutive execution of DICE (the x-axis represents the comple-
tion of process). Specifically, given different networks, the subfigures show the community
concealment measure value. Results are shown for DICE(b, d) : b = 4; d ∈ {0, 2, 4}, where b is
the budget in each execution, and d is the number of removed internal edges.

46



(b = 4, d = 0) (b = 4, d = 2) (b = 4, d = 4)
Sc

al
eF

re
e(
10
00
,3
)

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

R
an

do
m

G
ra

ph
(1
00
0,
10
)

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.2 0.4 0.6 0.8 1.0
Completion
C
on
ce
al
m
en
t

Sm
al

lW
or

ld
(1
00
0,
10
,.
25
)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

0.0

0.1

0.2

0.3

0.4

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.2 0.4 0.6 0.8 1.0
Completion

C
on
ce
al
m
en
t

Betweenness

Eigenvector

Greedy

Infomap

Louvain

Spinglass

Walktrap

Supplementary Figure 26: Consecutive execution of DICE (the x-axis represents the comple-
tion of process). Specifically, given different networks, the subfigures show the community
concealment measure value. Results are shown for DICE(b, d) : b = 4; d ∈ {0, 2, 4}, where b is
the budget in each execution, and d is the number of removed internal edges.
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Supplementary Figure 27: Consecutive execution of DICE (the x-axis represents the comple-
tion of process). Specifically, given different networks, the subfigures show the community
concealment measure value. Results are shown for DICE(b, d) : b = 4; d ∈ {0, 2, 4}, where b is
the budget in each execution, and d is the number of removed internal edges.
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Supplementary Figure 28: Consecutive execution of DICE (the x-axis represents the comple-
tion of process). Specifically, given different networks, the subfigures show the community
concealment measure value. Results are shown for DICE(b, d) : b = 4; d ∈ {0, 2, 4}, where b is
the budget in each execution, and d is the number of removed internal edges.
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Supplementary Figure 29: Consecutive execution of DICE (the x-axis represents the comple-
tion of process). Specifically, given different networks, the subfigures show the community
concealment measure value. Results are shown for DICE(b, d) : b = 4; d ∈ {0, 2, 4}, where b is
the budget in each execution, and d is the number of removed internal edges.
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Supplementary Figure 30: Consecutive execution of DICE (the x-axis represents the comple-
tion of process). Specifically, given different networks, the subfigures show the community
concealment measure value. Results are shown for DICE(b, d) : b = 4; d ∈ {0, 2, 4}, where b is
the budget in each execution, and d is the number of removed internal edges.
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Supplementary Figure 31: Consecutive execution of DICE (the x-axis represents the comple-
tion of process). Specifically, given different networks, the subfigures show the community
concealment measure value. Results are shown for DICE(b, d) : b = 4; d ∈ {0, 2, 4}, where b is
the budget in each execution, and d is the number of removed internal edges.
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Supplementary Figure 32: Average concealment-measure value in each experiment. The results
for the directed networks (namely the fragments of Twitter and Google+) are presented on the
right, whereas the results for the undirected networks are presented on the left. Results are
shown for DICE(b, d) : b = 4; d ∈ {0, 2, 4}, where b is the budget in each execution, and d is
the number of removed internal edges.
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Supplementary Figure 33: Consecutive execution of both ROAM and DICE (the x-axis rep-
resents the completion of process). Specifically, given different networks, the subfigures
show the evader’s ranking (according to the centrality measures). Results are shown for
DICE(b, d) : b = 4; d = 2, where b is the budget in each execution, and d is the number of
removed internal edges, and ROAM(b) : b = 3, where b is the budget in each execution.
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Supplementary Figure 34: Consecutive execution of both ROAM and DICE (the x-axis rep-
resents the completion of process). Specifically, given different networks, the subfigures
show the evader’s ranking (according to the centrality measures). Results are shown for
DICE(b, d) : b = 4; d = 2, where b is the budget in each execution, and d is the number of
removed internal edges, and ROAM(b) : b = 3, where b is the budget in each execution.
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Supplementary Figure 35: Consecutive execution of both ROAM and DICE (the x-axis rep-
resents the completion of process). Specifically, given different networks, the subfigures
show the evader’s ranking (according to the centrality measures). Results are shown for
DICE(b, d) : b = 4; d = 2, where b is the budget in each execution, and d is the number of
removed internal edges, and ROAM(b) : b = 3, where b is the budget in each execution.
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Supplementary Figure 36: Consecutive execution of both ROAM and DICE (the x-axis rep-
resents the completion of process). Specifically, given different networks, the subfigures
show the evader’s ranking (according to the centrality measures). Results are shown for
DICE(b, d) : b = 4; d = 2, where b is the budget in each execution, and d is the number of
removed internal edges, and ROAM(b) : b = 3, where b is the budget in each execution.
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Supplementary Figure 37: Consecutive execution of both ROAM and DICE (the x-axis rep-
resents the completion of process). Specifically, given different networks, the subfigures
show the evader’s ranking (according to the centrality measures). Results are shown for
DICE(b, d) : b = 4; d = 2, where b is the budget in each execution, and d is the number of
removed internal edges, and ROAM(b) : b = 3, where b is the budget in each execution.
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Supplementary Figure 38: Consecutive execution of both ROAM and DICE (the x-axis repre-
sents the completion of process). Specifically, given different networks, the subfigures show
the relative change in the evader’s influence value (according to the influence models). Results
are shown for DICE(b, d) : b = 4; d = 2, where b is the budget in each execution, and d is
the number of removed internal edges, and ROAM(b) : b = 3, where b is the budget in each
execution.
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Supplementary Figure 39: Consecutive execution of both ROAM and DICE (the x-axis repre-
sents the completion of process). Specifically, given different networks, the subfigures show
the relative change in the evader’s influence value (according to the influence models). Results
are shown for DICE(b, d) : b = 4; d = 2, where b is the budget in each execution, and d is
the number of removed internal edges, and ROAM(b) : b = 3, where b is the budget in each
execution.
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Supplementary Figure 40: Consecutive execution of both ROAM and DICE (the x-axis repre-
sents the completion of process). Specifically, given different networks, the subfigures show
the relative change in the evader’s influence value (according to the influence models). Results
are shown for DICE(b, d) : b = 4; d = 2, where b is the budget in each execution, and d is
the number of removed internal edges, and ROAM(b) : b = 3, where b is the budget in each
execution.
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Supplementary Figure 41: Consecutive execution of both ROAM and DICE (the x-axis repre-
sents the completion of process). Specifically, given different networks, the subfigures show
the relative change in the evader’s influence value (according to the influence models). Results
are shown for DICE(b, d) : b = 4; d = 2, where b is the budget in each execution, and d is
the number of removed internal edges, and ROAM(b) : b = 3, where b is the budget in each
execution.
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Supplementary Figure 42: Consecutive execution of both ROAM and DICE (the x-axis repre-
sents the completion of process). Specifically, given different networks, the subfigures show
the relative change in the evader’s influence value (according to the influence models). Results
are shown for DICE(b, d) : b = 4; d = 2, where b is the budget in each execution, and d is
the number of removed internal edges, and ROAM(b) : b = 3, where b is the budget in each
execution.
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Supplementary Figure 43: Consecutive execution of both ROAM and DICE (the x-axis repre-
sents the completion of process). Specifically, given different networks, the subfigures show
the community concealment measure value. Results are shown for DICE(b, d) : b = 4; d = 2,
where b is the budget in each execution, and d is the number of removed internal edges, and
ROAM(b) : b = 3, where b is the budget in each execution.
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Supplementary Figure 44: Consecutive execution of both ROAM and DICE (the x-axis repre-
sents the completion of process). Specifically, given different networks, the subfigures show
the community concealment measure value. Results are shown for DICE(b, d) : b = 4; d = 2,
where b is the budget in each execution, and d is the number of removed internal edges, and
ROAM(b) : b = 3, where b is the budget in each execution.
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Supplementary Figure 45: Consecutive execution of both ROAM and DICE (the x-axis repre-
sents the completion of process). Specifically, given different networks, the subfigures show
the community concealment measure value. Results are shown for DICE(b, d) : b = 4; d = 2,
where b is the budget in each execution, and d is the number of removed internal edges, and
ROAM(b) : b = 3, where b is the budget in each execution.
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Supplementary Figure 46: Average concealment-measure value in each experiment on running
ROAM and DICE simultaneously. The results for the directed networks (namely the fragments
of Twitter and Google+) are presented on the right, whereas the results for the undirected net-
works are presented on the left. Results are shown for DICE(b, d) : b = 4; d = 2, where b is the
budget in each execution, and d is the number of removed internal edges, and ROAM(b) : b = 3,
where b is the budget in each execution.
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Supplementary Figure 47: Consecutive execution of nROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the evader’s ranking
(according to the centrality measures). Results are shown for nROAM(b, p) : b = 3, where b is
the budget in each execution and p is the percentage of nodes that make their lists of neighbors
invisible.
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Supplementary Figure 48: Consecutive execution of nROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the evader’s ranking
(according to the centrality measures). Results are shown for nROAM(b, p) : b = 3, where b is
the budget in each execution and p is the percentage of nodes that make their lists of neighbors
invisible.
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Supplementary Figure 49: Consecutive execution of nROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the evader’s ranking
(according to the centrality measures). Results are shown for nROAM(b, p) : b = 3, where b is
the budget in each execution and p is the percentage of nodes that make their lists of neighbors
invisible.
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Supplementary Figure 50: Consecutive execution of nROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the evader’s ranking
(according to the centrality measures). Results are shown for nROAM(b, p) : b = 3, where b is
the budget in each execution and p is the percentage of nodes that make their lists of neighbors
invisible.
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Supplementary Figure 51: Consecutive execution of nROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the evader’s ranking
(according to the centrality measures). Results are shown for nROAM(b, p) : b = 3, where b is
the budget in each execution and p is the percentage of nodes that make their lists of neighbors
invisible.
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Supplementary Figure 52: Consecutive execution of nROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the evader’s ranking
(according to the centrality measures). Results are shown for nROAM(b, p) : b = 3, where b is
the budget in each execution and p is the percentage of nodes that make their lists of neighbors
invisible.
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Supplementary Figure 53: Consecutive execution of nROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the relative change
in the evader’s influence value (according to the influence models). Results are shown for
nROAM(b, p) : b = 3, where b is the budget in each execution and p is the percentage of nodes
that make their lists of neighbors invisible.
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Supplementary Figure 54: Consecutive execution of nROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the relative change
in the evader’s influence value (according to the influence models). Results are shown for
nROAM(b, p) : b = 3, where b is the budget in each execution and p is the percentage of nodes
that make their lists of neighbors invisible.
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Supplementary Figure 55: Consecutive execution of nROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the relative change
in the evader’s influence value (according to the influence models). Results are shown for
nROAM(b, p) : b = 3, where b is the budget in each execution and p is the percentage of nodes
that make their lists of neighbors invisible.
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Supplementary Figure 56: Consecutive execution of nROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the relative change
in the evader’s influence value (according to the influence models). Results are shown for
nROAM(b, p) : b = 3, where b is the budget in each execution and p is the percentage of nodes
that make their lists of neighbors invisible.
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Supplementary Figure 57: Consecutive execution of nROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the relative change
in the evader’s influence value (according to the influence models). Results are shown for
nROAM(b, p) : b = 3, where b is the budget in each execution and p is the percentage of nodes
that make their lists of neighbors invisible.
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Supplementary Figure 58: Consecutive execution of nROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the relative change
in the evader’s influence value (according to the influence models). Results are shown for
nROAM(b, p) : b = 3, where b is the budget in each execution and p is the percentage of nodes
that make their lists of neighbors invisible.
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Supplementary Figure 59: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the evader’s ranking
(according to the centrality measures). Results are shown for ROAM(b) : b = 2, 3, 4, where b
is the budget in each execution.
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Supplementary Figure 60: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the evader’s ranking
(according to the centrality measures). Results are shown for ROAM(b) : b = 2, 3, 4, where b
is the budget in each execution.
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Supplementary Figure 61: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the evader’s ranking
(according to the centrality measures). Results are shown for ROAM(b) : b = 2, 3, 4, where b
is the budget in each execution.
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Supplementary Figure 62: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the evader’s ranking
(according to the centrality measures). Results are shown for ROAM(b) : b = 2, 3, 4, where b
is the budget in each execution.
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Supplementary Figure 63: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the evader’s ranking
(according to the centrality measures). Results are shown for ROAM(b) : b = 2, 3, 4, where b
is the budget in each execution.
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Supplementary Figure 64: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the evader’s ranking
(according to the centrality measures). Results are shown for ROAM(b) : b = 2, 3, 4, where b
is the budget in each execution.
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Supplementary Figure 65: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the evader’s ranking
(according to the centrality measures). Results are shown for ROAM(b) : b = 2, 3, 4, where b
is the budget in each execution.
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Supplementary Figure 66: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the evader’s ranking
(according to the centrality measures). Results are shown for ROAM(b) : b = 2, 3, 4, where b
is the budget in each execution.
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Supplementary Figure 67: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the evader’s ranking
(according to the centrality measures). Results are shown for ROAM(b) : b = 2, 3, 4, where b
is the budget in each execution.
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Supplementary Figure 68: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the evader’s ranking
(according to the centrality measures). Results are shown for ROAM(b) : b = 2, 3, 4, where b
is the budget in each execution.
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Supplementary Figure 69: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the evader’s ranking
(according to the centrality measures). Results are shown for ROAM(b) : b = 2, 3, 4, where b
is the budget in each execution.
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Supplementary Figure 70: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the evader’s ranking
(according to the centrality measures). Results are shown for ROAM(b) : b = 2, 3, 4, where b
is the budget in each execution.
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Supplementary Figure 71: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the evader’s ranking
(according to the centrality measures). Results are shown for ROAM(b) : b = 2, 3, 4, where b
is the budget in each execution.
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Supplementary Figure 72: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the evader’s ranking
(according to the centrality measures). Results are shown for ROAM(b) : b = 2, 3, 4, where b
is the budget in each execution.
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Supplementary Figure 73: Consecutive execution of DICE (the x-axis represents the comple-
tion of process). Specifically, given different networks, the subfigures show the community
concealment measure value against Factions algorithm. Results are shown for DICE(b, d) :
b = 4; d ∈ {0, 2, 4}, where b is the budget in each execution, and d is the number of removed
internal edges.
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Supplementary Figure 74: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the ranking (ac-
cording to the centrality measures) of the evader v† when running ROAM(b) : b = 3 alone,
and when running ROAM(b) : b = 3 along with three other evaders that are also running
ROAM(b) : b = 3, and are exactly k steps away from v†; we refer to those latter experiments
by writing: ROAM(b)+k.
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Supplementary Figure 75: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the ranking (ac-
cording to the centrality measures) of the evader v† when running ROAM(b) : b = 3 alone,
and when running ROAM(b) : b = 3 along with three other evaders that are also running
ROAM(b) : b = 3, and are exactly k steps away from v†; we refer to those latter experiments
by writing: ROAM(b)+k.
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Supplementary Figure 76: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the ranking (ac-
cording to the centrality measures) of the evader v† when running ROAM(b) : b = 3 alone,
and when running ROAM(b) : b = 3 along with three other evaders that are also running
ROAM(b) : b = 3, and are exactly k steps away from v†; we refer to those latter experiments
by writing: ROAM(b)+k.

97



Degree Ranking Closeness Ranking Betweenness Ranking
Fa

ce
bo

ok
(s

m
al

l)

0

10

20

30

0 5 10 15 20
No. of executions

R
an

ki
ng

0

10

20

30

0 5 10 15 20
No. of executions

R
an

ki
ng

0

10

20

30

40

0 5 10 15 20
No. of executions

R
an

ki
ng

Fa
ce

bo
ok

(m
ed

iu
m

)

5

10

15

20

0 5 10 15 20
No. of executions

R
an

ki
ng

5

10

15

20

25

30

0 5 10 15 20
No. of executions

R
an

ki
ng

5

10

15

20

0 5 10 15 20
No. of executions

R
an

ki
ng

Fa
ce

bo
ok

(l
ar

ge
)

20

30

40

50

60

0 5 10 15 20
No. of executions

R
an

ki
ng

0

20

40

60

0 5 10 15 20
No. of executions

R
an

ki
ng

0

20

40

60

80

0 5 10 15 20
No. of executions

R
an

ki
ng

ROAM(3) ROAM(3)+1 ROAM(3)+2 ROAM(3)+3

Supplementary Figure 77: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the ranking (ac-
cording to the centrality measures) of the evader v† when running ROAM(b) : b = 3 alone,
and when running ROAM(b) : b = 3 along with three other evaders that are also running
ROAM(b) : b = 3, and are exactly k steps away from v†; we refer to those latter experiments
by writing: ROAM(b)+k.

98



Degree Ranking Closeness Ranking Betweenness Ranking
Tw

itt
er

(s
m

al
l)

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 5 10 15 20
No. of executions

R
an

ki
ng

5

10

15

0 5 10 15 20
No. of executions

R
an

ki
ng

2

3

4

5

6

7

8

0 5 10 15 20
No. of executions

R
an

ki
ng

Tw
itt

er
(m

ed
iu

m
)

1.0

1.5

2.0

2.5

3.0

0 5 10 15 20
No. of executions

R
an

ki
ng

5

10

15

0 5 10 15 20
No. of executions

R
an

ki
ng

3.0

3.5

4.0

4.5

5.0

0 5 10 15 20
No. of executions

R
an

ki
ng

Tw
itt

er
(l

ar
ge

)

3.0

3.5

4.0

4.5

5.0

5.5

6.0

0 5 10 15 20
No. of executions

R
an

ki
ng

1

2

3

4

5

0 5 10 15 20
No. of executions

R
an

ki
ng

4.0

4.5

5.0

5.5

6.0

6.5

7.0

0 5 10 15 20
No. of executions

R
an

ki
ng

ROAM(3) ROAM(3)+1 ROAM(3)+2 ROAM(3)+3

Supplementary Figure 78: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the ranking (ac-
cording to the centrality measures) of the evader v† when running ROAM(b) : b = 3 alone,
and when running ROAM(b) : b = 3 along with three other evaders that are also running
ROAM(b) : b = 3, and are exactly k steps away from v†; we refer to those latter experiments
by writing: ROAM(b)+k.
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Supplementary Figure 79: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the ranking (ac-
cording to the centrality measures) of the evader v† when running ROAM(b) : b = 3 alone,
and when running ROAM(b) : b = 3 along with three other evaders that are also running
ROAM(b) : b = 3, and are exactly k steps away from v†; we refer to those latter experiments
by writing: ROAM(b)+k.
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Supplementary Figure 80: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures the relative change in the
influence value (according to the influence models) of the evader v† when running ROAM(b) :
b = 3 alone, and when running ROAM(b) : b = 3 along with three other evaders that are
also running ROAM(b) : b = 3, and are exactly k steps away from v†; we refer to those latter
experiments by writing: ROAM(b)+k.
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Supplementary Figure 81: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures the relative change in the
influence value (according to the influence models) of the evader v† when running ROAM(b) :
b = 3 alone, and when running ROAM(b) : b = 3 along with three other evaders that are
also running ROAM(b) : b = 3, and are exactly k steps away from v†; we refer to those latter
experiments by writing: ROAM(b)+k.
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Supplementary Figure 82: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures the relative change in the
influence value (according to the influence models) of the evader v† when running ROAM(b) :
b = 3 alone, and when running ROAM(b) : b = 3 along with three other evaders that are
also running ROAM(b) : b = 3, and are exactly k steps away from v†; we refer to those latter
experiments by writing: ROAM(b)+k.
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Supplementary Figure 83: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures the relative change in the
influence value (according to the influence models) of the evader v† when running ROAM(b) :
b = 3 alone, and when running ROAM(b) : b = 3 along with three other evaders that are
also running ROAM(b) : b = 3, and are exactly k steps away from v†; we refer to those latter
experiments by writing: ROAM(b)+k.
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Supplementary Figure 84: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures the relative change in the
influence value (according to the influence models) of the evader v† when running ROAM(b) :
b = 3 alone, and when running ROAM(b) : b = 3 along with three other evaders that are
also running ROAM(b) : b = 3, and are exactly k steps away from v†; we refer to those latter
experiments by writing: ROAM(b)+k.
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Supplementary Figure 85: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures the relative change in the
influence value (according to the influence models) of the evader v† when running ROAM(b) :
b = 3 alone, and when running ROAM(b) : b = 3 along with three other evaders that are
also running ROAM(b) : b = 3, and are exactly k steps away from v†; we refer to those latter
experiments by writing: ROAM(b)+k.
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Supplementary Figure 86: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the evader’s ranking
(according to the centrality measures). Results are shown for ROAM(b) : b = 1, 2, 3, 4, where
b is the budget in each execution.
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Supplementary Figure 87: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the evader’s ranking
(according to the centrality measures). Results are shown for ROAM(b) : b = 1, 2, 3, 4, where
b is the budget in each execution.
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Supplementary Figure 88: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the relative change
in the evader’s influence value (according to the influence models). Results are shown for
ROAM(b) : b = 1, 2, 3, 4, where b is the budget in each execution.
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Supplementary Figure 89: Consecutive execution of ROAM (the x-axis represents the number
of executions). Specifically, given different networks, the subfigures show the relative change
in the evader’s influence value (according to the influence models). Results are shown for
ROAM(b) : b = 1, 2, 3, 4, where b is the budget in each execution.
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Supplementary Figure 90: Consecutive execution of DICE (the x-axis represents the comple-
tion of process). Specifically, given different networks, the subfigures show the community
concealment measure value. Results are shown for DICE(b, d) : b = 4; d ∈ {0, 2, 4}, where b is
the budget in each execution, and d is the number of removed internal edges.
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Supplementary Figure 91: Consecutive execution of DICE (the x-axis represents the comple-
tion of process). Specifically, given different networks, the subfigures show the community
concealment measure value. Results are shown for DICE(b, d) : b = 4; d ∈ {0, 2, 4}, where b is
the budget in each execution, and d is the number of removed internal edges.
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Supplementary Figure 92: Average concealment-measure value in each experiment. The results
for the directed networks are presented on the right, whereas the results for the undirected
networks are presented on the left. Results are shown for DICE(b, d) : b = 4; d ∈ {0, 2, 4},
where b is the budget in each execution, and d is the number of removed internal edges.
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