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Probabilistic programming languages are used for developing statistical models. They typically consist of
two components: a specification of a stochastic process (the prior), and a specification of observations that
restrict the probability space to a conditional subspace (the posterior). Use cases of such formalisms include
the development of algorithms in machine learning and artificial intelligence.

In this article we establish a probabilistic-programming extension of Datalog that, on the one hand, allows
for defining a rich family of statistical models, and on the other hand retains the fundamental properties
of declarativity. Our proposed extension provides mechanisms to include common numerical probability
functions; in particular, conclusions of rules may contain values drawn from such functions. The semantics
of a program is a probability distribution over the possible outcomes of the input database with respect to the
program. Observations are naturally incorporated by means of integrity constraints over the extensional and
intensional relations. The resulting semantics is robust under different chases and invariant to rewritings
that preserve logical equivalence.

CCS Concepts: rTheory of computation → Constraint and logic programming; Database query
languages (principles); rMathematics of computing→ Probabilistic representations;

General Terms: Languages,Theory

Additional Key Words and Phrases: Chase, Datalog, declarative, probability measure space, probabilistic
programming

1. INTRODUCTION
Languages for specifying general statistical models are commonly used in the develop-
ment of machine learning and artificial intelligence algorithms for tasks that involve
inference under uncertainty. A substantial effort has been made on developing such
formalisms and corresponding system implementations [Paige and Wood 2014; Her-
shey et al. 2012; Pfeffer 2009; Mansinghka et al. 2014; Patil et al. 2010; Cowles 2013;
Carpenter et al. 2016]. An actively studied concept in that area is that of Probabilis-
tic Programming (PP) [Goodman 2013], where the idea is that the programming lan-
guage allows for specifying general random procedures, while the system executes the
program not in the standard programming sense, but rather by means of inference.
Hence, a PP system is built around a language and an (approximate) inference engine,
which typically makes use of Markov Chain Monte Carlo methods (e.g., the Metropolis-
Hastings algorithm). The relevant inference tasks can be viewed as probability-aware
aggregate operations over all possible outcomes of the program, also referred to as pos-
sible worlds. Examples of such tasks include finding the most likely possible world, or
estimating the probability of a property of the outcome. Recently, DARPA initiated the

Vince Bárány and Balder ten Cate are currently affiliated with Google, while the bulk of the research was
done at LogicBlox. Benny Kimelfeld is currently affiliated with Technion – Israel Institute of Technology,
while the bulk of the research was done at LogicBlox. Dan Olteanu is currently affiliated with Oxford Uni-
versity, while the bulk of the research was done at LogicBlox.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).
c© before time Copyright held by the owner/author(s). 0362-5915/before time/-ART1 $15.00
DOI: 0000001.0000001

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: before time.



1:2 Bárány et al.

project Probabilistic Programming for Advancing Machine Learning (PPAML), aimed
at advancing PP systems, focusing on a specific collection of systems [Pfeffer 2009;
Mansinghka et al. 2014; Milch et al. 2005], towards facilitating the development of
algorithms and software that are based on machine learning.

In probabilistic programming, a statistical model is typically phrased by means of
two components. The first component is a generative process that produces a random
possible world by straightforwardly following instructions with randomness, and in
particular, sampling from common numerical probability functions; this gives the prior
distribution. The second component allows to phrase constraints that the relevant pos-
sible worlds should satisfy, and, semantically, transforms the prior distribution into the
posterior distribution—the subspace obtained by conditioning on the constraints.

As an example, in supervised text classification (e.g., spam detection) the goal is
to classify a text document into one of several known classes (e.g., spam/non-spam).
Training data consists of a collection of documents labeled with classes, and the goal
of learning is to build a model for predicting the classes of unseen documents. The
common Bayesian approach to this task assumes a generative process that produces
random parameters for every class, and then uses these parameters to define a gen-
erator of random words in documents of the corresponding class [Nigam et al. 2000;
McCallum 1999]. The prior distribution thus generates parameters and documents for
each class, and the posterior is defined by the actual documents of the training data.
In unsupervised text classification the goal is to cluster a given set of documents, so
that different clusters correspond to different topics that are not known in advance.
Latent Dirichlet Allocation [Blei et al. 2003] approaches this problem in a similar gen-
erative way as the above, with the addition that each document is associated with a
distribution over topics.

A Datalog program is a set of logical rules, interpreted in the context of a rela-
tional database (where database relations are also called the extensional relations),
that are used to define additional relations (known as the intensional relations). Dat-
alog has traditionally been used as a database query language. In recent years, how-
ever, it has found new applications in data integration, information extraction, net-
working, program analysis, security, cloud computing, and enterprise software devel-
opment [Huang et al. 2011]. In each of these applications the motivation is that being
declarative, Datalog has the potential to make specifications easier to write (some-
times with orders-of-magnitude fewer lines of code than imperative code, e.g., [Loo
et al. 2009]), comprehend and maintain, the canonical example being reachability or
cyclicity testing in graphs.

Our goal in this article is to establish a probabilistic extension of Datalog that, on
the one hand, allows for defining a rich family of statistical models, and on the other
hand retains the fundamental properties of declarativity, namely independence of the
execution order and invariance under equivalence-preserving rewriting. On a par with
existing languages for PP, our proposed extension consists of two parts: a generative
Datalog program that specifies a prior probability space over (finite or infinite) sets
of facts that we call possible outcomes, and a definition of the posterior probability by
means of observations, which come in the form of ordinary logical constraints over the
extensional and intensional relations. We subscribe to the premise of the PP commu-
nity (and PPAML in particular) that this paradigm has the potential of substantially
facilitating the development of applications that involve machine learning for inferring
missing or uncertain information. Indeed, probabilistic variants are explored for the
major programming languages, such as C [Paige and Wood 2014], Java [Hershey et al.
2012], Scala [Pfeffer 2009], Scheme [Mansinghka et al. 2014] and Python [Patil et al.
2010]. We discuss the relationship of this work to related literature in Section 7. In
the context of the LogicBlox system [Aref et al. 2015], we are interested in extending
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the Datalog-based LogiQL [Halpin and Rugaber 2014] with PP to enable and facilitate
the development of predictive analysis. We believe that, once the semantics becomes
clear, Datalog can offer a natural and appealing basis for PP, since it has an inherent
(and well studied) separation between given data (EDB), generated data (IDB), and
conditioning (constraints).

When attempting to extend Datalog with probabilistic programming constructs, a
fundamental challenge is to retain the inherent features of Datalog. Specifically, the
semantics of Datalog does not depend on the order by which the rules are resolved
(chased). Hence, it is safe to provide a Datalog engine with the ability to decide on
the chasing order that is estimated to be most efficient, and to apply techniques for
partial evaluation of rules in incremental view maintenance [Gupta et al. 1993; Aref
et al. 2015; Motik et al. 2015]. Another inherent feature is invariance under logical
equivalence: two Datalog programs have the same semantics whenever their rules are
equivalent when viewed as theories in first-order logic. Hence, it is safe for a Datalog
engine to rewrite a program into one that is more efficient to execute, as long as logical
equivalence is preserved.

For example, consider an application where we want to predict the number of
visits of clients to some local service (e.g., a doctor’s office). For simplicity, sup-
pose that we have a schema with the following relations: LivesIn(person, city),
WorksFor(person, employer), LocatedIn(company, city), and AvgVisits(city, avg). The
following rule provides an appealing way to model the generation of a random number
of visits for a person.

Visits(p,Poisson[λ])← LivesIn(p, c),AvgVisits(c, λ) (1)

The conclusion of this rule involves sampling values from a parameterized probability
distribution. Next, suppose that we do not have all the addresses of persons, and we
wish to expand the simulation with employer cities. Then we might use the following
additional rule.

Visits(p,Poisson[λ])←WorksFor(p, e),LocatedIn(e, c),AvgVisits(c, λ) (2)

Now, it is not clear how to interpret the semantics of Rules (1) and (2) in a manner
that retains the declarative nature of Datalog. If, for a person p, the right sides of both
rules are true, should both rules “fire” (i.e., should we sample the Poisson distribution
twice)? And if p works in more than one company, should we have one sample per
company? And if p lives in one city but works in another, which rule should fire? If only
one rule fires, then the semantics becomes dependent on the chase order. To answer
these questions, we need to properly define what it means for the head of a rule to be
satisfied when it involves randomness such as Poisson[λ].

Furthermore, consider the following (standard) rewriting of the above program.

PersonCity(p, c)← LivesIn(p, c)

PersonCity(p, c)←WorksFor(p, e),LocatedIn(e, c)

Visits(p,Poisson[λ])← PersonCity(p, c),AvgVisits(c, λ)

As a conjunction of first-order sentences that views Poisson[λ] as a function term, the
rewritten program is logically equivalent to the previous one (made up of (1) and (2));
we would therefore like the two programs to have the same semantics. In rule-based
languages with a factor-based semantics, such as Markov Logic Networks [Domingos
and Lowd 2009] or Probabilistic Soft Logic [Bröcheler et al. 2010], the above rewriting
may change the semantics dramatically.

We introduce PPDL, a purely declarative probabilistic programming language based
on Datalog. The generative component of a PPDL program consists of rules extended
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with constructs to refer to conventional parameterized numerical probability functions
(e.g., Poisson, geometrical, etc.). Specifically, these mechanisms allow sampling values
from the given parameterized distributions in the conclusion of a rule, and if desired,
use these values as parameters of other distributions. In this article, our focus is on
discrete numerical distributions. As we discuss in Section 8, the framework we intro-
duce admits a natural generalization to continuous distributions, such as Gaussian or
Pareto, but adjusting our theoretical analysis to such distributions is nontrivial since
our proof techniques essentially rely on the discreteness of distributions. Semantically,
a PPDL program associates to each input instance I a probability distribution over
possible outcomes. In the case where all the possible outcomes are finite, we get a dis-
crete probability distribution, and the probability of a possible outcome can be defined
immediately from its content. But in general, a possible outcome can be infinite, and
moreover, the set of all possible outcomes can be uncountable. Hence, in the general
case we obtain a probability measure space. We define a natural notion of a proba-
bilistic chase where existential variables are produced by invoking the corresponding
numerical distributions. We define a measure space based on a chase, and prove that
this definition is robust, in the sense that the same probability measure is obtained no
matter which chase order is used.

A short version of this article has appeared in the 19th International Conference on
Database Theory (ICDT 2016) [Bárány et al. 2016]. This article has the following ad-
ditions compared to the short version. First, it includes all the proofs and intermediate
results, which were omitted from the short version. Second, it includes a new section,
Section 6, that describes the translation of Markov Logic Networks and stochastic
context-free grammars into PPDL.

The rest of the article is organized as follows. After presenting preliminary defini-
tions and concepts (Section 2) we describe the generative component of PPDL that
we term GDatalog (Section 3). We then present a chase procedure for GDatalog and
use it to prove some fundamental results (Section 4). We complement GDatalog with
constraints (or observations) to establish the PPDL language (Section 5). We illus-
trate PPDL by showing a general translation from Markov Logic Networks (MLNs)
into PPDL, and a translation from stochastic context-free grammars into PPDL (Sec-
tion 6). Finally, we discuss related work (Section 7) and conclude (Section 8).

2. PRELIMINARIES
In this section we present preliminary notation and definitions that we use throughout
the article.

2.1. Schemas and Instances
A (relational) schema is a collection S of relation symbols, where each relation symbol
R is associated with an arity, denoted arity(R), which is a natural number. An attribute
of a relation symbol R is any number in {1, . . . , arity(R)}. For simplicity, we consider
here only databases over real numbers; our examples may involve strings, which we
assume are translatable into real numbers. A fact over a schema S is an expression of
the form R(c1, . . . , cn) where R is an n-ary relation in S and c1, . . . , cn ∈ R. An instance
I over S is a finite set of facts over S. We denote by RI the set of all tuples (c1, . . . , cn)
such that R(c1, . . . , cn) ∈ I.

2.2. Datalog Programs
PPDL extends Datalog without the use of existential quantifiers. However, we will
make use of existential rules indirectly in the definition of the semantics. For this
reason, we review here Datalog as well as existential Datalog. Formally, an existen-
tial Datalog program, or Datalog∃ program, is a triple D = (E , I,Θ) where: (1) E is a

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: before time.



Declarative Probabilistic Programming with Datalog 1:5

schema, called the extensional database (EDB) schema, (2) I is a schema, called the
intensional database (IDB) schema, disjoint from E , and (3) Θ is a finite set of Datalog∃
rules, that is, first-order formulas of the form ∀x

[
(∃yψ(x,y))← ϕ(x)

]
where ϕ(x) is a

conjunction of atomic formulas over E ∪I and ψ(x,y) is an atomic formula over I, such
that each variable in x occurs in ϕ. Here, by an atomic formula (or, atom) we mean
an expression of the form R(t1, . . . , tn) where R is an n-ary relation and t1, . . . , tn are
either constants (i.e., numbers) or variables. For readability’s sake, we omit the uni-
versal quantifier and the parentheses around the conclusion (left-hand side), and write
simply ∃yψ(x,y)← ϕ(x). Datalog is the fragment of Datalog∃ where the conclusion of
each rule is an atomic formula without existential quantifiers.

LetD = (E , I,Θ) be a Datalog∃ program. An input instance forD is an instance I over
E . A solution of I w.r.t. D is a possibly infinite set F of facts over E ∪ I, such that I ⊆ F
and F satisfies all rules in Θ (viewed as first-order sentences). A minimal solution of
I (w.r.t. D) is a solution F of I such that no proper subset of F is a solution of I. The
set of all, finite and infinite, minimal solutions of I w.r.t. D is denoted by min-solD(I),
and the set of all finite minimal solutions is denoted by min-solfin

D (I). It is a well known
fact that, if D is a Datalog program (that is, without existential quantifiers), then
every input instance I has a unique minimal solution, which is finite, and therefore
min-solfin

D (I) = min-solD(I) [Abiteboul et al. 1995].

2.3. Probability Spaces
We separately consider discrete and continuous probability spaces. We initially focus on
the discrete case; there, a probability space is a pair (Ω, π), where Ω is a finite or count-
ably infinite set, called the sample space, and π : Ω→ [0, 1] is such that

∑
o∈Ω π(o) = 1.

If (Ω, π) is a probability space, then π is a probability distribution over Ω. We say that
π is a numerical probability distribution if Ω ⊆ R. In this work we focus on discrete
numerical distributions.

A parameterized probability distribution is a function δ : Ω × Rk → [0, 1], such that
δ(·,p) : Ω→ [0, 1] is a probability distribution for all p ∈ Rk. We use pardim(δ) to denote
the parameter dimension k. For presentation’s sake, we may write δ(o|p) instead of
δ(o,p). Moreover, we denote the (non-parameterized) distribution δ(·|p) by δ[p]. An ex-
ample of a parameterized distribution is Flip(·|p), where Ω is {0, 1}, and for a parameter
p ∈ [0, 1] we have Flip(1|p) = p and Flip(0|p) = 1 − p. Another example is Poisson(·|λ),
where Ω = N, and for a parameter λ ∈ (0,∞) we have Poisson(x|λ) = λxe−λ/x!. In
Section 8 we discuss the extension of our framework to models that have a variable
number of parameters, and to continuous distributions.

Let Ω be a set. A σ-algebra over Ω is a collection F of subsets of Ω, such that F
contains Ω and is closed under complement and countable unions. (Implied properties
include that F contains the empty set, and that F is closed under countable inter-
sections.) If F ′ is a nonempty collection of subsets of Ω, then the closure of F ′ under
complement and countable unions is a σ-algebra, and it is said to be generated by F ′.
A probability measure space is a triple (Ω,F , π), where: (1) Ω is a set, called the sample
space, (2) F is a σ-algebra over Ω, and (3) π : F → [0, 1], called a probability measure,
is such that π(Ω) = 1, and π(∪E) =

∑
e∈E π(e) for every countable set E of pairwise-

disjoint elements of F . For example, a discrete probability space (Ω′, π′) is viewed as
the probability measure space (Ω,F , π) where Ω′ = Ω, the σ-algebra F consists of all
the subsets of Ω, and π′ is defined by π′(e) =

∑
o∈e π(e).

3. GENERATIVE DATALOG
A Datalog program without existential quantifiers specifies how to obtain a minimal
solution from an input instance by producing the set of inferred IDB facts. In this
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House
id city
NP1 Napa
NP2 Napa
YC1 Yucaipa

Business
id city
NP3 Napa
YC1 Yucaipa

City
name burglaryrate
Napa 0.03

Yucaipa 0.01

AlarmOn
unit
NP1
YC1
YC2

Fig. 1. Input instance I of the burglar example

section we present generative Datalog programs, which specify how to infer a distribu-
tion over possible outcomes given an input instance. In Section 5 we will complement
generative programs with constraints to establish the PPDL framework. We begin by
describing the syntax of generative Datalog programs, and then establish their se-
mantics. Specifically, we describe the notion of possible outcomes that constitute the
samples in the sample space, which may be uncountable. We then construct a proba-
bility measure space over the sample space. Our main result (Theorem 3.8) states that
this probability measure space is well defined. The proof of this result is deferred to
Section 4. Finally, we discuss a syntactic restriction, weak acyclicity, which guarantees
finiteness of possible outcomes.

3.1. Syntax
The syntax of a generative Datalog program is defined as follows.

Definition 3.1 (GDatalog[∆]). Let ∆ be a finite set of parameterized numerical dis-
tributions.

(1) A ∆-term is a term of the form δ[[p1, . . . , pk]] where δ ∈ ∆ is a parameterized distri-
bution with pardim(δ) = ` ≤ k, and each pi (i = 1, . . . , k) is a variable or a constant.
To improve readability, we will use a semicolon to separate the first ` arguments
(corresponding to the distribution parameters) from the optional other arguments,
which we will call the event signature, as in δ[[p;q]] (with q being the event signa-
ture). When the event signature is empty (i.e., when k = `), we write δ[[p; ]].1

(2) A ∆-atom in a schema S is an atomic formula R(t1, . . . , tn) with R ∈ S an n-ary
relation, such that exactly one term ti (i = 1, . . . , n) is a ∆-term and the other terms
tj are variables and/or constants.2

(3) A GDatalog[∆] rule over a pair of disjoint schemas E and I is a first-order sentence
of the form ∀x(ψ(x)← φ(x)) where φ(x) is a conjunction of atoms in E ∪ I and ψ(x)
is either an atom in I or a ∆-atom in I.

(4) A GDatalog[∆] program is a triple G = (E , I,Θ), where E and I are disjoint schemas
and Θ is a finite set of GDatalog[∆] rules over E and I.

Example 3.2. Our example is based on the burglar example of Pearl [Pearl 1989]
that has been frequently used to illustrate probabilistic programming (e.g., [Nori et al.
2014]). Consider the EDB schema E consisting of the following relations: House(h, c)
represents houses h and their location cities c, Business(b, c) represents businesses b
and their location cities c, City(c, r) represents cities c and their associated burglary
rates r, and AlarmOn(x) represents units (houses or businesses) x where the alarm
is on. Figure 1 shows an instance I over this schema. Now consider the GDatalog[∆]
program G = (E , I,Θ) of Figure 2.

Here, ∆ consists of only one distribution, namely Flip. Rule (1) in Figure 2, intuitively,
states that, for every fact of the form City(c, r), there must be a fact Earthquake(c, y)

1Intuitively, δ[[p;q]] denotes a sample from the distribution δ(·|p) where different samples are drawn for
different values of the event signature q (cf. Example 3.2).
2The restriction to at most one ∆-term per atom is only for presentational purposes, cf Section 3.5.
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(1) Earthquake(c,Flip[[0.01;Earthquake, c]]) ← City(c, r)
(2) Unit(h, c) ← House(h, c)
(3) Unit(b, c) ← Business(b, c)
(4) Burglary(x, c,Flip[[r;Burglary, x, c]]) ← Unit(x, c) , City(c, r)
(5) Trig(x,Flip[[0.6;Trig, x]]) ← Unit(x, c) , Earthquake(c, 1)
(6) Trig(x,Flip[[0.9;Trig, x]]) ← Burglary(x, c, 1)
(7) Alarm(x) ← Trig(x, 1)

Fig. 2. GDatalog[∆] program G for the burglar example

(1) Earthquake(c,Flip[0.01]) ← City(c, r)
(2) Unit(h, c) ← House(h, c)
(3) Unit(b, c) ← Business(b, c)
(4) Burglary(x, c,Flip[r]) ← Unit(x, c) , City(c, r)
(5) Trig(x,Flip[0.6]) ← Unit(x, c) , Earthquake(c, 1)
(6) Trig(x,Flip[0.9]) ← Burglary(x, c, 1)
(7) Alarm(x) ← Trig(x, 1)

Fig. 3. Burglar program from Figure 2 modified to use syntactic sugar

where y is drawn from the Flip (Bernoulli) distribution with the parameter 0.01. Rules
(2) and (3) define Unit as the union of House and Business. Rule (4) states that a burglary
in a unit x is drawn by a Flip distribution with the parameter r, which is the burglary
rate of the city of x. Rules (5) and (6) state that an alarm is randomly triggered in a
house if there is either an earthquake or a burglary; in the first case the probability is
0.6 and in the second 0.9. Finally, Rule (7) states that the alarm is on in unit x if it is
triggered therein.

The additional arguments Earthquake and c given after the semicolon (where
Earthquake is a constant) enforce that different samples are drawn from the distri-
bution for different cities (even if they have the same burglary rate), and that we use
samples different from those in Rules (5) and (6), as those use the constant Trig rather
than Earthquake. Similarly, the presence of the additional argument x in Rule (4) en-
forces that a different sample is drawn for a different unit, instead of sampling only
once per city.

Example 3.3. The program of Figure 4 models virus dissemination among comput-
ers of email users. For simplicity, we identify each user with a distinct computer. Every
message has a probability of passing a virus, if the virus is active on the source. If a
message passes the virus, then the recipient has the virus; but the virus is not neces-
sarily active, for instance, since the computer has the proper defence. And every user
has a probability of having the virus active on her computer, in case she has the virus.
Our program has the following EDBs:

— Message(m, s, t) contains message identifiers m sent from the user s to the user t.
— VirusSource(x) contains the users who are known to be virus sources.

In addition, the following IDBs are used.

— PassVirus(m, b) determines whether message m passes a virus (b = 1) or not (b = 0).
— HasVirus(x, b) determines whether user x has the virus (b = 1) or not (b = 0).
— ActiveVirus(x, b) determines whether the virus is active for user x (b = 1) or not

(b = 0).
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(1) PassVirus(m,Flip[[0.1;m]]) ← Message(m, s, t), ActiveVirus(s, 1)
(2) HasVirus(t) ← PassVirus(m, 1), Message(m, s, t)
(3) ActiveVirus(x,Flip[[0.5;x]]) ← HasVirus(x)
(4) ActiveVirus(x, 1) ← VirusSource(x)

Fig. 4. Virus dissemination example

3.1.1. Syntactic sugar. The syntax of GDatalog[∆], as defined above, requires us to al-
ways make explicit the arguments that determine when different samples are taken
from a distribution (cf. the argument c after the semicolon in Rule 1 of Figure 2, and the
arguments x, c after the semicolon in Rule 4 of the same program). To enable a more
succinct notation, we use the following convention: consider a ∆-atom R(t1, . . . , tn) in
which the i-th argument, ti, is a ∆-term. Then ti may be written using the simpler
notation δ[p], in which case it is understood to be a shorthand for δ[[p;q]] where q is
the sequence of terms r, i, t1, . . . , ti−1, ti+1, . . . , tn. Here, r is a constant uniquely asso-
ciated with the relation R. Thus, for example, Earthquake(c,Flip[0.01]) ← City(c, r) is
taken to be a shorthand for Earthquake(c,Flip[[0.01;Earthquake, c]]) ← City(c, r). Using
this syntactic sugar, the program in Figure 2 can be rewritten in a notationally less
verbose way, cf. Figure 3. Note, however, that the shorthand notation is less explicit as
to describing when two rules involve the same sample vs. different samples from the
same probability distribution.

3.2. Possible Outcomes
A GDatalog[∆] program G = (E , I,Θ) is associated with a corresponding Datalog∃

program Ĝ = (E , I∆,Θ∆). The possible outcomes of an input instance I w.r.t. G will
then be minimal solutions of I w.r.t. Ĝ. Next, we describe I∆ and Θ∆.

The schema I∆ extends I with the following additional relation symbols: for each
δ ∈ ∆ with pardim(δ) = k and for each n ≥ 0, we have a (k + n+ 1)-ary relation symbol
Resultδn. These relation symbols Resultδn are called the distributional relation symbols
of I∆, and the other relation symbols of I∆ (namely, those of I) are referred to as
the ordinary relation symbols. Intuitively, a fact in Resultδn represents the result of a
particular sample drawn from δ (where k is the number of parameters of δ and n is the
number of optional arguments that form the event signature).

The set Θ∆ contains all Datalog rules from Θ that have no ∆-terms. In addition,
for every rule of the form ψ(x) ← φ(x) in Θ, where ψ contains a ∆-term of the form
δ[[p;q]] with n = |q|, Θ∆ contains the rules ∃yResultδn(p,q, y) ← φ(x) and ψ′(x, y) ←
φ(x),Resultδn(p,q, y), where ψ′ is obtained from ψ by replacing δ[[p;q]] by y.

A possible outcome is defined as follows.

Definition 3.4 (Possible Outcome). Let I be an input instance for a GDatalog[∆]
program G. A possible outcome for I w.r.t. G is a minimal solution F of I w.r.t. Ĝ, such
that δ(b|p) > 0 for every distributional fact Resultδn(p,q, b) ∈ F .

We denote the set of all possible outcomes of I w.r.t. G by ΩG(I), and we denote the set
of all finite possible outcomes by Ωfin

G (I).

Example 3.5. The GDatalog[∆] program G given in Example 3.2 gives rise to the
Datalog∃ program Ĝ of Figure 5. For instance, Rule 6 of Figure 2 is replaced with
Rules 6a and 6b of Figure 5. An example of a possible outcome for the input instance I
is the instance consisting of the relations in Figure 6 (ignoring the “Pr(f)” columns for
now), together with the relations of I itself.
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1a ∃y ResultFlip
2 (0.01,Earthquake, c, y) ← City(c, r)

1b Earthquake(c, y) ← City(c, r),ResultFlip
2 (0.01,Earthquake, c, y)

2 Unit(h, c) ← House(h, c)
3 Unit(b, c) ← Business(b, c)

4a ∃y ResultFlip
3 (r,Burglary, x, c, y) ← Unit(x, c) , City(c, r)

4b Burglary(x, c, y) ← Unit(x, c) , City(c, r),ResultFlip
3 (r,Burglary, x, c, y)

5a ∃yResultFlip
2 (0.6,Trig, x, y) ← Unit(x, c) , Earthquake(c, 1)

5b Trig(x, y) ← Unit(x, c) , Earthquake(c, 1),ResultFlip
2 (0.6,Trig, y, x)

6a ∃yResultFlip
2 (0.9,Trig, x, y) ← Burglary(x, c, 1)

6b Trig(x, y) ← Burglary(x, c, 1),ResultFlip
2 (0.9,Trig, x, y)

7 Alarm(x) ← Trig(x, 1)

Fig. 5. The Datalog∃ program Ĝ for the GDatalog[∆] program G of Figure 2

The following proposition provides an insight into the possible outcomes of an in-
stance, and will reappear later on in our study of the chase. For any distributional
relation Rδn ∈ Θ∆, the functional dependency associated with Rδn is the functional de-
pendency Rδn : ({1, . . . , arity(Rδn)− 1})→ arity(Rδn), expressing that the last attribute of
Rδn is functionally determined by the other attributes.

PROPOSITION 3.6. Let I be any input instance for a GDatalog[∆] instance G. Then
every possible outcome in ΩG(I) satisfies all functional dependencies associated with
distributional relations.

PROOF. If an instance J violates the funtional dependency associated with a distri-
butional relationRδn, then one of the two facts involved in the violation can be removed,
showing that J is, in fact, not a minimal solution w.r.t. Ĝ. 2

3.3. Probabilistic Semantics
The semantics of a GDatalog[∆] program is a function that maps every input instance
I to a probability distribution over ΩG(I). We now make this precise. For a distribu-
tional fact f of the form Resultδn(p,q, a), the probability of f , denoted Pr(f), is defined
to be δ(a|p). For an ordinary (non-distributional) fact f , we define Pr(f) = 1. For a
finite set F of facts, we denote by P(F ) the product of the probabilities of all the facts
in F :3

P(F )
def
=
∏
f∈F

Pr(f)

Example 3.7. (continued) Let J be the instance that consists of all of the relations
in Figures 1 and 6. As we already remarked, J is a possible outcome of I w.r.t. G. For
convenience, in the case of distributional relations, we have indicated the probability
of each fact next to the corresponding row. P(J) is the product of all of the numbers in
the columns titled “Pr(f),” that is, 0.01× 0.99× 0.9× · · · × 0.99.

One can easily come up with examples where possible outcomes are infinite, and
in fact, the space ΩG(I) of all possible outcomes is uncountable. Hence, we need to
consider probability spaces over uncountable domains; those are defined by means of
measure spaces.

3The product reflects the law of total probability and does not assume that different random choices are
independent (and indeed, correlation is clear in the examples throughout the article).
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ResultFlip
2

p att1 att2 result Pr(f)
0.01 Earthquake Napa 1 0.01
0.01 Earthquake Yucaipa 0 0.99
0.9 Trig NP1 1 0.9
0.9 Trig NP3 0 0.1
0.6 Trig NP1 1 0.6
0.6 Trig NP2 1 0.6
0.6 Trig NP3 0 0.4

Unit
id city
NP1 Napa
NP2 Napa
NP3 Napa
YC1 Yucaipa

Earthquake
city eq
Napa 1

Yucaipa 0

Alarm
unit
NP1
NP2

ResultFlip
3

p att1 att2 att3 result Pr(f)
0.03 Burglary NP1 Napa 1 0.03
0.03 Burglary NP2 Napa 0 0.97
0.03 Burglary NP3 Napa 1 0.03
0.01 Burglary YC1 Yucaipa 0 0.99

Burglary
unit city draw
NP1 Napa 1
NP2 Napa 0
NP3 Napa 1
YC1 Yucaipa 0

Trig
unit Trig
NP1 1
NP3 0
NP2 1
NP3 0

Fig. 6. A possible outcome for the input instance I in the burglar example

Let G be a GDatalog[∆] program, and let I be an input for G. We say that a finite
sequence f = (f1, . . . , fn) of facts is a derivation (w.r.t. I) if for all i = 1, . . . , n, the fact
fi is the result of applying some rule of G that is not satisfied in I ∪ {f1, . . . , fi−1}; in
the case of applying a rule with a ∆-atom in the head, fi contains a randomly chosen
value. If f1, . . . , fn is a derivation, then the set {f1, . . . , fn} is a derivation set. Hence, a
finite set F of facts is a derivation set if and only if I ∪ F is an intermediate instance
in some chase tree.

Let G be a GDatalog[∆] program, I be an input for G, and F be a set of facts. We de-
note by ΩF⊆G (I) the set of all possible outcomes J ⊆ ΩG(I) such that F ⊆ J . The follow-
ing theorem states how we determine the probability space defined by a GDatalog[∆]
program. The proof is will be given in Section 4.2.

THEOREM 3.8. Let G be a GDatalog[∆] program, and let I be an input for G. There
exists a unique probability measure space (Ω,F , π), denoted µG,I , that satisfies all of the
following.

(1) Ω = ΩG(I);
(2) (Ω,F) is the σ-algebra generated from the sets of the form ΩF⊆G (I) where F is finite;
(3) π(ΩF⊆G (I)) = P(F ) for every derivation set F .

Moreover, if J is a finite possible outcome, then π({J}) is equal to P(J).

Theorem 3.8 provides us with a semantics for GDatalog[∆] programs: the semantics
of a GDatalog[∆] program G is a map from input instances I to probability measure
spaces µG,I over possible outcomes—this is the measure space uniquely determined
according to the theorem.
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A direct corollary Theorem 3.8 applies to the important case where all possible out-
comes are finite. Note that in this case the probability space may still be infinite, but
it is necessarily discrete.

COROLLARY 3.9. Let G be a GDatalog[∆] program, and I an input instance for G,
such that ΩG(I) = Ωfin

G (I). Then P is a discrete probability function over ΩG(I); that is,∑
J∈ΩG(I) P(J) = 1.

In essence, Corollary 3.9 states that the function P(·) forms a probability distri-
bution over the possible outcomes, even though it is defined in an algebraic manner.
In Section 4 we will associate this probability distribution with a natural stochastic
process. The following section introduces a syntactic condition, weak acyclicity, that
guarantees the finiteness of solutions. Note, however, that we do not assume finiteness
or acyclicity in the article, unless explicitly stated.

3.4. Finiteness and Weak Acyclicity
Corollary 3.9 applies only when all solutions are finite, that is, ΩG(I) = Ωfin

G (I). We
now present the notion of weak acyclicity for a GDatalog[∆] program, as a natural
syntactic condition that guarantees finiteness of all possible outcomes (for all input
instances). This draws on the notion of weak acyclicity for Datalog∃ [Fagin et al. 2005].
Intuitively, weak acylicity is a synthetic condition that guarantees that the program
holds the property of distribution stratification defined for the Distributional Clauses
(DC) [Gutmann et al. 2011]; we further discuss DC and distribution stratification in
Section 7.

Consider any GDatalog[∆] program G = (E , I,Θ). A position of I is a pair (R, i)
where R ∈ I and i is an attribute of R. The dependency graph of G is the directed
graph that has the positions of I as the nodes, and the following edges:

— A normal edge (R, i) → (S, j) whenever there is a rule ψ(x) ← ϕ(x) and a variable
x occurring at position (R, i) in ϕ(x), and at position (S, j) in ψ(x).

— A special edge (R, i)→∗ (S, j) whenever there is a rule of the form

S(t1, . . . , tj−1, δ[[p;q]], tj+1, . . . , tn)← ϕ(x)

and a variable x occurring at position (R, i) in ϕ(x) as well as in p or q.

We say that G is weakly acyclic if no cycle in its dependency graph contains a spe-
cial edge. The following theorem states that, as promised, weak acyclicity guarantees
finiteness of the possible outcomes. The proof is similar to the proof of the correspond-
ing result of Fagin et al. [Fagin et al. 2005, Theorem 3.9]. Moreover, as in their work,
weak acyclicity of a program can be tested efficiently via graph reachability.

THEOREM 3.10. If a GDatalog[∆] program G is weakly acyclic, then ΩG(I) = Ωfin
G (I)

for all input instances I.

Next, we give an example.

Example 3.11. The burglar example program in Figure 2 is easily seen to be weakly
acyclic (indeed, every non-recursive GDatalog[∆] program is weakly-acyclic). In the
case of the virus-dissemination example of Figure 4, the dependency graph in Figure 7
shows that, although this program features recursion, it is weakly acyclic as well.

3.5. Discussion
We conclude this section with some comments. First, we note that the restriction
of a conclusion of a rule to include a single ∆-term significantly simplifies the pre-
sentation, but does not reduce the expressive power. In particular, we could simu-
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PassVirus,1 PassVirus,2

ActiveVirus,1 ActiveVirus,2

HasVirus,1
∗

Fig. 7. The dependency graph for the virus dissemination example of Figure 4

late multiple ∆-terms in the conclusion using a collection of predicates and rules.
For example, if one wishes to have conclusion where a person gets both a random
height and a random weight (possibly with shared parameters), then she can do so
by deriving PersonHeight(p, h) and PersonWeight(p, w) separately, and using the rule
PersonHW(p, h, w) ← PersonHeight(p, h),PersonWeight(p, w). We also highlight the fact
that our framework can easily simulate the probabilistic database model of indepen-
dent tuples [Suciu et al. 2011] with probabilities mentioned in the database. The
framework can also simulate Bayesian networks, given relations that store the con-
ditional probability tables, using the appropriate numerical distributions (e.g., Flip for
the case of Boolean random variables). In addition, we note that a disjunctive Data-
log rule [Eiter et al. 1997], where the conclusion can be a disjunction of atoms, can be
simulated by our model (with probabilities ignored): If the conclusion has n disjuncts,
then we construct a distributional rule with a probability distribution over {1, . . . , n},
and additional n deterministic rules corresponding to the atoms.

4. CHASING GENERATIVE PROGRAMS
The chase [Maier et al. 1979; Aho et al. 1979] is a classic technique used for reason-
ing about database integrity constraints such as tuple-generating dependencies. This
technique can be equivalently viewed as a tableaux-style proof system for ∀∗∃∗-Horn
sentences. In the special case of full tuple-generating dependencies, which are syntac-
tically isomorphic to Datalog rules, the chase is closely related to (a tuple-at-a-time
version of) the naive bottom-up evaluation strategy for Datalog program (cf. [Abiteboul
et al. 1995]). We now present a suitable variant of the chase for generative Datalog
programs, and use it in order to construct the probability space of Theorem 3.8. Specif-
ically, we first define the concepts of a chase step and chase tree. We then define a prob-
ability measure space by means of a random walk over the chase tree. We establish two
main results. First, while chase trees for the same program can be different (due to dif-
ferent chasing orders), they define the same probability measure space (Theorem 4.7).
Second, this measure space is the one that realizes Theorem 3.8 (Section 4.2).

We note that, although the notions and results could arguably be phrased in terms
of a probabilistic extension of the bottom-up Datalog evaluation strategy, the fact that
a GDatalog[∆] rule can create new values makes it more convenient to phrase them in
terms of a suitable adaptation of the chase procedure.

Throughout this section, we fix a GDatalog[∆] program G = (E , I,Θ) and its associ-
ated Datalog∃ program Ĝ = (E , I∆,Θ∆). We first define the notions of chase step and
chase tree. These are similar to the probabilistic Σ-process in CP-logic [Vennekens et al.
2009], which we discuss in more details in Section 7, except that our chase trees can
have infinite paths.

Chase step. Consider an instance J , a rule τ ∈ Θ∆ of the form ψ(x) ← ϕ(x), and
a tuple a such that ϕ(a) is satisfied in J but ψ(a) is not satisfied in J . If ψ(x) is a
distributional atom of the form ∃yResultδi (p,q, y), then ψ being “not satisfied” is inter-
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preted in the logical sense (regardless of probabilities): there is no y such that (p,q, y)

is in Resultδi . In that case, let J be the set of all instances Jb obtained by extending
J with ψ(a) for a specific value b of the existential variable y, such that δ(b|p) > 0.
Furthermore, let π be the discrete probability distribution over J that assigns to Jb
the probability δ(b|p). If ψ(x) is an ordinary atom without existential quantifiers, J is
simply defined as {J ′}, where J ′ extends J with the fact ψ(a), and π(J ′) = 1. We say

that J
τ(a)−−−→ (J , π) is a valid chase step.

Chase tree. Let I be an input instance for G. A chase tree for I w.r.t. G is a possibly
infinite tree, whose nodes are labeled by instances over E ∪ I, and whose edges are
labeled by real numbers, such that:

(1) The root is labeled by I;
(2) For each non-leaf node labeled J , if J is the set of labels of the children of the node,

and if π is the map assigning to each J ′ ∈ J the label of the edge from J to J ′, then
J

τ(a)−−−→ (J , π) is a valid chase step for some rule τ ∈ Θ∆ and tuple a.
(3) For each leaf node labeled J , there does not exist a valid chase step of the form
J

τ(a)−−−→ (J , π). In other words, the tree cannot be extended to a larger chase tree.

We denote by L(v) the label (instance) of the node v. Each L(v) is said to be an
intermediate instance w.r.t. the chase tree. Consider a GDatalog[∆] program G and
an input I for G. A maximal path of a chase tree T is a path P that starts with the
root, and either ends in a leaf or is infinite. Observe that the labels (instances) along a
maximal path form a chain (w.r.t. the set-containment partial order). A maximal path
P of a chase tree is fair if whenever the premise of a rule is satisfied by some tuple
in some intermediate instance on P , then the conclusion of the rule is satisfied for
the same tuple in some intermediate instance on P . A chase tree T is fair (or has the
fairness property) if every maximal path is fair. Note that finite chase trees are fair. We
restrict attention to fair chase trees. Fairness is a classic notion in the study of infinite
computations [Lobo et al. 1992; Lloyd 1987; Terese 2003; Francez 1986]; moreover, fair
chase trees can be constructed, for example, by maintaining a queue of “active rule
firings.”

4.1. Properties of the Chase
In this section we show several properties of our chase procedure. These properties are
needed for later proofs.

A chase tree is said to be injective if no intermediate instance is the label of more
than one node; that is, for v1 6= v2 we have L(v1) 6= L(v2). As we will see shortly, due to
the specific construction of Θ∆, every chase tree turns out to be injective.

PROPOSITION 4.1. Every chase tree w.r.t. G is injective.

PROOF. For the sake of a contradiction, assume that two nodes n1 and n2 in a chase
tree are labeled by the same instance J . Let n0 be the node that is the least common
ancestor of n1 and n2 in the tree, and let n′1 and n′2 be the children of n0 that are an-
cestors of n1 and n2, respectively. By construction, n′1 and n′2 are labeled with distinct
instances J1 6= J2, respectively. Consider the rule τ = ψ(x) ← ϕ(x) and tuple a consti-
tuting the chase step applied at node n0. Since n0 has more than one child, ψ(x) must
be a distributional atom, say ∃yRδi (t, y, t′,p). Then each Jk (k = 1, 2) contains an Rδi -
fact. Moreover, the two Rδi -facts in question differ in the choice of value for the variable
y, and are otherwise identical. Due to the monotonic nature of the chase, both atoms
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must belong J , and hence, J violates the functional dependency of Proposition 3.6.
Hence, we have reached a contradiction. 2

PROPOSITION 4.2. Let I be any input instance, and consider any chase tree for I
w.r.t. G. Then every intermediate instance satisfies all functional dependencies associ-
ated with distributional relations.

PROOF. The proof is by induction on the distance from the root of the chase tree.
The basis is the root of the tree, where no IDB facts exist, and the functional depen-
dencies are satisfied in a vacuous manner. For the inductive step, suppose that in a
chase step J

τ(a)−−−→ (J , π), some J ′ ∈ J contains two Rδi -facts that are identical except
for the i-th attribute (recall that Rδi is a distributional atom of arity i). Then, we have
two cases. Either J already contains both atoms, in which case we can apply our in-
duction hypothesis. Otherwise, J ′ is obtained by extending J with one of the two facts
in question. In the latter case, the conclusion of τ was already satisfied for the tuple a,
which is not possible in case of a valid chase step. 2

Let G be a GDatalog[∆] program, I be an input for G, and T be a chase tree. The
next theorem shows that there is a bijective correspondence between the maximal
paths of T and the possible outcomes of G. This gives us a crucial tool to construct
the probability measure of Theorem 3.8. First, some notation is needed. We denote
by paths(T ) the set of maximal paths of T . (Note that paths(T ) may be uncountably
infinite.) For P ∈ paths(T ), we denote by ∪P the union of the (chain of) labels L(v)
along P .

THEOREM 4.3. Let G be a GDatalog[∆] program, I an input for G, and T a fair
chase tree. The mapping P → ∪P is a bijection between paths(T ) and ΩG(I).

PROOF. We first prove that every ∪P is in ΩG(I). Let P ∈ paths(T ) be given. We
need to show that ∪P ∈ ΩG(I). By definition it is the case that every distributional
fact of ∪P has a nonzero probability. It is also clear that ∪P is consistent, due to the
fairness property of T . Hence, it suffices to prove that ∪P is a minimal solution, that
is, no proper subset of ∪P is a solution. So, let K be a strict subset of ∪P and suppose,
by way of contraction, that K is also a solution. Let (J, J ′) be the first edge in P such
that ∪P contains a fact that is not in K. Now, consider the chase step that leads from
J to J ′. Let f be the unique fact in J ′ \ J . Then J ⊆ K and f ∈ J ′ \K. The selected rule
τ in this step cannot be deterministic, or otherwise K must contain f as well. Hence,
it is a distributional rule, and f has the form Rδi (a|p). But then, K satisfies this rule,
and hence, K must include a fact f ′ = Rδi (a

′|p), where a′ differs from a only in the ith
element. And since some node in ∪P contains both f and f ′, we get a violation of the
functional dependency of Proposition 4.2. Hence, a contraction.

Next, we prove that every possible outcome J in ΩG(I) is equal to ∪P for some P ∈
paths(T ). Let such J be given. We build the path P inductively, as follows. We start
with the root, and upon every node v we select the next edge to be one that leads to a
subset K of J ; note that K must exist since J resolves the rule violated in L(v) by some
fact, and that fact must be in one of the children of v. Now, ∪P is consistent since T is
fair, and ∪P ⊆ J by construction. And since J is a minimal solution, we get that ∪P is
in fact equal to J .

Finally, we need to prove that if ∪P1 = ∪P2 then P1 = P2. We will prove the con-
trapositive statement. Suppose that P1, P2 ∈ paths(T ) are such that P1 6= P2. The two
paths agree on the root. Let J be the first node in the paths such that the two paths
disagree on the outgoing edge of J . Suppose that P1 has the edge from J to J1 and P2

has an edge from J to J2. Then J1∪J2 has a pair of facts that violate the functional de-
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pendency of Proposition 4.2, and in particular, J1 6⊆ ∪P2. We conclude that ∪P1 6= ∪P2,
as required. 2

4.1.1. Chase measure. Let G be a GDatalog[∆] program, let I be an input for G, and
let T be a chase tree. Our goal is to define a probability measure over ΩG(I). Given
Theorem 4.3, we can do that by defining a probability measure over paths(T ). A random
path in paths(T ) can be viewed as an infinite Markov chain that is defined by a random
walk over T , starting from the root. A measure space for such a Markov chain is defined
by means of cylindrification [Ash and Doleans-Dade 2000]. Let v be a node of T . The
v-cylinder of T , denoted CTv , is the subset of paths(T ) that consists of all the maximal
paths that contain v. A cylinder of T is a subset of paths(T ) that forms a v-cylinder for
some node v. We denote by C(T ) the set of all the cylinders of T . The following theorem
is a special case of a classic result on Markov chains (cf. [Ash and Doleans-Dade 2000,
Section 2.7]), stating that if every step is a well defined probability measure space,
then the infinite chain defines a probability measure space that is unique defined by
the cylinders and their probabilities. Recall that L(v) is a finite set of facts, and observe
that P(L(v)) is the product of the probabilities along the path from the root to v.

THEOREM 4.4. Let G be a GDatalog[∆] program, let I be an input for G, and let T
be a chase tree. There exists a unique probability measure (Ω,F , π) that satisfies all of
the following conditions.

(1) Ω = paths(T );
(2) (Ω,F) is the σ-algebra generated from C(T );
(3) π(CTv ) = P(L(v)) for all nodes v of T .

Theorems 4.3 and 4.4 suggest the following definition.

Definition 4.5 (Chase Probability Measure). Let G be a GDatalog[∆] program, let I
be an input for G, let T be a chase tree, and let (Ω,F , π) be the probability measure of
Theorem 4.4. The probability measure µT over ΩG(I) is the one obtained from (Ω,F , π)
by replacing every maximal path P with the possible outcome ∪P .

Our main result for this section is Theorem 4.7 below, which states that the proba-
bility measure space represented by a chase tree is independent of the specific chase
tree of choice. In other words, the semantics is robust to the chase order, as long as
fairness is guaranteed. To state and prove this result, we need some notation and a
lemma. Let G be a GDatalog[∆] program, let I be an input for G, let T be a chase tree,
and let v be a node of T . We denote by ∪CTv the set {∪P | P ∈ CTv }.

LEMMA 4.6. Let G be a GDatalog[∆] program, let I be an input for G, and let T be
a fair chase tree. Let v be a node of T and F = L(v). Then ∪CTv = ΩF⊆G (I); that is, ∪CTv
is the set {J ∈ ΩG(I) | L(v) ⊆ J}.

PROOF. From Theorem 4.3 it follows that every fact set in ∪CTv is a possible out-
come; since each such possible outcome contains L(v), we have that

∪CTv ⊆ {J ∈ ΩG(I) | L(v) ⊆ J} .

Theorem 4.3 also implies that every possible outcome is equal to ∪P for some maximal
path P in paths(T ). If such P is not in CTv , then it branches out from some ancestor of
v, say u. Proposition 4.2 implies that ∪P and L(v) satisfy a functional dependency, for
the distributional fact associated with u, but with different values. It does follows that
P does not contain L(v). Therefore, we have the reverse containment:

{J ∈ ΩG(I) | L(v) ⊆ J} ⊆ ∪CTv .
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This completes the proof. 2

We can now prove our result.

THEOREM 4.7. Let G be a GDatalog[∆] program, let I be an input for G, and let T
and T ′ be two fair chase trees. Then µT = µT ′ .

PROOF. Let µT = (Ω,F , π) and µT ′ = (Ω′,F ′, π′). We need to prove that Ω = Ω′,
F = F ′ and π = π′. We have Ω = Ω′ due to Theorem 4.3. To prove that F = F ′, it
suffices to prove that every ∪CTv is in F ′ and every ∪CT ′v′ is in F (since both σ-algebras
are generated by the cylinders). And due to symmetry, it suffices to prove that CT

′

v′ is in
F . So, let v′ be a node of T ′. Recall that L(v′) is a set of facts. Due to Lemma 4.6, we have
that ∪CT ′v′ is precisely the set of all possible outcomes J in ΩG(I) such that L(v′) ⊆ J .
Let U be the set of all nodes u of T with L(v′) ⊆ L(u). Then, due to Theorem 4.3
we have that ∪CT ′v′ = ∪u∈U (∪CTu ). Observe that U is countable, since T has only a
countable number of nodes (as every node is identified by a finite path from the root).
Moreover, (Ω,F) is closed under countable unions, and therefore, ∪u∈U (∪CTu ) is in F .

It remains to prove that π = π′. By now we know that the σ-algebras (Ω,F) and
(Ω′,F ′) are the same. Due to Theorem 4.3, every measure space over (Ω,F) can be
translated into a measure space over the cylinder algebra of T and T ′. So, due to the
uniqueness property of Theorem 4.4, it suffices to prove that every ∪CT ′v′ has the same
probability in µT and µT ′ . That is, π(∪CT ′v′ ) = P(L(v′)). We do so next. We assume that
v′ is not the root of T ′, or otherwise the claim is straightforward. Let U be the set of all
the nodes u in T with the property that L(v′) ⊆ L(u) but L(v′) 6⊆ L(p) for the parent p
of u. Due to Lemma 4.6 we have the following:

π(∪CT
′

v′ ) =
∑
u∈U

P(L(u)) (3)

Let E be the set of all the edges (v1, u1) of T , such that L(u1) \ L(v1) consists of a fact
in L(v′). Let Q be the set of all the paths from the root of T to nodes in U . Due to
Proposition 4.2, we have that every two paths P1 and P2 in Q and edges (v1, u1) and
(v2, u2) in P1 and P2, respectively, if both edges are in E and v1 = v2, then u1 = u2. Let
T ′′ be the tree that is obtained from T by considering every edge (v1, u1) in E, changing
its weight to 1, and changing the weights of the remaining (v1, u

′
1) emanating from v1

to 0. Then we have the following for every node u ∈ U .

P(L(u)) = wT ′′(u) ·P(L(v′)) (4)

where wT ′′(u) is the product of the weights along the path from the root of T ′′ to u.
Combining (3) and (4), we get the following:

π(∪CT
′

v′ ) = P(L(v′)) ·
∑
u∈U

wT ′′(u)

Let s =
∑
u∈U wT ′′(u). We need to prove that s = 1. Observe that s is the probability

of visiting a node of U in a random walk over T ′′ (with the probabilities defined by the
weights). Equivalently, s is the probability that the random walk over T ′′ eventually
sees all of the facts in v′. But due to the construction of T ′′, every rule violation that
arises due to facts in both L(v′) and any node of T ′′ is deterministically resolved exactly
as in L(v′). Moreover, since L(v′) is obtained from a chase derivation (i.e., L(v′) is a
derivation set), solving all such rules repeatedly results in the containment of L(v′).
Finally, since T ′′ is fair (because T is fair), we get that every random walk over T ′′
eventually sees all of the facts in L(v′). Hence, s = 1, as claimed. 2
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4.2. Proof of Theorem 3.8
We can now prove Theorem 3.8. Let G be a GDatalog[∆] program, let I be an input for
G, and let T be a fair chase tree for I w.r.t. G. Let µT = (ΩG(I),FT , πT ) be the probability
measure on ΩG(I) associated with T , as defined in Definition 4.5.

LEMMA 4.8. The σ-algebra (ΩG(I),FT ) is generated by the sets of the form ΩF⊆G (I),
where F is finite.

PROOF. Let (ΩG(I),F) be the σ-algebra generated from the sets ΩF⊆G (I). We will
show that every ΩF⊆G (I) is in FT , and that every ∪CTv is in F . The second claim is due
to Lemma 4.6, so we will prove the first. So, let ΩF⊆G (I) be given. Due to Lemma 4.6,
the set ΩF⊆G (I) is the countable union ∪u∈U (∪CTu ) where U is the set of all the nodes u
such that F ⊆ L(u). Hence, ΩF⊆G (I) ∈ FT . 2

LEMMA 4.9. For every derivation set F we have πT (ΩF⊆G (I)) = P(F ).

PROOF. Let F be a derivation set. Due to Theorem 4.7, it suffices to prove that for
some chase tree T ′ it is the case that πT ′(ΩF⊆G (I)) = P(F ). But since F is a derivation
set, we can craft a chase tree T ′ that has a node v with L(v) = F . Then we have that
πT ′(Ω

F⊆
G (I)) is the product of the weights along the path to v, which is exactly P(F ). 2

LEMMA 4.10. Let µ = (Ω,F , π) be any probability space that satisfies the three
conditions of Theorem 3.8. Then µ = µT .

PROOF. Let µT = (ΩG(I),FT , πT ). Due to Lemma 4.8, we have that F = FT . So it
is left to prove that π = πT . Due to Lemmas 4.9 and 4.6, π agrees with πT . Due to
Theorems 4.3 and 4.4 we get that π must be equal to πT due to the uniqueness of πT . 2

The above lemmas show that µT = (ΩG(I),FT , πT ) is a probability measure space
that satisfies conditions (1)–(3) of Theorem 3.8, and moreover, that no other probability
measure space satisfies conditions (1)–(3).

5. PROBABILISTIC-PROGRAMMING DATALOG
To complete our framework, we define probabilistic-programming Datalog, PPDL for
short, wherein a program augments a generative Datalog program with constraints;
these constraints unify the traditional integrity constraints of databases and the tradi-
tional observations of probabilistic programming. After defining PPDL, we prove that
the probabilistic semantics of PPDL programs is preserved under logical equivalence
(Theorem 5.5). To do so, we define two concepts of equivalence of PPDL programs: first-
order equivalence (the programs are equivalent when viewed as ordinary first-order
theories), and semantic equivalence (defining the same probability measure spaces).
Finally, we discuss the decidability of the two properties for generative Datalog (Theo-
rem 5.6).

Definition 5.1 (PPDL[∆]). Let ∆ be a finite set of parameterized numerical dis-
tributions. A PPDL[∆] program is a quadruple (E , I,Θ,Φ), where (E , I,Θ) is a
GDatalog[∆] program and Φ is a finite set of logical constraints over E ∪ I.4

Example 5.2. Consider again Example 3.2. Suppose that we have the EDB rela-
tions ObservedHAlarm and ObservedBAlarm that represent observed home and busi-

4We will address the choice of constraint language, and its algorithmic impact, in future work.
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ness alarms, respectively. We obtain from the program in the example a PPDL[∆]-
program by adding the following constraints.

(1) ObservedHAlarm(h)→ Alarm(h)
(2) ObservedBAlarm(b)→ Alarm(b)

We use right (in contrast to left) arrows to distinguish constraints from ordinary Dat-
alog rules. A possible outcome J of an input instance I satisfies these constraints if J
contains Alarm(x) for all x ∈ ObservedHAlarmI ∪ObservedBAlarmI .

A PPDL[∆] program defines the posterior distribution over its GDatalog[∆] pro-
gram, conditioned on the satisfaction of the constraints. A formal definition follows.

Let P = (E , I,Θ,Φ) be a PPDL[∆] program, and let G be the GDatalog[∆] program
(E , I,Θ). An input instance for P is an input instance I for G. We say that I is a legal
input instance if {J ∈ ΩG(I) | J |= Φ} is a measurable set in the probability space µG,I ,
and its measure is nonzero. Intuitively, I is legal if it is consistent with the observa-
tions (i.e., with the constraints in Φ), given G. The semantics of a PPDL[∆] program is
defined as follows.

Definition 5.3. Let P = (E , I,Θ,Φ) be a PPDL[∆] program, G the GDatalog[∆] pro-
gram (E , I,Θ), I a legal input instance for P, and µG,I = (ΩG(I),FG , πG). The probabil-
ity space defined by P and I, denoted µP,I , is the triple (ΩP(I),FP , πP) where:

(1) ΩP(I) = {J ∈ ΩG(I) | J |= Φ}
(2) FP = {S ∩ ΩP(I) | S ∈ FG}
(3) πP(S) = πG(S)/πG(ΩP(I)) for every S ∈ FP .

In other words, µP,I is µG,I conditioned on Φ.

Example 5.4. Continuing Example 5.2, the semantics of this program is the poste-
rior probability distribution that is obtained from the prior of Example 3.2, by condi-
tioning on the fact that Alarm(x) holds for all x ∈ ObservedHAlarmI∪ObservedBAlarmI .
Similarly, using an additional constraint we can express the condition that an alarm
is off unless observed. One can ask various natural queries over this probability space
of possible outcomes, such as the probability of the fact Earthquake(Napa, 1).

When G is weakly acyclic, the event defined by Φ is measurable (since in that case
the probability space is discrete) and the definition of legality boils down to the exis-
tence of a possible outcome.

5.1. Invariance under First-Order Equivalence
PPDL[∆] programs are fully declarative in a strong sense: syntactically their rules and
constraints can be viewed as first-order theories. Moreover, whenever two PPDL[∆]
programs, viewed in this way, are logically equivalent, then they are equivalent as
PPDL[∆] programs, in the sense that they give rise to the same set of possible out-
comes and the same probability distribution over possible outcomes. We make this
statement formal in Theorem 5.5 below.

We say that two PPDL[∆] programs, P1 = (E , I,Θ1,Φ1) and P2 = (E , I,Θ2,Φ2), are
semantically equivalent if, for all input instances I, the probability spaces µP1,I and
µP2,I coincide. Syntactically, the rules and constraints of a PPDL[∆] program can be
viewed as a finite first-order theory over a signature consisting of relation symbols,
constant symbols, and function symbols (here, if the same name of a function is used
with different numbers of arguments, such as Flip in Figure 2, then we treat them as
distinct function symbols). We say that P1 and P2 are FO-equivalent if, viewed as first-
order theories, Θ1 is logically equivalent to Θ2 (i.e., the two theories have the same
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models) and likewise for Φ1 and Φ2. The following theorem states that FO-equivalence
implies semantic equivalence. Hence, rewriting a program in a way that preserves
logical equivalence is safe, as the semantics is preserved.

THEOREM 5.5. If two PPDL[∆] programs are FO-equivalent, then they are seman-
tically equivalent (but not necessarily vice versa).

PROOF. For simplicity, we will first restrict attention to constraint-free programs.
Let G1 = (E , I,Θ1) and G2 = (E , I,Θ2) be FO-equivalent GDatalog[∆] programs, and
let I be any input instance. We will show that ΩG1(I) = ΩG2(I). It then follows from
Theorem 3.8 that µG1,I and µG2,I coincide.

Recall that a model of an arbitrary first-order theory Θ in
a signature {R1, . . . , Rn, c1, . . . , cm, f1, . . . , fk} is a structure M =
(Dom, RM1 , . . . , RMn , c

M
1 , . . . , cMm , f

M
1 , . . . , fMk ), where Dom is a set called the do-

main of M , each RMi is a relation over Dom of appropriate arity, each cMi is an element
of Dom, and each fMi is a function on Dom of appropriate arity, such that M |= Θ,
i.e., all sentences in Θ are satisfied in M . Recall that all constants that may occur
in PPDL[∆] program are real numbers. We say that a structure is real-valued if
Dom = R and each constant symbol is a real number denoting itself. We say that a
structure M is a relationally-minimal model of a first-order theory Γ if M is a model
of Γ and no structure obtained from M by dropping one or more tuples from relations
is a model of Γ.

We denote by Ω′G(I) the set of relationally-minimal real-valued models of G∪I (where
I is viewed as a theory as well, more specifically, a set of ground atomic facts). If
two first-order theories are FO-equivalent, a fortiori, they have the same relationally-
minimal real-valued models. Since we have assumed that G1 and G2 are FO-equivalent,
we have that Ω′G1(I) = Ω′G2(I).

We will now establish a correspondence between models M ∈ Ω′Gi(I) and possible
outcomes J ∈ ΩG(I). To formulate this correspondence, we need one more definition,
namely that of an active term. We denote by RELDIAG(M) the relational diagram ofM ,
i.e., the set of all ground relational facts Ri(~a) that are true in M . We say that a ground
term of the form f(a1, . . . , an) is active in a model M relative to a first-order theory Γ,
if Γ ∪ RELDIAG(M) entails an atomic formula containing the term f(a1, . . . , an). For
example, if Γ = {∀xP (x) → Q(f(x))} and M |= P (1), then the term f(1) is active in
M , because Γ ∪ {P (1)} |= Q(f(1)). The intuition behind this definition is as follows: a
first-order structure must, by definition, always interpret a function symbol by a total
function (defined on all inputs). When a term f(a1, . . . , an) ∈ M is active with respect
to Γ, it means that it actually plays an active role in the satisfaction of Γ in M .

For each M ∈ Ω′G(I), let M̄ be the instance consisting of (a) all relational facts (i.e.,
facts of the form R(a) of M ), and all relational facts of the form Resultf (a, b) where
fM (a) = b and f(a) is active in M w.r.t. G. Then,

(1) For each M ∈ Ω′G(I), we have that M̄ ∈ ΩG(I).
(2) Each member of ΩG(I) coincides with M̄ for some M ∈ Ω′G(I).

The argument for (2) uses Proposition 3.6.
In particular, it follows from (1) and (2) that Ω′G(I) uniquely determines ΩG(I). Since

we have already established that Ω′G1(I) = Ω′G2 , we conclude that ΩG1(I) = ΩG2(I).
Since I was chosen arbitrarily, we conclude that G1 and G2 are semantically equivalent.

The argument immediately extends to the case of PPDL[∆] programs with con-
straints: let P1 = (E , I,Θ1,Φ1) and P2 = (E , I,Θ2,Φ2) be FO-equivalent PPDL[∆]
programs. Then, in particular, G1 = (E , I,Θ1) and G2 = (E , I,Θ2) are FO-equivalent
GDatalog[∆] programs, and hence, as we have shown, for all input instances I, µG1,I
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and µG2,I coincide. Furthermore, Φ1 and Φ2 are FO-equivalent. It then follows by the
semantics of PPDL constraints (and for legal input instances I), that µP1,I and µP2,I

coincide as well. In other words, P1 and P2 are semantically equivalent.
Semantic equivalence does not imply FO-equivalence. Indeed, let P,Q be IDB pred-

icates, and consider the program consisting of the rule Q(x) ← P (x). Since there are
no rules that derive IDB-facts from EDB-facts, this program is semantically equiv-
alent to the program without any rules. Nevertheless, these two programs are not
FO-equivalent. Intuitively, semantic equivalence is only concerned with minimal mod-
els (since a minimality requirement is built into the notion of a possible outcome)
while FO-equivalence is concerned with arbitrary models. In addition to this, first-
order equivalence is oblivious to facts about the specific probability distributions in ∆.
2

The following theorem discusses the decidability of two types of equivalences for
GDatalog[∆], and shows that FO-equivalence is decidable for weakly acyclic programs,
while semantic equivalence is not.

THEOREM 5.6. First-order equivalence is decidable for weakly acyclic GDatalog[∆]
programs. Semantic equivalence is undecidable for weakly acyclic GDatalog[∆] pro-
grams (in fact, even for ∆ = ∅).

PROOF. The decidability is proved using the following well known technique: for
each rule of one of the two programs, we take the canonical instance of the right hand
side of the rule, chase it with the other program, and test that the left hand side of the
rule is in the result of the chase. In this way, we can test containment in both directions
(i.e., equivalence of the two programs). Before spelling out the procedure, we illustrate
it with an example. Consider the following two GDatalog[∆] programs:

— G1 is defined by the following rules:

(1) Q(x) ← P (x) ; (2) P (x) ← Q(x) ; (3) R(δ[x]) ← P (x)

— G2 is defined by the following rules:

(1) Q(x) ← P (x) ; (2) P (x) ← Q(x) ; (3) R(δ[x]) ← Q(x)

To test that G1 and G2 are equivalent, we test that G1 logically implies each rule of G2,
and, conversely, G2 logically implies each rule of G1. Each can be tested by chasing the
right hand side of the rule in question, and verifying that the left hand side belongs to
the result of the chase. For example, to show that G1 logically implies the third rule of
G2, we consider the canonical instance of its right hand side (i.e., {Q(a)}), and chase it
with the rules of G1, obtaining the chase result {Q(a), P (a), R(δ[a])}. Indeed, it can be
confirmed that the left hand side of the rule in question is satisfied (under the same
assignment of values to variables, i.e., R(δ[a])) in the chase result.

The general procedure for testing that two weakly acyclic GDatalog[∆] programs
G1 and G2 are FO-equivalent is as follows: for each rule r of G1, we take a canonical
instance of the right-hand side of r (replacing each variable by a fresh, distinct con-
stant) and chase it with the rules of G2. Note that, by weakly acyclicity, this chase is
guaranteed to terminate and yield a finite instance. We then test that the canonical
instance of the left-hand side of r (under the same replacement of variables by con-
stants) is contained in the result of this chase. Likewise, for each rule r of G2 we take
a canonical instance of the right-hand side of r (replacing each variable by a fresh,
distinct constant), chase it with the rules of G1, and test that the canonical instance
of the left-hand side of r (under the same replacement of variables by constants) is
contained in the result of this chase. If each of these tests succeeds, then G1 and G2
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must be FO-equivalent. If not, then the canonical instance of the failing rule provides
us with a counterexample to the FO-equivalence of G1 and G2.

The undecidability claim follows immediately from the undecidability of equivalence
of Datalog programs [Shmueli 1993]. 2

Remark 5.7. We remind the reader that, in the programs G1 and G2 used in the last
proof, “R(δ[x])” uses our sugared syntax, and it stands for the formal syntax defined
in Section 3, which in this case would be “R(δ[[x; ]]).” This is an important point, since
the correctness of Theorem 5.6 is based on the fact that we define FO-equivalence by
reference to the unsugared program.

Remark 5.8. The PPDL[∆] programs given in Figures 2 and 3 are not semanti-
cally equivalent: once the syntactic sugar in the second program is expanded, the 4th
rule of this program may generate RFlip

4 facts, whereas no possible solution for the
first program contains any RFlip

4 fact. Nevertheless, the two programs are equivalent
in a weaker sense. To make this precise, we define another probability space, µ̌G,I . Let
P = (E , I,Θ,Φ), let I be an input instance over E , and let J ∈ ΩP(I) be a possible
outcome for I w.r.t. P. Recall that J is an instance over the schema E ∪ I∆. We denote
by J̌ the instance over schema E ∪I that is obtained from J by dropping all facts using
relation symbols from I∆ \ I. In other words, (̌·) is the natural “forgetful” map form
E ∪ I∆-instances to E ∪ I-instances. We define µ̌P,I to be the image of the measure
space µP,I under the map (̌·) (a standard topological operation). Then (̌·) is a σ-algebra
homomorphism from µP,I to µ̌P,I . Intuitively, all that we have done is “forget” all in-
formation regarding distributional facts. We say that two PPDL[∆] programs, P1,P2,
are weakly semantically equivalent if, for all instances I, the probability spaces µ̌G1,I
and µ̌G2,I coincide.

Semantic equivalence implies weak semantic equivalence. Weak equivalence does
not imply strong equivalence: the program consisting of the rules P (x, 0) ← Q(x),
P (x, 1) ← Q(x), and P (x,Flip[0.5;x]) ← Q(x) is weakly equivalent, but not strongly
equivalent, to the same program in which the third rule is dropped. It can be shown
that the PPDL[∆] programs given in Figure 2 and Figure 3 are indeed weakly seman-
tically equivalent.

For PPDL[∆] programs with ∆ = ∅, semantic equivalence and weak semantic equiv-
alence coincide. Therefore, Theorem 5.6 implies that weak semantic equivalence of
weakly acyclic PPDL[∆] programs is undecidable as well.

6. PPDL EXAMPLES
To further illustrate PPDL, we now show two examples of translations thereto. The
first is a translation from a Markov Logic Network (MLN) [Domingos and Lowd 2009],
and the second from a stochastic context-free grammar.

6.1. Markov Logic Networks in PPDL
Jha and Suciu [Jha and Suciu 2012] showed how MLN inference can be reduced to in-
ference in tuple-independent probabilistic databases. More precisely, they considered
the task of computing the probability of a Boolean query over the probability space
defined by an MLN. They showed that this probability is a function of the probabilities
of a few Boolean queries over a tuple-independent probabilistic database. Since the
latter can be represented in GDatalog[∆], assuming ∆ contains the distribution Flip,
then the same reduction can be done for GDatalog[∆] and PPDL[∆]. In this section, we
show a stronger result, where the application of the PPDL[∆] program to the input in-
stance induces the exact same probability distribution as the MLN. Next, we introduce
the MLN formalism, and then show how PPDL can capture it fairly simply.
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6.1.1. Markov Logic Networks. We view an MLN as a pair of a program consisting of
constraints and of domains of attributes.

Definition 6.1 (MLN Program). An MLN program is a tuple (T ,Γ,Ψ,W ), where:

— T is a relational schema.
— Ψ and Γ are sets of first-order-logic formulas over T such that every free variable

occurs in at least one atomic formula (over a relation symbol of T ). Formulas in Ψ
are hard constraints and formulas in Γ are soft constraints.

— W : Γ→ R is the weight function that associates a weight with every soft constraint.

Let Q = (T ,Ψ,Γ,W ) be an MLN program. An attribute of Q is a pair (R, i) where R
is a relation symbol of T and 1 ≤ i ≤ arity(R). The domain schema of Q is the relational
schema that consists of a unary relation symbol R[i] for every attribute (R, i) of Q.
An MLN is a pair (Q, D) where Q is an MLN program and D is an instance over the
domain schema of Q. For short, we call D a domain instance for Q.

Example 6.2. For illustration, we use a simplified version of a bibliography reso-
lution task [Singla and Domingos 2006], where we have a collection of bibliography
entries from various resources, where common references may be represented differ-
ently (due to format differences and/or typos). This task is one of the popular instances
of the general problem of entity resolution. In our example, we construct an MLN pro-
gram Q = (T ,Ψ,Γ,W ) where T consists of the following relation symbols:

— InBib(a, b): entry b mentions author name a;
— SimilarTitle(b1, b2): entries b1 and b2 have a similar title (by some similarity test);
— SimilarName(a1, a2): author names a1 and a2 are similar (by some other test);
— SameAuthor(a1, a2): author names a1 and a2 refer to the same real-life author;
— SameBib(b1, b2): entries b1 and b2 refer to the same resource (e.g., article).

In an application of the program, the relations InBib, SimilarTitle, and SimilarName are
given as observations, and the goal is to infer SameAuthor and SameBib (or just one of
them). A typical domain instanceD forQ associates with each b attribute the set of bib-
liography entries, and with each a attribute the set of author names in those entries.
Hence, in such an instance the unary relations InBib[2], SimilarTitle[1], SimilarTitle[2],
SameBib[1] and SameBib[2] are the same—the list of given bibliography entries. Simi-
larly, InBib[1], SimilarName[1], SimilarName[2], SameAuthor[1] and SameAuthor[2] are the
same—the list of author names.

The set Ψ consists of four hard constraints that require SameAuthor and SameBib to
be equivalence relations.

(Hard1) SameAuthor(a, a)

(Hard2) SameAuthor(a1, a2)→ SameAuthor(a2, a1)

(Hard3) SameAuthor(a1, a2) ∧ SameAuthor(a2, a3)→ SameAuthor(a1, a3)

(Hard4) SameBib(b, b)

(Hard5) SameBib(b1, b2)→ SameBib(b2, b1)

(Hard6) SameBib(b1, b2) ∧ SameBib(b2, b3)→ SameBib(b1, b3)
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Finally, the set Γ consists of the following soft rules, where each rule γ is preceded
by its weight W (γ):

(soft1) 3 : SameAuthor(a1, a2)→ SimilarName(a1, a2)

(soft2) 1 : SimilarName(a1, a2)→ SameAuthor(a1, a2)

(soft3) 3 : SameBib(b1, b2)→ SimilarTitle(b1, b2)

(soft4) 1 : SimilarTitle(b1, b2)→ SameBib(b1, b2)

(soft5) −5 : SameBib(b1, b2) ∧ InBib(a1, b1) ∧ ∀a2[InBib(a2, b2)→ ¬SameAuthor(a1, a2)]

The first four rules reward occurrences of consistency between similarity and identity,
whereas the fifth rule penalizes a world for every two entries b1 and b2 and author
name a1 such that a1 is in b1 but no author name in b2 is equal to a1. 2

Let (Q, D) be an MLN where Q = (T ,Ψ,Γ,W ). A grounding of a (hard or soft) con-
straint ϕ of Q is obtained from ϕ by replacing every free variable with a constant from
a suitable domain; that is, if a variable occurs in an attribute (R, i) then it is replaced
with a constant from RD[i]. Denote by grd(ϕ,D) the set of all groundings of ϕ. Then
grd(ϕ,D) is a set of Boolean propositional formulas (without free variables) over T . A
possible world of (Q, D) is an instance I of T that satisfies the following conditions.

(1) On every attribute (R, i), the instance I has only constants from RD[i];
(2) I |= g for every hard constraint ψ ∈ Ψ and grounding g ∈ grd(ψ).

We denote by PW(Q, D) the set of possible worlds of (Q, D). The weight W (I) of a
possible world I is given by:

weight(I)
def
= exp

∑
γ∈Γ

∑
g∈grd(γ)
I|=g

W (γ)

 (5)

An MLN (Q, D) defines a discrete probability space (Ω, π), where Ω = PW(Q, D) and
π is given by π(I) = weight(I)/Z, where the normalization factor Z, also called the
partition function, is equal to

∑
J∈PW(Q,D) weight(J). This probability space is denoted

by ΠQ,D.

6.1.2. Translation into PPDL. We now turn to PPDL and show that MLN can be captured
by PPDL. In order to obtain the same probability distribution as the given MLN, we
need to eliminate the intermediate (helper) predicates from the possible worlds, and
we do so in a straightforward way by projecting over the relations of interest. A formal
definition follows.

Let P = (E , I,Θ,Φ) be a PPDL[∆] program, let I be an instance over E . Let I ′ be a
subschema of I, that is, I ′ is obtained from I by removing some of the relation symbols.
For a possible outcome J , we denote by J [I ′] the restriction of J to the relations of I ′
(that is, J [I ′] consists of the relations RJ where R belongs to I ′). Suppose that µP,I
is a discrete probability space (i.e., the sample space is countable and every set of
samples is measurable), and let us denote it by (Ω, π). The projection of µP,I to I ′ is
the probability space that is obtained from µP,I by replacing every J with J [I ′], and
assigning to J [I ′] its marginal probability. More formally, the projection of µP,I to I ′ is
the discrete probability space (Ω′, π′) where:

— Ω′
def
= {J [I ′] | J ∈ Ω};

— π′(J ′)
def
=
∑
J∈Ω,J[I]=J′ π(J).
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Following is the main result of this section, showing that every MLN program can be
translated into a PPDL program, in the sense that the two define the same distribution
when applied to the same domain. Moreover, the only numerical distribution function
required for the PPDL program is Flip.

THEOREM 6.3. Let ∆ be a set of distributions that includes Flip. For every MLN
program Q = (T ,Ψ,Γ,W ) there exists a PPDL[∆] program P = (E , I,Θ,Φ) with the
following properties.

(1) E is the domain schema of Q;
(2) I contains T ;
(3) Φ is a set of formulas in first-order logic;
(4) For every domain instance D of Q, the projection of µP,D to T is equal to ΠQ,D.

In the remainder of this section, we prove Theorem 6.3 by presenting a translation
of an MLN program into a PPDL[∆] program with ∆ = {Flip}. We fix an MLN program
Q = (T ,Ψ,Γ,W ), and we denote by E the domain schema of Q. To define the PPDL[∆]
program P = (E , I,Θ,Φ), we then need to define I, Θ and Φ.

As a first step, we determine a random truth value for every possible fact over T .
For each relation symbol R in T with arity m, we add to Θ the following two rules.

RI(x1, . . . , xm,Flip[0.5]) ← R[1](x1), . . . , R[m](xm) (6)
R(x1, . . . , xm) ← RI(x1, . . . , xm, 1)

Next we handle the rules in Γ and Ψ. Let γ be a constraint in Γ ∪ Ψ. We write γ
as γ(x1, . . . , xk) where x1, . . . , xk are the variables that occur in γ. We consider three
different cases.

(A) γ ∈ Ψ. We add γ as an observation (with a universal quantification over the do-
mains when needed). We let Rj[ij ] be the relation in the domain schema E corre-
sponding to xj for 1 ≤ j ≤ k.

R1
[i1](x1), . . . , Rk[ik](xk) → γ(x1, . . . , xk) (7)

(B) γ ∈ Γ and W (γ) ≥ 0. For every j = 1, . . . , k, select an attribute of a relation where
xi occurs in γ, and let Rj[ij ] be the corresponding relation in the domain schema E .
We then add the following rules.

Oγ(x1, . . . , xk,Flip[exp(−W (γ))]) ← R1
[i1](x1), . . . , Rk[ik](xk) (8)

Oγ(x1, . . . , xk, 0) → γ(x1, . . . , xk) (9)

Intuitively, the rule defines an “observer” for γ(x1, . . . , xk) that tosses a coin with
probability exp(−W (γ)) to 1, and we condition the result to be 1, unless γ(x1, . . . , xk)
holds true. As we explain in the next section, this action effectively brings up the
factor exp(W (γ)) whenever γ(x1, . . . , xk) is true.

(C) γ ∈ Γ and W (γ) < 0. We apply the construction of the previous cases, except that
we replace γ with γ′ = ¬γ with W (γ′) = −W (γ). The intuition is the following:
as weights are normalized, multiplying the weight of each world that satisfies a
grounding of γ by exp(W (γ)) has the same effect as multiplying the weight of each
world that violates that grounding by exp(−W (γ)).

This completes our construction of the PPDL[∆] program P = (E , I,Θ,Φ).

Example 6.4. Figure 8 depicts the PPDL program P = (E , I,Θ,Φ) of the MLN pro-
gram Q = (T ,Ψ,Γ,W ) that we introduced in Example 6.2. Rules (1) – (4) correspond
to the construction of Equation (6), Rules (5) – (10) correspond to the hard constraints,
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(1) SameAuthorI(a1, a2,Flip[0.5]) ← AuthorName(a1),AuthorName(a2)
(2) SameAuthor(a1, a2) ← SameAuthorI(a1, a2, 1)
(3) SameBibI(b1, b2,Flip[0.5]) ← Bib(b1),Bib(b2)
(4) SameBib(b1, b2) ← SameBibI(b1, b2, 1)
(5) AuthorName(a) → SameAuthor(a, a)
(6) SameAuthor(a1, a2) → SameAuthor(a2, a1)
(7) SameAuthor(a1, a2),SameAuthor(a2, a3) → SameAuthor(a1, a3)
(8) BibEntry(b) → SameBib(b, b)
(9) SameBib(b1, b2) → SameBib(b2, b1)
(10) SameBib(b1, b2),SameBib(b2, b3) → SameBib(b1, b3)
(11) Osoft1(a1, a2,Flip[exp(−3)]) ← AuthorName(a1),AuthorName(a2)
(12) Osoft1(a1, a2, 0) → [SameAuthor(a1, a2)→ SimilarName(a1, a2)]
(13) Osoft2(a1, a2,Flip[exp(−1)]) ← AuthorName(a1),AuthorName(a2)
(14) Osoft2(a1, a2, 0) → [SimilarName(a1, a2)→ SameAuthor(a1, a2)]
(15) Osoft3(b1, b2,Flip[exp(−3)]) ← Bib(b1),Bib(b2)
(16) Osoft3(b1, b2, 0) → [SameBib(b1, b2)→ SimilarTitle(b1, b2)]
(17) Osoft4(b1, b2,Flip[exp(−1)]) ← Bib(b1),Bib(b2)
(18) Osoft4(b1, b2, 0) → [SimilarTitle(b1, b2)→ SameBib(b1, b2)]
(19) Osoft5(a1, b1, b2,Flip[exp(−5)]) ← AuthorMention(a1),Bib(b1),Bib(b2)
(20) Osoft5(a1, b1, b2, 0) →

SameBib(b1, b2) ∨ InBib(a1, b1) ∨ ∃a2[InBib(a2, b2),SameAuthor(a1, a2)]

Fig. 8. PPDL translation of the MLN of Example 6.2

where (for readability) we avoided quantification over the domains when it is natural
to do so, Rules (11) – (18) correspond to the soft constraints with a positive weight, and
Rules (19) – (20) correspond to the soft constraint with a negative weight. This PPDL
program simplifies the general construction in two ways.

— Using the fact that domains are shared across attributes, we replaced all of the
relational symbols R[i] with two unary relations: Bib for bibliography mentions, and
AuthorName for author mentions. For example, in Rule (1) that corresponds to Equa-
tion (6) with R being for SameAuthor, the body uses AuthorName twice instead of
SameAuthor[1] and SameAuthor[2].

— Making the assumption that InBib, SimilarTitle and SimilarName are always given
as observations, we actually view them as EDBs in E . This illustrates a general
principle that, in our construction, only the inferred relations of the MLN need to
be IDBs, and we can replace the observed relations by EDB relations.

Regarding Rule (20), the reader can verify that the conclusion is the negation of the
corresponding soft rule (soft5), as required by our construction.

Our construction can be adapted to show that when the MLN is defined in a smaller
fragment of first-order logic, the constraints of the obtained PPDL program also be-
long to the same fragment, provided that the fragment satisfies the suitable closure
conditions.

6.1.3. Proof of correctness. We now prove the correctness of the construction. Let D
be a domain instance for Q, and let (Ω, π) be the probability space ΠQ,D. Recall that
Q = (T ,Ψ,Γ,W ). Let (Ω′, π′) be the projection of µP,D to T . We need to prove that
(Ω, π) is equal to (Ω′, π′). We show that for every instance J over T with attribute
values from D, the probability of J is the same in both probability spaces. Since both
are (discrete) probability spaces, it suffices to prove that the unnormalized probability
of J in one is proportional (i.e., within a multiplicative factor that is independent of J)
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to the unnormalized probability of J in the other. In the remainder of this section we
fix such instance J .

If J violates a hard constraint γ in Ψ, then J is, by definition, not in Ω. But J cannot
be in Ω′ either, since violation of γ implies that the constraint (7) is violated as well.
Conversely, if J satisfies γ then the constraint (7) is satisfied. It thus follows that J is
in Ω if and only if J is in Ω′. In the sequel, we assume that J satisfies Ψ and, hence,
J ∈ Ω and J ∈ Ω′. By definition, π(J) is:

π(J) ∼ exp

∑
γ∈Γ

∑
g∈grd(γ)
J|=g

W (γ)

 (10)

Consider the space of random chases of (E , I,Θ) over D. Recall that we are free to
chase in whatever order we wish, and so, we assume that the chase follows the rules
in the order we have defined them. (Observe that our PPDL program is weakly acyclic,
and hence, every chase necessarily terminates.) Let (Ωc, πc) be the distribution over the
resulting instances. Let EJ be the event that J is precisely the set of facts R(a1, . . . , am)
such that the chase produced RI(x1, . . . , xm, b) for b = 1 (as opposed to b = 0). Let EO
be the event that all of the groundings of the constraints defined in (7) and (9) hold
when the chase terminates. Then, we have the following:

π′(J) = Pr(EJ | EO) =
Pr(EO | EJ) · Pr(EJ)

Pr(EO)

The notation Pr(·) applies to the probability space (Ωc, πc). Now, observe that Pr(EO)
is the same for all J . Moreover, Pr(EJ) is also the same for all J since (6) assigns a
uniform distribution to the assignment of 0/1 to the set of all RIs. We conclude the
following.

π′(J) ∼ Pr(EO | EJ)

Denote by Γ+ the set {γ ∈ Γ |W (γ) ≥ 0} and by Γ− the set {γ ∈ Γ |W (γ) < 0}. For a
constraint γ and a grounding g ∈ grd(γ), let Eg denote the event that the corresponding
grounding of (7) or (9) is true. From the order of the chase it follows that, given the
event EJ (i.e., the truth assignment for RIs), the events Eg are independent across
different γs. So, we have the following.

Pr(EO | EJ) =

 ∏
γ∈Γ+

∏
g∈grd(γ)

Pr(Eg | EJ)


×

 ∏
γ∈Γ−

∏
g∈grd(γ)

Pr(E¬g | EJ)

×
∏
γ∈Ψ

∏
g∈grd(γ)

Pr(Eg | EJ)


We now process each of the three main factors. For a grounding g we denote by gi
the value that g assigns to the variable xi. For γ ∈ Γ+ and g ∈ grd(γ), the event Eg
always holds if J satisfies g, due to (9). If J violates g, then Eg holds with probability
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exp(−W (γ)) due to (8). We then have the following: ∏
γ∈Γ+

∏
g∈grd(γ)

Pr(Eg | EJ)

 =

 ∏
γ∈Γ+

∏
g∈grd(γ)
J|=¬g

exp(−W (γ))

 (11)

=

 ∏
γ∈Γ+

 ∏
g∈grd(γ)
J|=¬g

exp(−W (γ))

×
 ∏
g∈grd(γ)
J|=g

exp(−W (γ))

×
 ∏
g∈grd(γ)
J|=g

exp(W (γ))




=

 ∏
γ∈Γ+

 ∏
g∈grd(γ)

exp(−W (γ))

×
 ∏
g∈grd(γ)
J|=g

exp(W (γ))




=

 ∏
γ∈Γ+

∏
g∈grd(γ)

exp(−W (γ))

×
 ∏
γ∈Γ+

∏
g∈grd(γ)
J|=g

exp(W (γ))

 ∼ exp

∑
γ∈Γ+

∑
g∈grd(γ)
J|=g

W (γ)


In the second equality above, we simply multiply and divide by the same factor. Simi-
larly, for soft rules with negative weights we have the following. ∏

γ∈Γ−

∏
g∈grd(γ)

Pr(E¬g | EJ)

 =

 ∏
γ∈Γ−

 ∏
g∈grd(γ)
J|=¬(¬g)

exp(−(−W (γ)))




=

 ∏
γ∈Γ−

∏
g∈grd(γ)
J|=g

exp(W (γ))

 (12)

Finally, we assume that J satisfies Ψ, and therefore, for γ ∈ Ψ we have Pr(Eg | EJ) = 1.
Therefore, from (11) and (12) we conclude that

Pr(EO | EJ) ∼ exp

∑
γ∈Γ

∑
g∈grd(γ)
J|=g

W (γ)

 .

As explained earlier in this section, this proportionality suffices to complete the proof.

6.2. Stochastic Context-Free Grammars in PPDL
We first recall the notion of a Stochastic Context-Free Grammar (SCFG for short), also
known as Probabilistic Context-Free Grammar (PCFG). An SCFG is a tuple (T,N, S, ρ),
where:

— T and N are disjoint finite sets of terminals and nonterminals, respectively.
— S ∈ N is a start symbol.
— ρ is a function that maps every nonterminal N ∈ N to a finite probability distribu-

tion ρN over (T ∪N)∗ (i.e., the set of all finite sequences of elements in T ∪N).
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The semantics of an SCFG is a probability space over parse trees, where a parse tree
is a (possibly infinite) directed and ordered tree such that the root is labeled with the
start symbol S, each leaf is labeled with a terminal,5 and each nonleaf is labeled with a
nonterminal. The generative process that constructs a parse tree begins with the tree
that consists of only S, and repeatedly selects a leaf v (say, of a minimal distance from
the root) with a nonterminal label N , randomly and independently selects a sequence
A1, . . . , Am from the distribution ρN , and adds to v a sequence of m children with the
labels A1, . . . , Am in order.

In this section we show how to represent SCFGs in PPDL. Formally, we will define a
PPDL program P so that every SCFG (T,N, S, ρ) can be translated into an input I for
P, in such a way that the probability space over the parse trees is represented by µP,I .
For presentation sake, we make two simplifying assumptions on the given SCFG. The
first assumption is that (T,N, S, ρ) is in epsilon-free Chomsky Normal Form (CNF),
that is, for every nonterminal N and sequence A1

N · · ·AmN in the support of ρN , either
m = 2 and both A1

N and A2
N are nonterminals, or m = 1 and A1

N is a terminal (while
A2
N = ε and ignored). The translation into general forms is straightforward, but re-

quires more technical details. The second assumption is that each ρN consists of pre-
cisely two sequences (which can be the same). Every SCFG can be changed to satisfy
this requirement, by using extra nonterminals. Therefore, we will assume that ρN has
the following form:

ρN (α) =

{
p if α = A1

NA
2
N ;

(1− p) if α = B1
NB

2
N .

In both cases, either both symbols are nonterminals, or one of them is a terminal and
the other the special symbol ε.

6.2.1. The Program. We first need to explain how (T,N, S, ρ) is represented in an EDB
schema. Our EDB schema E has the following relation symbols:

— T and N are unary relation symbols that store terminals and nonterminals, respec-
tively.

— Start is a unary relation that stores the start symbol S.
— Rho represents ρ using tuples of the form (N,A1

N , A
2
N , B

1
N , B

2
N , p), stating that ρN

selects A1
NA

2
N with probability p and B1

NB
2
N with probability (1− p).

From the above it is obvious how (T,N, S, ρ) is represented in an input I over E .
The IDB schema I represents a random parse tree. Each node v in the tree is iden-

tified by an integer i, with the start nonterminal having identifier 0. This integer is
consistent with a left-to-right BFS traversal of the parse tree, that is, for two nodes v
and v′ with identifiers i and i′, respectively, we have i < i′ if v′ is deeper (i.e., farther
from the root) than v, or if v and v′ are on the same depth and v is left to v′. The IDB
schema consists of two relations.

— V represents nodes v using tuples of the form (i, A), where i is the identifier of v
and A is the (terminal or nonterminal) label of v.

— Choice represents the random choices associated with nonterminal nodes, using
facts of the form (i, b), stating that the nonterminal node identified by i has selected
A1
NA

2
N (if b = 0) or B1

NB
2
N (if b = 1).

The PPDL program P is the following.

5For simplicity, we ignore the parse tree of the empty word.
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(1) V(0, A) ← Start(A)

(2) Choice(i,Flip[p]) ← V(i, A),N(A),Rho(A, , , , p)

(3) V(2i+ 1, A1) ← V(i, A),Choice(i, 0),Rho(A,A1, , , )

(4) V(2i+ 2, A2) ← V(i, A),Choice(i, 0),Rho(A,A1, A2, , ),N(A1)

(5) V(2i+ 1, B1) ← V(i, A),Choice(i, 1),Rho(A, , , B1, )

(6) V(2i+ 2, B2) ← V(i, A),Choice(i, 1),Rho(A, , , B1, B2),N(B1)

For readability sake, we use the convention of replacing a variable that occurs only
once with underscore ( ). The first rule constructs the root, which corresponds to the
start symbol. The second rule states that every node i with a nonterminal label A
needs to make a random choice of a sequence from the distribution ρA. The third rule
says that if a node i with the nonterminal label A has chosen the left sequence A1A2,
then we construct a child u of i with the label A1; the identifier of u is 2i+1. The fourth
rule does the same, except that u has a greater index (2i + 2) in the identifier, and it
is constructed only if A1 is a nonterminal. The choice of the indices 2i + 1 and 2i + 2
guarantees the correspondence to BFS scanning. The fifth and sixth rules are the same
as the third and fourth, respectively, except that they apply to the case where node i
has chosen the right sequence B1B2.

Our Datalog model does not allow arithmetic operations such as 2i + 1 and 2i +
2. Nevertheless, these can be simulated as special cases of (deterministic) numerical
distributions.

6.2.2. Accounting for Input Strings. In practice, an SCFG is used for representing the
probability space of parses of a given input string [Klein and Manning 2003]. Formally,
for a given string s of terminals, the probability space is conditioned on two properties:

(1) The parse tree is finite.
(2) The sequence of leaf terminals, from left to right, forms the string s.

Next, we will show how to realize these conditions in our PPDL program P.
We represent the string s using a binary EDB Str that stores tuples of the form

(j, c), stating that the character at position j is c. For a technical reason, we also need
the unary EDB Len that stores the length of Str (in a single tuple). For example, the
string PPDL will be represented using the facts Str(1,P), Str(2,P), Str(3,D), Str(4, L)
and Len(4). The following set of rules constructs the IDB relation SameStr(i, j, k), stat-
ing that the subtree under the nonterminal node i spans the substring from position j
to position k.

SameStr(i, j, j) ← V(i, ),V(2i+ 1, c),Str(j, c)

SameStr(i, j, k) ← SameStr(2i+ 1, j, `),SameStr(2i+ 2, `+ 1, k)

The first rule says that a nonterminal node i spans the terminal at position j if i is the
parent of the only (terminal) node with the label c. The second rule states that i spans
the substring from j to k if i has two children, which must be 2i + 1 and 2i + 2, such
that for some ` it holds that the first child spans the substring from j to ` and second
spans the substring from ` + 1 to k. We then add the following condition, stating that
the root spans the entire string.

Len(n)→ SameStr(0, 1, n)

Recall that 0 is the identifier of the root. It can be shown (e.g., by induction on k − j)
that if we have an entry SameStr(i, j, k), then the subtree underneath node i is finite,
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and moreover, it indeed spans the substring from j to k. Hence, the above condition
captures precisely the condition of parsing the input string.

7. RELATED WORK
In this section we compare PPDL to related formalisms from the literature, and con-
trast them with our work. We consider several categories of formalisms. For the first
three categories, we adopt the classification of De Raedt and Kimmig [2015]. These
formalisms fall in the broader category of Statistical Relational Learning (SRL). For a
thorough survey on SRL we refer the reader to De Raedt et al. [2016].

7.1. Imperative Specifications
The first category includes imperative probabilistic programming lan-
guages [http://www.probabilistic programming.org 2014]. We also include in this
category declarative specifications of Bayesian networks, such as Context-Sensitive
Probabilistic Knowledge [Ngo and Haddawy 1997] and BLOG [Milch et al. 2005].
Although declarative in nature, these languages inherently assume a form of acyclicity
that allows the rules to be executed in a serial manner. We are able to avoid such an
assumption since our approach is based on the minimal solutions of an existential
Datalog program. The program in Figure 4, for example, uses recursion (as is typically
the case for probabilistic models in social network analysis), and so is the translation
from SCFGs that we discussed in Section 6.2. In particular, it is not clear how the
virus program can be phrased by translation into a Bayesian network, and SCFG (that
may define an uncountable probability space [Etessami and Yannakakis 2009]) cannot
be translated in Bayesian networks. BLOG can express probability distributions over
logical structures, via generative stochastic models that can draw values at random
from numerical distributions, and condition values of program variables on observa-
tions. In contrast with closed-universe languages such as SQL and logic programs,
BLOG considers open-universe probability models that allow for uncertainty about
the existence and identity of objects. Related models are those of MCDB [Jampani
et al. 2008] and SimSQL [Cai et al. 2013] that propose SQL extensions coupled with
Monte Carlo simulations and parallel database techniques for stochastic analytics in
the database. Again, these formalisms assume an order over the execution of rules,
hence their association with the first category.

7.2. Logic over Probabilistic Databases
The formalisms in the second category, also referred to as the distributional seman-
tics [Raedt and Kimmig 2015], view the generative part of the specification of a sta-
tistical model as a two-step process. In the first step, facts are randomly generated
by a mechanism external to the program. In the second step, a logic program, such as
Prolog [Kimmig et al. 2011] or Datalog [Abiteboul et al. 2014], is evaluated over the re-
sulting random structure. This approach has been taken by PRISM [Sato and Kameya
1997], and to a large extent by probabilistic databases [Suciu et al. 2011] and their
semistructured counterparts [Kimelfeld and Senellart 2013]. The Dyna [Eisner and
Filardo 2010] system has adopted this approach to extend the semantics of Datalog
with randomness. The focus of our work is on a formalism that completely defines the
statistical model, without referring to external processes. As an important example,
in PPDL one can sample from distributions that have parameters that by themselves
are randomly generated using the program. This is the common practice in Bayesian
machine learning (e.g., logistic regression), but it is not clear how it can be done within
approaches of the second category.

One step beyond the second category and closer to our work is taken by uncertainty-
aware query languages for probabilistic data such as TriQL [Widom 2008], I-SQL, and
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world-set algebra [Antova et al. 2007a; 2007b]. The latter two are natural analogs to
SQL and relational algebra for the case of incomplete information and probabilistic
data [Antova et al. 2007a]. They feature constructs such as repair-key, choice-of,
possible, and group-worlds-by that can construct possible worlds representing all
repairs of a relation w.r.t. key constraints, close the possible worlds by unioning
or intersecting them, or group the worlds into sets with the same results to sub-
queries. World-set algebra has been extended to (world-set) Datalog, fixpoint, and
while-languages [Deutch et al. 2010] to define Markov chains. While such languages
cannot explicitly specify probability distributions, they may simulate a specific cat-
egorical distribution indirectly using non-trivial programs with specialized language
constructs like repair-key on input tuples with weights representing samples from
the distribution.

7.3. Model Representation via Formula Grounding
Formalisms in the third category use rule weighting as indirect specifications of prob-
ability spaces over the Herbrand base, which is the set of all the facts that can be
obtained using the predicate symbols and the constants of the database. This category
includes MLNs [Domingos and Lowd 2009; Niu et al. 2011] (which we discussed in
detail in Section 6.1), where the logical rules are used as a compact and intuitive way
of defining factors. In other words, the probability of a possible world is the product of
all the numbers (factors) that are associated with the grounded rules that the world
satisfies. This approach is applied in DeepDive [Niu et al. 2012], where a database
is used for storing relational data and extracted text, and database queries are used
for defining the factors of a factor graph. We view this approach as indirect since a
rule does not determine directly the distribution of values. Moreover, the semantics of
rules is such that the addition of a rule that is logically equivalent to (or implied by,
or indeed equal to) an existing rule changes the semantics and thus the probability
distribution. A concept similar to MLN is defined by the hybrid relational dependency
networks [Ravkic et al. 2015], where each grounding of a rule defines a factor as a prob-
ability distribution over a random variable that might be continuous. Probabilistic Soft
Logic [Bröcheler et al. 2010], where in each possible world every fact is associated with
a degree of truth.

Further formalisms in this category are probabilistic Datalog [Fuhr 2000] and prob-
abilistic Datalog+/- [Gottlob et al. 2013]. There, every rule is associated with a prob-
ability. The semantics of the former is different from ours and that of the other for-
malisms mentioned thus far. There, a Datalog rule is interpreted as a rule over a
probability distribution over possible worlds, and it states that, for a given grounding
of the rule, the marginal probability of being true is as stated in the rule. Probabilistic
Datalog+/- uses MLNs as the underlying semantics.6 Besides our support for numer-
ical probability distributions, our formalism is used for defining a single probability
space, which is in par with the standard practice in probabilistic programming.

7.4. Recursion Models
As discussed earlier, GDatalog[∆] allows for recursion, and the semantics is cap-
tured by (possibly infinite) Markov chains. Related formalisms are that of SCFGs and
the more general Recursive Markov Chains (RMC) [Etessami and Yannakakis 2009],
where the probabilistic specification is by means of a finite set of transition graphs
that can call one another (in the sense of method calls) in a possibly recursive fashion.
In the database literature, SCFGs and RMCs are used in the context of probabilistic

6Another variant of Probabilistic Datalog+/- [Riguzzi et al. 2012] adopts the distributional semantics, and
belongs in the former category (Logic over Probabilistic Databases).
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XML [Cohen and Kimelfeld 2010; Benedikt et al. 2010]. These formalisms do not in-
volve numerical distributions. We have shown a translation from SCFGs to PPDL. In
future work, we plan to further study the relative expressive power of these models,
compared to restrictions of our framework.

7.5. Probabilistic Datalog Models
We now discuss the formalisms that we view as closest to ours. Like PPDL, these for-
malisms propose Datalog with deterministic bodies and probabilistic conclusions such
that the random choice is applied upon each firing of a rule, and they make no as-
sumption of acyclicity or stratifiability on the programs. These include the Constraint
Logic Programming, denoted CLP(BN) [Costa et al. 2003], the Independent Choice
Logic (ICL) [Poole 2008], P-log [Baral et al. 2009], the Causal Probabilistic logic (CP-
logic) [Vennekens et al. 2009], and the Distributional Clauses (DC) [Gutmann et al.
2011; Nitti et al. 2016].

Yet, each of these models makes substantial assumptions in order to define the prob-
abilistic semantics, assumptions that we are able to avoid in PPDL. In CLP(BN) the
assumption is that each random value can be tracked to precisely one grounded rule
that generates it. In particular, the semantics is not defined when a random value can
be generated by different two groundings of a rule (when the distribution may entail
different parameters each time), as in the case where existential variables appear in
the body. Moreover, it is not clear how their semantics can be extended to guarantee
independence of the chase order.

In ICL the assumption is that the rules are acyclic in their grounded version. That
is, there is assignment of a natural number (stratum) to each ground atom so that the
number assigned to the head of each clause greater than those of the atoms in the
body. For instance, the natural program that tests whether a graph contains a cycle is
not acyclic in this sense. In DC this assumption is weakened to the requirement of be-
ing “distribution stratified.” This means that the number assigned to the head of each
clause is greater or equal to those of the atoms in the body (hence, recursion is allowed
within a stratum), but distributional heads should have a strictly higher number. Yet,
it is not clear how stratification at the ground level can be verified. As an example, con-
sider the following PPDL program, simulating announcement propagation in a social
network.

Shares(x,Flip[0.2]) ← Knows(x)

Knows(x) ← Follows(x, y),Shares(y, 1)

The program states that if a person knows about the announcement, then she shares
it with probability 0.2, and she knows about the announcement whenever a friend of
her shares it. In DC, the corresponding program is the following.

Shares(x) ∼ [0.2 : 1, 0.8 : 0] :- Knows(x)

Knows(x) :- Follows(x, y),'(Shares(y)) is 1

In the above program, Shares(z) represents a random variable (for every z), and
'(Shares(z)) stands for its sampled value. Now, suppose that we have two people that
follow each other, say Alice and Bob. The stratum assigned to the head Shares(Alice) ∼
[0.2 : 1, 0.8 : 0] should be higher than that of Knows(Alice), which should be at least that
of '(Shares(Bob)). Moreover, DC requires the stratum of '(Shares(Bob)) to be at least
that of Shares(Bob) ∼ [0.2 : 1, 0.8 : 0]. Hence, the stratum of Shares(Alice) ∼ [0.2 : 1, 0.8 :
0] should be higher than that of Shares(Bob) ∼ [0.2 : 1, 0.8 : 0]. Yet, due to symmetry the
same should hold when replacing Alice and Bob. Therefore, the above DC program is,
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in fact, illegal. We mention here that DC supports significant features that PPDL does
not, such as continuous numerical distributions and negation.

In P-log several assumptions are made (phrased as Conditions 1–3) the boil down
to saying that in every possible world a random value can be mapped to precisely one
ground rule that produced it, but it is not clear how such conditions can be verified.
In CP-logic the assumption is that each ground rule can fire at most once. In particu-
lar, by adding to a program a rule that is equivalent (or even identical) to an existing
rule, we may change the semantics of the program, since the new rule may fire addi-
tional random choices. Hence, CP-logic is not invariant under equivalence-preserving
transformations.

Another significant difference from P-log and CP-logic is that in each of the two,
the number of random choices is determined by the number of groundings, and in
fact, such programs can be translated into ProbLog. In particular, the translation from
SCFG that we showed in Section 6.2 can be carried out in neither P-log nor CP-logic.

8. CONCLUDING REMARKS
We proposed and investigated a declarative framework for specifying statistical mod-
els in the context of a database, based on a conservative extension of Datalog with
numerical distributions. The framework differs from existing probabilistic program-
ming languages not only due to the tight integration with a database, but also because
of its fully declarative rule-based language: the interpretation of a program is inde-
pendent of transformations (such as reordering or duplication of rules) that preserve
the first-order semantics. This was achieved by treating a GDatalog[∆] program as a
Datalog program with existentially quantified variables in the conclusion of rules, and
applying a suitable variant of the chase.

This work opens various important directions for future work. One direction is to
establish tractable conditions that guarantee that a given input is legal. Also, an inter-
esting problem is to detect conditions under which the chase is a self conjugate [Raiffa
and Schlaifer 1961], that is, the probability space µP,I is captured by a chase procedure
without backtracking.

Our ultimate goal is to develop a full-fledged PP system based on the declarative
specification language that we proposed here. In this work we focused on the founda-
tions and robustness of the specification language. As in other PP languages, inference,
such as computing the marginal probability of an IDB fact, is a challenging aspect, and
we plan to investigate the application of common approaches such as sampling-based
and lifted-inference techniques. We believe that the declarative nature of PPDL can
lead to identifying interesting fragments that admit tractable complexity due to spe-
cialized techniques, just as is the case for Datalog evaluation in databases.

Practical applications will require further extensions to the language. We plan to
support continuous probability distributions (e.g., continuous uniform, Pareto, and
Gaussian), which are often used in statistical models. Syntactically, this extension is
straightforward: we just need to include these distributions in ∆. Likewise, extend-
ing the probabilistic chase is also straightforward. More challenging is the seman-
tic analysis, and, in particular, the definition of the probability space induced by the
chase. We also plan to extend PPDL to support distributions that take a variable (and
unbounded) number of parameters. A simple example is the categorical distribution
where a single member of a finite domain of items is to be selected, each item with its
own probability; in this case we can adopt the repair-key operation of the world-set
algebra [Antova et al. 2007a; 2007b]. Finally, we plan to add support for multivariate
distributions, which are distributions with a support in Rk for k > 1 (where, again, k
can be variable and unbounded). Examples of popular such distributions are multino-
mial, Dirichlet, and multivariate Gaussian distribution.
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We are working on extending LogiQL [Halpin and Rugaber 2014], the programming
language of LogicBlox [Aref et al. 2015], with PPDL. An interesting syntactic and se-
mantic challenge is that a program should contain rules of two kinds: probabilistic
programming (i.e., PPDL rules) and inference over probabilistic programs (e.g., find
the most likely execution). The latter rules involve the major challenge of efficient in-
ference over PPDL. Towards that, our efforts fall in three different directions. First, we
implement samplers of random executions. Second, we translate programs of restricted
fragments into external statistical solvers (e.g., Bayesian Network and factor-graph li-
braries). Third, we are looking into fragments where we can apply exact and efficient
(lifted) inference.
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Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. 2011. Probabilistic Databases. Morgan &

Claypool Publishers.
Terese. 2003. Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science, Vol. 55. Cam-

bridge University Press.
Joost Vennekens, Marc Denecker, and Maurice Bruynooghe. 2009. CP-logic: A language of causal

probabilistic events and its relation to logic programming. TPLP 9, 3 (2009), 245–308.
DOI:http://dx.doi.org/10.1017/S1471068409003767

Jennifer Widom. 2008. Trio: a system for data, uncertainty, and lineage. In Managing and Mining Uncertain
Data, Charu Aggarwal (Ed.). Springer-Verlag, Chapter 5.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: before time.


