Rachunek lambda - ciąg dalszy

18 marca 2013

Siła wyrazu: logika zdaniowa

$$
\begin{gathered}
\text { true }=\lambda x y \cdot x \quad \text { false }=\lambda x y \cdot y \\
\text { if } P \text { then } Q \text { else } R=P Q R .
\end{gathered}
$$

It works:
if true then Q else $R \rightarrow_{\beta} Q$
if false then Q else $R \rightarrow_{\beta} R$.

Ordered pair

Pair $=$ Boolean selector:

$$
\begin{array}{rlrl}
\langle M, N\rangle & =\lambda x \cdot x M N ; \\
\pi_{i} & =\lambda x_{1} x_{2} \cdot x_{i} & (i=1,2) ; \\
\Pi_{i} & =\lambda p \cdot p \pi_{i} \quad & (i=1,2) .
\end{array}
$$

Ordered pair

Pair $=$ Boolean selector:

$$
\begin{array}{rlr}
\langle M, N\rangle & =\lambda x \cdot x M N \\
\pi_{i} & =\lambda x_{1} x_{2} \cdot x_{i} & (i=1,2) \\
\Pi_{i} & =\lambda p \cdot p \pi_{i} \quad & (i=1,2)
\end{array}
$$

It works:
$\Pi_{1}\langle M, N\rangle \rightarrow_{\beta}\langle M, N\rangle \pi_{1} \rightarrow_{\beta} M$.

Church's numerals

$$
c_{n}=\mathbf{n}=\lambda f x \cdot f^{n}(x),
$$

$$
\begin{aligned}
& \mathbf{0}=\lambda f x \cdot x \\
& \mathbf{1}=\lambda f x \cdot f x \\
& \mathbf{2}=\lambda f x \cdot f(f x) \\
& \mathbf{3}=\lambda f x \cdot f(f(f x)), \text { etc. }
\end{aligned}
$$

Some definable functions

- Successor:

$$
\mathbf{s u c c}=\lambda n f x . f(n f x)
$$

Some definable functions

- Successor:
$\boldsymbol{s u c c}=\lambda n f x . f(n f x) ;$
- Addition:
$\operatorname{add}=\lambda m n f x \cdot m f(n f x) ;$

Some definable functions

- Successor: $\boldsymbol{s u c c}=\lambda n f x . f(n f x) ;$
- Addition:
$\operatorname{add}=\lambda m n f x . m f(n f x) ;$
- Multiplication:
mult $=\lambda m n f x . m(n f) x ;$

Some definable functions

- Successor: $\operatorname{succ}=\lambda n f x . f(n f x) ;$
- Addition:
$\operatorname{add}=\lambda m n f x . m f(n f x) ;$
- Multiplication:
mult $=\lambda m n f x . m(n f) x ;$
- Exponentiation: $\quad \exp =\lambda m n f x . m n f x$;

Some definable functions

- Successor:
$\boldsymbol{s u c c}=\lambda n f x . f(n f x) ;$
- Addition:
$\operatorname{add}=\lambda m n f x . m f(n f x) ;$
- Multiplication: \quad mult $=\lambda m n f x \cdot m(n f) x$;
- Exponentiation: $\quad \exp =\lambda m n f x . m n f x$;
- Test for zero:
zero $=\lambda m \cdot m(\lambda y$. false $)$ true;

Predecessor is definable too

$$
p(n+1)=n, \quad p(0)=0
$$

Predecessor is definable too

$$
p(n+1)=n, \quad p(0)=0
$$

> Step $=\lambda p .\left\langle\boldsymbol{\operatorname { s u c c }}\left(p \pi_{1}\right), p \pi_{1}\right\rangle$ pred $=\lambda n .(n \operatorname{Step}\langle\mathbf{0}, \mathbf{0}\rangle) \pi_{2}$

Predecessor is definable too

$$
p(n+1)=n, \quad p(0)=0
$$

$$
\begin{aligned}
& \text { Step }=\lambda p .\left\langle\boldsymbol{\operatorname { s u c c }}\left(p \pi_{1}\right), p \pi_{1}\right\rangle \\
& \text { pred }=\lambda n .(n \operatorname{Step}\langle\mathbf{0}, \mathbf{0}\rangle) \pi_{2}
\end{aligned}
$$

How it works:

Predecessor is definable too

$$
p(n+1)=n, \quad p(0)=0
$$

$$
\begin{aligned}
& \text { Step }=\lambda p .\left\langle\operatorname{succ}\left(p \pi_{1}\right), p \pi_{1}\right\rangle \\
& \text { pred }=\lambda n .(n \operatorname{Step}\langle\mathbf{0}, \mathbf{0}\rangle) \pi_{2}
\end{aligned}
$$

How it works:

$$
\operatorname{Step}\langle 0,0\rangle \rightarrow_{\beta}\langle\mathbf{1}, \mathbf{0}\rangle
$$

Predecessor is definable too

$$
p(n+1)=n, \quad p(0)=0
$$

$$
\begin{aligned}
& \text { Step }=\lambda p .\left\langle\boldsymbol{\operatorname { s u c c }}\left(p \pi_{1}\right), p \pi_{1}\right\rangle \\
& \text { pred }=\lambda n .(n \operatorname{Step}\langle\mathbf{0}, \mathbf{0}\rangle) \pi_{2}
\end{aligned}
$$

How it works:

$$
\begin{aligned}
& \operatorname{Step}\langle\mathbf{0 , 0} 0\rangle \rightarrow_{\beta}\langle\mathbf{1}, \mathbf{0}\rangle \\
& \operatorname{Step}\left\langle\mathbf{1 , 0} 0 \rightarrow_{\beta}\langle\mathbf{2}, \mathbf{1}\rangle\right.
\end{aligned}
$$

Predecessor is definable too

$$
p(n+1)=n, \quad p(0)=0
$$

$$
\begin{aligned}
& \text { Step }=\lambda p .\left\langle\boldsymbol{\operatorname { s u c c }}\left(p \pi_{1}\right), p \pi_{1}\right\rangle \\
& \text { pred }=\lambda n .(n \operatorname{Step}\langle\mathbf{0}, \mathbf{0}\rangle) \pi_{2}
\end{aligned}
$$

How it works:

$$
\begin{aligned}
& \operatorname{Step}\langle\mathbf{0}, \mathbf{0}\rangle \rightarrow_{\beta}\langle\mathbf{1}, \mathbf{0}\rangle \\
& \operatorname{Step}\langle\mathbf{1 , 0}\rangle \rightarrow_{\beta}\langle\mathbf{2}, \mathbf{1}\rangle \\
& \operatorname{Step}\langle\mathbf{2}, \mathbf{1}\rangle \rightarrow_{\beta}\langle\mathbf{3}, \mathbf{2}\rangle,
\end{aligned}
$$

Predecessor is definable too

$$
p(n+1)=n, \quad p(0)=0
$$

$$
\begin{aligned}
& \text { Step }=\lambda p .\left\langle\operatorname{succ}\left(p \pi_{1}\right), p \pi_{1}\right\rangle \\
& \text { pred }=\lambda n .(n \operatorname{Step}\langle\mathbf{0}, \mathbf{0}\rangle) \pi_{2}
\end{aligned}
$$

How it works:

$$
\begin{aligned}
& \operatorname{Step}\langle\mathbf{0}, \mathbf{0}\rangle \rightarrow_{\beta}\langle\mathbf{1}, \mathbf{0}\rangle \\
& \operatorname{Step}\langle\mathbf{1}, \mathbf{0}\rangle \rightarrow_{\beta}\langle\mathbf{2}, \mathbf{1}\rangle \\
& \operatorname{Step}\langle\mathbf{2}, \mathbf{1}\rangle \rightarrow_{\beta}\langle\mathbf{3}, \mathbf{2}\rangle,
\end{aligned}
$$

and so on.

Undecidability

The following are undecidable problems:

- Given M and N, does $M \rightarrow_{\beta} N$ hold?

Undecidability

The following are undecidable problems:

- Given M and N, does $M \rightarrow{ }_{\beta} N$ hold?
- Given M and N, does $M={ }_{\beta} N$ hold?

Undecidability

The following are undecidable problems:

- Given M and N, does $M \rightarrow_{\beta} N$ hold?
- Given M and N, does $M={ }_{\beta} N$ hold?
- Given M, does M normalize?

Undecidability

The following are undecidable problems:

- Given M and N, does $M \rightarrow_{\beta} N$ hold?
- Given M and N, does $M={ }_{\beta} N$ hold?
- Given M, does M normalize?
- Given M, does M strongly normalize?

The standard theory

Adding equational axioms

Example

Add the axiom $\mathrm{K}=\mathrm{S}$ to the equational theory of λ-calculus.

Adding equational axioms

Example

Add the axiom $\mathrm{K}=\mathrm{S}$ to the equational theory of λ-calculus. Then, for every M, one proves:

$$
M=\mathrm{SI}(\mathrm{~K} M) \mathbf{I}=\mathrm{KI}(\mathrm{~K} M) \mathbf{I}=\mathbf{I} .
$$

This extension is inconsistent.

Adding equational axioms

Example

Add the axiom $\mathrm{K}=\mathrm{S}$ to the equational theory of λ-calculus. Then, for every M, one proves:

$$
M=\mathrm{SI}(\mathrm{~K} M) \mathbf{I}=\mathrm{KI}(\mathrm{~K} M) \mathbf{I}=\mathbf{I} .
$$

This extension is inconsistent.

Böhm Theorem
Let M, N be β-normal combinators with $M \neq{ }_{\beta \eta} N$. Then $M \vec{P}={ }_{\beta}$ true and $N \vec{P}={ }_{\beta}$ false, for some \vec{P}.

Böhm Trees (finite case)

$M=\lambda x y \cdot x(\lambda z \cdot x z y) y$

$N=\lambda x y \cdot x(\lambda z v . x z x v) y$

Böhm Trees: the difference

$M=\lambda x y \cdot x(\lambda z \cdot x z y) y$

$$
N=\lambda x y \cdot x(\lambda z v \cdot x z x v) y
$$

Trick: Applying M to $\lambda u v .\langle u, v\rangle$ gives $\lambda y .\langle\lambda z .\langle z, y\rangle, y\rangle$. And components can be extracted from a pair.

Discriminating terms

$$
M=\lambda x y \cdot x(\lambda z . x z y) y
$$

$$
N=\lambda x y \cdot x(\lambda z v \cdot x z x v) y
$$

Discriminating terms

$M=\lambda x y \cdot x(\lambda z \cdot x z y) y \quad N=\lambda x y \cdot x(\lambda z v \cdot x z x v) y$
Applying M and N to $P=\lambda u v .\langle u, v\rangle$, then to any Q yields:

$$
\langle\lambda z \cdot\langle z, Q\rangle, Q\rangle \quad\langle\lambda z v \cdot\langle z, P\rangle v, Q\rangle
$$

Discriminating terms

$M=\lambda x y \cdot x(\lambda z \cdot x z y) y \quad N=\lambda x y \cdot x(\lambda z v \cdot x z x v) y$
Applying M and N to $P=\lambda u v .\langle u, v\rangle$, then to any Q yields:
$\langle\lambda z .\langle z, Q\rangle, Q\rangle \quad\langle\lambda z v \cdot\langle z, P\rangle v, Q\rangle$
Next appply both to true, I, false to obtain:
Q

$$
P=\lambda u v \cdot\langle u, v\rangle
$$

Discriminating terms

$M=\lambda x y \cdot x(\lambda z \cdot x z y) y \quad N=\lambda x y \cdot x(\lambda z v \cdot x z x v) y$
Applying M and N to $P=\lambda u v .\langle u, v\rangle$, then to any Q yields:
$\langle\lambda z .\langle z, Q\rangle, Q\rangle \quad\langle\lambda z v \cdot\langle z, P\rangle v, Q\rangle$
Next appply both to true, I, false to obtain:
Q

$$
P=\lambda u v \cdot\langle u, v\rangle
$$

Choose $Q=\lambda u v w$. true and apply both sides to false, I, true:
true
false.

The Meaning of "Value" and "Undefined"

First idea: Value $=$ Normal form .
Undefined $=$ without normal form.

The Meaning of "Value" and "Undefined"

First idea: Value $=$ Normal form .
Undefined $=$ without normal form.
Can we identify all such terms?

The Meaning of "Value" and "Undefined"

First idea: Value $=$ Normal form .
Undefined $=$ without normal form.
Can we identify all such terms?
No: for instance $\lambda x . x \mathrm{~K} \Omega=\lambda x . x \mathbf{S} \Omega$ implies $\mathbf{K}=\mathbf{S}$ (apply both to K).

The Meaning of "Value" and "Undefined"

First idea: Value $=$ Normal form.
Undefined $=$ without normal form.
Can we identify all such terms?
No: for instance $\lambda x . x \mathrm{~K} \Omega=\lambda x . x \mathbf{S} \Omega$ implies $\mathbf{K}=\mathbf{S}$ (apply both to K).

Moral: A term without normal form can still behave in a well-defined way. In a sense it has a ",value".

The Meaning of "Value" and "Undefined"

First idea: Value $=$ Normal form .
Undefined $=$ without normal form.
Can we identify all such terms?
No: for instance $\lambda x . x \mathrm{~K} \Omega=\lambda x . x \mathbf{S} \Omega$ implies $\mathbf{K}=\mathbf{S}$ (apply both to K).

Moral: A term without normal form can still behave in a well-defined way. In a sense it has a „value".

Better idea: Value $=$ Head normal form. Undefined $=$ without head normal form.

Solvability

A closed term is solvable iff $M \vec{P}={ }_{\beta} \mathbf{I}$, for some closed \vec{P}.

Solvability

A closed term is solvable iff $M \vec{P}={ }_{\beta} \mathbf{I}$, for some closed \vec{P}. If $\mathrm{FV}(M)=\vec{x}$ then M is solvable iff $\lambda \vec{x} M$ is solvable.

Solvability

A closed term is solvable iff $M \vec{P}={ }_{\beta} \mathbf{I}$, for some closed \vec{P}. If $\mathrm{FV}(M)=\vec{x}$ then M is solvable iff $\lambda \vec{x} M$ is solvable.

Theorem
A term is solvable iff it has a head normal form.

Solvability

A closed term is solvable iff $M \vec{P}={ }_{\beta} \mathbf{I}$, for some closed \vec{P}. If $\mathrm{FV}(M)=\vec{x}$ then M is solvable iff $\lambda \vec{x} M$ is solvable.

Theorem
A term is solvable iff it has a head normal form.
Proof for closed terms:
(\Rightarrow) If $M \vec{P}={ }_{\beta}$ I then $M \vec{P} \rightarrow_{\beta}$ I. If $M \vec{P}$ head normalizes then also M must head normalize.

Solvability

A closed term is solvable iff $M \vec{P}={ }_{\beta} \mathbf{I}$, for some closed \vec{P}. If $\mathrm{FV}(M)=\vec{x}$ then M is solvable iff $\lambda \vec{x} M$ is solvable.

Theorem
A term is solvable iff it has a head normal form.
Proof for closed terms:
(\Rightarrow) If $M \vec{P}={ }_{\beta}$ I then $M \vec{P} \rightarrow_{\beta}$ I. If $M \vec{P}$ head normalizes then also M must head normalize.
(\Leftarrow) If $M={ }_{\beta} \lambda x_{1} x_{2} \ldots x_{n} \cdot x_{i} R_{1} \ldots R_{m}$ then $M P \ldots P=\mathbf{I}$, for $P=\lambda y_{1} \ldots y_{m} . \mathbf{I}$.

The standard theory

We identify all unsolvable terms as "undefined".

The standard theory

We identify all unsolvable terms as "undefined".

Which solvable terms may be now be consistently identified?

The standard theory

We identify all unsolvable terms as "undefined".

Which solvable terms may be now be consistently identified?

We cannot classify terms by their head normal forms.
Too many of them!

The standard theory

We identify all unsolvable terms as "undefined".

Which solvable terms may be now be consistently identified?

We cannot classify terms by their head normal forms.
Too many of them!

We can only observe their behaviour.

Observational equivalence

Terms M, N with $\mathrm{FV}(M) \cup \mathrm{FV}(N)=\vec{x}$, are observationally equivalent $(M \equiv N$) when, for all closed P :
$P(\lambda \vec{x} . M)$ is solvable $\Longleftrightarrow P(\lambda \vec{x} . N)$ is solvable

Observational equivalence

Terms M, N with $\mathrm{FV}(M) \cup \mathrm{FV}(N)=\vec{x}$, are observationally equivalent $(M \equiv N$) when, for all closed P : $P(\lambda \vec{x} . M)$ is solvable $\Longleftrightarrow P(\lambda \vec{x} . N)$ is solvable

Put it differently:
$C[M]$ is solvable $\Longleftrightarrow C[N]$ is solvable

Observational equivalence

Terms M, N with $\mathrm{FV}(M) \cup \mathrm{FV}(N)=\vec{x}$, are observationally equivalent ($M \equiv N$) when, for all closed P : $P(\lambda \vec{x} . M)$ is solvable $\Longleftrightarrow P(\lambda \vec{x} . N)$ is solvable

Put it differently:
$C[M]$ is solvable $\Longleftrightarrow C[N]$ is solvable
Note: If $M={ }_{\eta} N$ then $M \equiv N$.

Böhm Trees

If M has a hnf N then $B T(M)=B T(N)$.
If M is unsolvable then $B T(M)=\perp$.

Example: $\mathbf{J}=\mathbf{Y}(\lambda f x y \cdot x(f y))$

Write Φ for $\lambda f x y \cdot x(f y))$. Then:
$\mathbf{J}=\mathbf{Y} \Phi={ }_{\beta} \Phi \mathbf{J}$

Example: $\mathbf{J}=\mathbf{Y}(\lambda f x y \cdot x(f y))$

Write Φ for $\left.\lambda f_{x y} . x(f y)\right)$. Then:
$\mathbf{J}=\mathbf{Y} \Phi={ }_{\beta} \Phi \mathbf{J}={ }_{\beta} \lambda x y \cdot x(\mathrm{~J} y)$

Example: $\mathbf{J}=\mathbf{Y}(\lambda f x y \cdot x(f y))$

Write Φ for $\lambda f x y \cdot x(f y))$. Then:

$$
\mathbf{J}=\mathbf{Y} \Phi={ }_{\beta} \Phi \mathbf{J}={ }_{\beta} \lambda x y \cdot x(\mathbf{J} y)={ }_{\beta} \lambda x y_{0} \cdot x\left(\Phi \mathbf{J} y_{0}\right)
$$

Example: $\mathbf{J}=\mathbf{Y}(\lambda f x y \cdot x(f y))$

Write Φ for $\left.\lambda f_{x y} . x(f y)\right)$. Then:
$\mathbf{J}=\mathbf{Y} \Phi={ }_{\beta} \Phi \mathbf{J}={ }_{\beta} \lambda x y \cdot x(\mathrm{~J} y)={ }_{\beta} \lambda x y_{0} \cdot x\left(\Phi \mathrm{~J} y_{0}\right)$
$={ }_{\beta} \lambda x y_{0} \cdot x\left(\lambda y_{1} \cdot y_{0}\left(\mathrm{~J} y_{1}\right)\right)$

Example: $\mathbf{J}=\mathbf{Y}(\lambda f x y \cdot x(f y))$

Write Φ for $\left.\lambda f_{x y} . x(f y)\right)$. Then:
$\mathbf{J}=\mathbf{Y} \Phi={ }_{\beta} \Phi \mathbf{J}={ }_{\beta} \lambda x y \cdot x(\mathrm{~J} y)={ }_{\beta} \lambda x y_{0} \cdot x\left(\Phi \mathbf{J} y_{0}\right)$
$={ }_{\beta} \lambda x y_{0} \cdot x\left(\lambda y_{1} \cdot y_{0}\left(\mathrm{~J} y_{1}\right)\right)={ }_{\beta} \lambda x y_{0} \cdot x\left(\lambda y_{1} \cdot y_{0}\left(\Phi J y_{1}\right)\right)={ }_{\beta} \ldots$

Example: $\mathbf{J}=\mathbf{Y}(\lambda f x y \cdot x(f y))$

Write Φ for $\left.\lambda f_{x y} . x(f y)\right)$. Then:
$\mathbf{J}=\mathbf{Y} \Phi={ }_{\beta} \Phi \mathbf{J}={ }_{\beta} \lambda x y \cdot x(\mathbf{J} y)={ }_{\beta} \lambda x y_{0} \cdot x\left(\Phi \mathbf{J} y_{0}\right)$
$={ }_{\beta} \lambda x y_{0} \cdot x\left(\lambda y_{1} \cdot y_{0}\left(J y_{1}\right)\right)={ }_{\beta} \lambda x y_{0} \cdot x\left(\lambda y_{1} \cdot y_{0}\left(\Phi \mathrm{~J} y_{1}\right)\right)={ }_{\beta} \ldots$

The tree $B T(J)$ consists of one infinite path:
$\lambda x y_{0} \cdot x-\lambda y_{1} \cdot y_{0}-\lambda y_{2} \cdot y_{1}-\lambda y_{3} \cdot y_{2}-\cdots$

Example: $\mathbf{J}=\mathbf{Y}(\lambda f x y \cdot x(f y))$

The tree $B T(J)$ consists of one infinite path:
$\lambda x y_{0} \cdot x-\lambda y_{1} \cdot y_{0}-\lambda y_{2} \cdot y_{1}-\lambda y_{3} \cdot y_{2}-\cdots$

Example: $\mathbf{J}=\mathbf{Y}(\lambda f x y \cdot x(f y))$

The tree $B T(J)$ consists of one infinite path:
$\lambda x y_{0} \cdot x-\lambda y_{1} \cdot y_{0}-\lambda y_{2} \cdot y_{1}-\lambda y_{3} \cdot y_{2}-\cdots$

The tree $B T(\mathbf{I})$ consists of a single node: $\lambda x x$

Example: $\mathbf{J}=\mathbf{Y}(\lambda f x y \cdot x(f y))$

The tree $B T(J)$ consists of one infinite path:
$\lambda x y_{0} \cdot x-\lambda y_{1} \cdot y_{0}-\lambda y_{2} \cdot y_{1}-\lambda y_{3} \cdot y_{2}-\cdots$

The tree $B T(\mathbf{I})$ consists of a single node: $\lambda x x$

The first can be obtained from the second by means of an infinite sequence of η-expansions:

Example: $\mathbf{J}=\mathbf{Y}(\lambda f x y \cdot x(f y))$

The tree $B T(J)$ consists of one infinite path:
$\lambda x y_{0} \cdot x-\lambda y_{1} \cdot y_{0}-\lambda y_{2} \cdot y_{1}-\lambda y_{3} \cdot y_{2}-\cdots$

The tree $B T(\mathbf{I})$ consists of a single node: $\lambda x x$

The first can be obtained from the second by means of an infinite sequence of η-expansions:
$\lambda x x \quad \eta \leftarrow \quad \lambda x y_{0} \cdot x-y_{0}$

Example: $\mathbf{J}=\mathbf{Y}(\lambda f x y \cdot x(f y))$

The tree $B T(J)$ consists of one infinite path:
$\lambda x y_{0} \cdot x-\lambda y_{1} \cdot y_{0}-\lambda y_{2} \cdot y_{1}-\lambda y_{3} \cdot y_{2}-\cdots$

The tree $B T(\mathbf{I})$ consists of a single node: $\lambda x x$

The first can be obtained from the second by means of an infinite sequence of η-expansions:
$\lambda x x \quad \eta \leftarrow \quad \lambda x y_{0} \cdot x-y_{0} \quad{ }_{\eta} \leftarrow \quad \lambda x y_{0} \cdot x-\lambda y_{1} \cdot y_{0}-y_{1}$

When are terms observationally equivalent?

Böhm trees B i B^{\prime} are η-equivalent $\left(B \approx_{\eta} B^{\prime}\right)$, if there are two (possibly infinite) sequences of η-expansions:

$$
\begin{aligned}
& B=B_{0}{ }_{\eta} \leftarrow B_{1}{ }_{\eta} \leftarrow B_{2}{ }_{\eta} \leftarrow B_{3}{ }_{\eta} \leftarrow \cdots \\
& B^{\prime}=B_{0}^{\prime}{ }_{\eta} \leftarrow B_{1}^{\prime}{ }_{\eta} \leftarrow B_{2}^{\prime} \leftarrow B_{3}^{\prime} \leftarrow \cdots
\end{aligned}
$$

converging to the same (possibly infinite) tree.

When are terms observationally equivalent?

Böhm trees B i B^{\prime} are η-equivalent $\left(B \approx_{\eta} B^{\prime}\right)$, if there are two (possibly infinite) sequences of η-expansions:

$$
\begin{aligned}
& B=B_{0}{ }_{\eta} \leftarrow B_{1}{ }_{\eta} \leftarrow B_{2}{ }_{\eta} \leftarrow B_{3}{ }_{\eta} \leftarrow \cdots \\
& B^{\prime}=B_{0}^{\prime}{ }_{\eta} \leftarrow B_{1}^{\prime}{ }_{\eta} \leftarrow B_{2}^{\prime} \leftarrow B_{3}^{\prime} \leftarrow \cdots
\end{aligned}
$$

converging to the same (possibly infinite) tree.
Theorem
Terms M and N are observationally equivalent

$$
\text { if and only if } B T(M) \approx_{\eta} B T(N) \text {. }
$$

Semantics

Goal: Interpret any term M as an element $\llbracket M \rrbracket$ of some structure A, so that $M={ }_{\beta} N$ implies $\llbracket M \rrbracket=\llbracket N \rrbracket$.

Semantics

Goal: Interpret any term M as an element $\llbracket M \rrbracket$ of some structure A, so that $M={ }_{\beta} N$ implies $\llbracket M \rrbracket=\llbracket N \rrbracket$.

More precisely, $\llbracket M \rrbracket$ may depend on a valuation:

$$
v: \operatorname{Var} \rightarrow A .
$$

Write $\llbracket M \rrbracket_{v}$, for the value of M under v.

Lambda-interpretation: $\mathcal{A}=\langle A, \cdot, \llbracket \rrbracket\rangle$

Application . is a binary operation in A;

Lambda-interpretation: $\mathcal{A}=\langle A, \cdot, \llbracket \rrbracket\rangle$

Application - is a binary operation in A;

$$
\llbracket \rrbracket: \Lambda \times A^{V a r} \rightarrow A .
$$

Write $\llbracket M \rrbracket_{v}$ instead of $\llbracket \rrbracket(M, v)$.

Lambda-interpretation: $\mathcal{A}=\langle A, \cdot, \llbracket \rrbracket\rangle$

Application - is a binary operation in A;

$$
\llbracket \mathbb{\|}: \Lambda \times A^{V a r} \rightarrow A
$$

Write $\llbracket M \rrbracket_{v}$ instead of $\llbracket \rrbracket(M, v)$.

Postulates:
(a) $\llbracket x \rrbracket_{v}=v(x)$;
(b) $\llbracket P Q \rrbracket_{v}=\llbracket P \rrbracket_{v} \cdot \llbracket Q \rrbracket_{v}$;
(c) $\llbracket \lambda x . P \rrbracket_{v} \cdot a=\llbracket P \rrbracket_{v[x \mapsto a]}$, for any $a \in A$;
(d) If $\left.v\right|_{\mathrm{FV}(P)}=\left.u\right|_{\mathrm{FV}(P)}$, then $\llbracket P \rrbracket_{v}=\llbracket P \rrbracket_{u}$.

Extensionality

Write $a \approx b$ when $a \cdot c=b \cdot c$, for all c.

Extensionality

Write $a \approx b$ when $a \cdot c=b \cdot c$, for all c.

Extensional interpretation: $a \approx b$ implies $a=b$, for all a, b.

Extensionality

Write $a \approx b$ when $a \cdot c=b \cdot c$, for all c.

Extensional interpretation: $a \approx b$ implies $a=b$, for all a, b.

Weakly extensional interpretation:
$\llbracket \lambda x . M \rrbracket_{v} \approx \llbracket \lambda x . N \rrbracket_{v}$ implies $\llbracket \lambda x \cdot M \rrbracket_{v}=\llbracket \lambda x . N \rrbracket_{v}$, for all N, v.

Extensionality

Write $a \approx b$ when $a \cdot c=b \cdot c$, for all c.
Extensional interpretation: $a \approx b$ implies $a=b$, for all a, b.
Weakly extensional interpretation:
$\llbracket \lambda x . M \rrbracket_{v} \approx \llbracket \lambda x . N \rrbracket_{v}$ implies $\llbracket \lambda x . M \rrbracket_{v}=\llbracket \lambda x . N \rrbracket_{v}$, for all N, v.
Meaning: Abstraction makes sense algebraically.
(N.B. $\llbracket \lambda x . M \rrbracket_{v} \approx \llbracket \lambda x . N \rrbracket_{v}$ iff $\llbracket M \rrbracket_{v[x \mapsto a]}=\llbracket N \rrbracket_{v[x \mapsto a]}$, all a.)

Lambda-model

Lambda-model: Weakly extensional lambda-interpretation:

$$
\llbracket \lambda x \cdot M \rrbracket_{v} \approx \llbracket \lambda x \cdot N \rrbracket_{v} \quad \text { implies } \quad \llbracket \lambda x \cdot M \rrbracket_{v}=\llbracket \lambda x . N \rrbracket_{v}
$$

Very Important Lemma

Lemma
In every lambda-model,

$$
\llbracket M[x:=N] \rrbracket_{v}=\llbracket M \rrbracket_{v\left[x \mapsto \llbracket\left[N \rrbracket_{v}\right]\right.} .
$$

Very Important Lemma

Lemma

In every lambda-model,

$$
\llbracket M[x:=N] \rrbracket_{v}=\llbracket M \rrbracket_{v\left[x \mapsto \llbracket\left[N \rrbracket_{v}\right]\right.} .
$$

Proof: Induction wrt M. Case of λ with $x \notin \mathrm{FV}(N)$.
$\llbracket(\lambda y P)[x:=N] \rrbracket_{v\left[x \mapsto \llbracket N \rrbracket_{v}\right]} \cdot a=\llbracket \lambda y \cdot P[x:=N] \rrbracket_{v} \cdot a$
$=\llbracket P[x:=N] \rrbracket_{v[y \mapsto a]}=\llbracket P \rrbracket_{v[y \mapsto a]\left[x \mapsto\left[N \|_{v y \mapsto a]}\right]\right.}$
$=\llbracket P \rrbracket_{v[y \mapsto a]\left[x \mapsto \llbracket N \rrbracket_{v}\right]}=\llbracket \lambda y . P \rrbracket_{v\left[x \mapsto \llbracket \mathbb{N} \rrbracket_{v}\right]} \cdot a$, for all a.
Therefore $\llbracket(\lambda y P)[x:=N] \rrbracket_{v\left[x \mapsto \llbracket N \rrbracket_{v}\right]}=\llbracket(\lambda y . P) \rrbracket_{v\left[x \mapsto \llbracket\left[N \rrbracket_{v}\right]\right.}$.

Soundness

Proposition

Every lambda-model is a "lambda-algebra":

$$
M={ }_{\beta} N \text { implies } \quad \llbracket M \rrbracket_{v}=\llbracket N \rrbracket_{v}
$$

Proof: Induction wrt $M={ }_{\beta} N$. Non-immediate cases are two:
(Beta)
$\llbracket(\lambda x . P) Q \rrbracket_{v}=\llbracket \lambda x \cdot P \rrbracket_{v} \cdot \llbracket Q \rrbracket_{v}=\llbracket P \rrbracket_{\left.v \mid x \mapsto \llbracket Q \rrbracket_{v}\right]}=\llbracket P\left[x:=Q \rrbracket \rrbracket_{v}\right.$.

Soundness

Proposition

Every lambda-model is a "lambda-algebra":

$$
M={ }_{\beta} N \quad \text { implies } \quad \llbracket M \rrbracket_{v}=\llbracket N \rrbracket_{v}
$$

Proof: Induction wrt $M={ }_{\beta} N$. Non-immediate cases are two:
(Beta)
$\llbracket(\lambda x . P) Q \rrbracket_{v}=\llbracket \lambda x \cdot P \rrbracket_{v} \cdot \llbracket Q \rrbracket_{v}=\llbracket P \rrbracket_{v\left[x \mapsto \llbracket Q \rrbracket_{v}\right]}=\llbracket P\left[x:=Q \rrbracket \rrbracket_{v}\right.$.
(Xi)

Let $P={ }_{\beta} Q$ and let $M=\lambda x . P, N=\lambda x . Q$. Then
$\llbracket M \rrbracket_{v} \cdot a=\llbracket P \rrbracket_{v[x \mapsto a]}=\llbracket Q \rrbracket_{v[x \mapsto a]}=\llbracket N \rrbracket_{v} \cdot a$, for all a.

Completeness

Theorem

The following are equivalent:

1) $M={ }_{\beta} N$;
2) $\mathcal{A} \models M=N$, for every lambda-model \mathcal{A}.

Proof.
(1) \Rightarrow (2) By soundness.
$(2) \Rightarrow(1)$ Because term model is a lambda-model.

Complete partial orders

Let $\langle A, \leq\rangle$ be a partial order.

A subset $B \subseteq A$ is directed when for every $a, b \in B$ there is $c \in B$ with $a, b \leq c$.

Complete partial orders

Let $\langle A, \leq\rangle$ be a partial order.
A subset $B \subseteq A$ is directed when for every $a, b \in B$ there is $c \in B$ with $a, b \leq c$.

The set A is a complete partial order (cpo) when every directed subset has a supremum.

Complete partial orders

Let $\langle A, \leq\rangle$ be a partial order.

A subset $B \subseteq A$ is directed when for every $a, b \in B$ there is $c \in B$ with $a, b \leq c$.

The set A is a complete partial order (cpo) when every directed subset has a supremum.

It follows that every cpo has a least element $\perp=\sup \varnothing$.

Complete partial orders

Let $\langle A, \leq\rangle$ and $\langle B, \leq\rangle$ be cpos, and $f: A \rightarrow B$.

Then f is monotone if $a \leq a^{\prime}$ implies $f(a) \leq f\left(a^{\prime}\right)$.

Complete partial orders

Let $\langle A, \leq\rangle$ and $\langle B, \leq\rangle$ be cpos, and $f: A \rightarrow B$.
Then f is monotone if $a \leq a^{\prime}$ implies $f(a) \leq f\left(a^{\prime}\right)$.
And f is continuous if $\sup f(C)=f(\sup C)$ for every nonempty directed $C \subseteq A$.

Complete partial orders

Let $\langle A, \leq\rangle$ and $\langle B, \leq\rangle$ be cpos, and $f: A \rightarrow B$.
Then f is monotone if $a \leq a^{\prime}$ implies $f(a) \leq f\left(a^{\prime}\right)$.
And f is continuous if $\sup f(C)=f(\sup C)$ for every nonempty directed $C \subseteq A$.

Fact: Every continuous function is monotone.

Complete partial orders

Let $\langle A, \leq\rangle$ and $\langle B, \leq\rangle$ be cpos, and $f: A \rightarrow B$.
Then f is monotone if $a \leq a^{\prime}$ implies $f(a) \leq f\left(a^{\prime}\right)$.
And f is continuous if $\sup f(C)=f(\sup C)$ for every nonempty directed $C \subseteq A$.

Fact: Every continuous function is monotone.
$[A \rightarrow B]$ is the set of all continuous functions from A to B

Complete partial orders

If $\langle A, \leq\rangle$ and $\langle B, \leq\rangle$ are cpos then:

- The product $A \times B$ is a cpo with

$$
\langle a, b\rangle \leq\left\langle a^{\prime}, b^{\prime}\right\rangle \text { iff } a \leq a^{\prime} \text { and } b \leq b^{\prime}
$$

- The function space $[A \rightarrow B]$ is a cpo with

$$
f \leq g \text { iff } \forall a . f(a) \leq g(a)
$$

Continuous functions

Lemma
A function $f: A \times B \rightarrow C$ is continuous iff it is continuous wrt both arguments, i.e. all functions of the form dla. $f(a, b)$ and $\lambda>b . f(a, b)$ are continuous.

Continuous functions

Lemma
A function $f: A \times B \rightarrow C$ is continuous iff it is continuous wrt both arguments, i.e. all functions of the form dla. $f(a, b)$ and $\lambda>b . f(a, b)$ are continuous.

Proof.
(\Leftarrow) Take $X \subseteq A \times B$ directed. Let $X_{i}=\pi_{i}(X)$ for $i=1,2$.

Continuous functions

Lemma

A function $f: A \times B \rightarrow C$ is continuous iff it is continuous wrt both arguments, i.e. all functions of the form dla. $f(a, b)$ and $\lambda>b . f(a, b)$ are continuous.

Proof.
(\Leftarrow) Take $X \subseteq A \times B$ directed. Let $X_{i}=\pi_{i}(X)$ for $i=1,2$.
Step 1: If $\langle a, b\rangle \in X_{1} \times X_{2}$ then $\langle a, b\rangle \leq\left\langle a^{\prime}, b^{\prime}\right\rangle \in X$.

Continuous functions

Lemma

A function $f: A \times B \rightarrow C$ is continuous iff it is continuous wrt both arguments, i.e. all functions of the form dla. $f(a, b)$ and $\lambda>b . f(a, b)$ are continuous.

Proof.
(\Leftarrow) Take $X \subseteq A \times B$ directed. Let $X_{i}=\pi_{i}(X)$ for $i=1,2$.
Step 1: If $\langle a, b\rangle \in X_{1} \times X_{2}$ then $\langle a, b\rangle \leq\left\langle a^{\prime}, b^{\prime}\right\rangle \in X$.
Step 2: Therefore $\sup X=\left\langle\sup X_{1}, \sup X_{2}\right\rangle=\left\langle a_{0}, b_{0}\right\rangle$. We show that $\left\langle f\left(a_{0}\right), f\left(b_{0}\right)\right\rangle$ is the supremum of $f(X)$.

Continuous functions

Lemma

A function $f: A \times B \rightarrow C$ is continuous iff it is continuous wrt both arguments, i.e. all functions of the form dla. $f(a, b)$ and $\lambda>b . f(a, b)$ are continuous.

Proof.

(\Leftarrow) Take $X \subseteq A \times B$ directed. Let $X_{i}=\pi_{i}(X)$ for $i=1,2$.
Step 1: If $\langle a, b\rangle \in X_{1} \times X_{2}$ then $\langle a, b\rangle \leq\left\langle a^{\prime}, b^{\prime}\right\rangle \in X$.
Step 2: Therefore $\sup X=\left\langle\sup X_{1}, \sup X_{2}\right\rangle=\left\langle a_{0}, b_{0}\right\rangle$. We show that $\left\langle f\left(a_{0}\right), f\left(b_{0}\right)\right\rangle$ is the supremum of $f(X)$. Let $c \geq f(X)$, then $c \geq f\langle a, b\rangle$ for all $\langle a, b\rangle \in X_{1} \times X_{2}$.

Continuous functions

Lemma

A function $f: A \times B \rightarrow C$ is continuous iff it is continuous wrt both arguments, i.e. all functions of the form गla. $f(a, b)$ and 入lb. $f(a, b)$ are continuous.

Proof.

(\Leftarrow) Take $X \subseteq A \times B$ directed. Let $X_{i}=\pi_{i}(X)$ for $i=1,2$.
Step 1: If $\langle a, b\rangle \in X_{1} \times X_{2}$ then $\langle a, b\rangle \leq\left\langle a^{\prime}, b^{\prime}\right\rangle \in X$.
Step 2: Therefore $\sup X=\left\langle\sup X_{1}, \sup X_{2}\right\rangle=\left\langle a_{0}, b_{0}\right\rangle$. We show that $\left\langle f\left(a_{0}\right), f\left(b_{0}\right)\right\rangle$ is the supremum of $f(X)$. Let $c \geq f(X)$, then $c \geq f\langle a, b\rangle$ for all $\langle a, b\rangle \in X_{1} \times X_{2}$. Fix a, to get $c \geq \sup _{b} f(a, b)=f\left(a, b_{0}\right)$.

Continuous functions

Lemma

A function $f: A \times B \rightarrow C$ is continuous iff it is continuous wrt both arguments, i.e. all functions of the form गla. $f(a, b)$ and 入lb. $f(a, b)$ are continuous.

Proof.

(\Leftarrow) Take $X \subseteq A \times B$ directed. Let $X_{i}=\pi_{i}(X)$ for $i=1,2$.
Step 1: If $\langle a, b\rangle \in X_{1} \times X_{2}$ then $\langle a, b\rangle \leq\left\langle a^{\prime}, b^{\prime}\right\rangle \in X$.
Step 2: Therefore $\sup X=\left\langle\sup X_{1}, \sup X_{2}\right\rangle=\left\langle a_{0}, b_{0}\right\rangle$. We show that $\left\langle f\left(a_{0}\right), f\left(b_{0}\right)\right\rangle$ is the supremum of $f(X)$. Let $c \geq f(X)$, then $c \geq f\langle a, b\rangle$ for all $\langle a, b\rangle \in X_{1} \times X_{2}$. Fix a, to get $c \geq \sup _{b} f(a, b)=f\left(a, b_{0}\right)$.
Fix b_{0}, to get $c \geq \sup _{\mathrm{a}} f\left(a, b_{0}\right)=f\left(a_{0}, b_{0}\right)$.

Continuous functions

Lemma

The application App: $[A \rightarrow B] \times A \rightarrow B$ is continuous.
Proof: Uses the previous lemma.

Lemma
The abstraction $A b s:[(A \times B) \rightarrow C] \rightarrow[A \rightarrow[B \rightarrow C]]$, given by $\operatorname{Abs}(F)(a)(b)=F(a, b)$, is continuous.

Reflexive сро

The cpo D is reflexive iff there are continuous functions
$F: D \rightarrow[D \rightarrow D]$ and $G:[D \rightarrow D] \rightarrow D$,

$$
\text { with } F \circ G=\operatorname{id}_{[D \rightarrow D]} \text {. }
$$

Reflexive cpo

The cpo D is reflexive iff there are continuous functions $F: D \rightarrow[D \rightarrow D]$ and $G:[D \rightarrow D] \rightarrow D$, with $F \circ G=\operatorname{id}_{[D \rightarrow D]}$.

Then F must be onto and G is injective.

Reflexive сро

The cpo D is reflexive iff there are continuous functions
$F: D \rightarrow[D \rightarrow D]$ and $G:[D \rightarrow D] \rightarrow D$,

$$
\text { with } F \circ G=\operatorname{id}_{[D \rightarrow D]} \text {. }
$$

Then F must be onto and G is injective.

The following are equivalent conditions:

$$
" G \circ F=\operatorname{id}_{D} ", \quad \text { " } G \text { onto", } \quad \text { " } F \text { injective". }
$$

Reflexive cpo

$$
F: D \rightarrow[D \rightarrow D], \quad G:[D \rightarrow D] \rightarrow D, \quad F \circ G=\mathrm{id} .
$$

Reflexive сро

$$
F: D \rightarrow[D \rightarrow D], \quad G:[D \rightarrow D] \rightarrow D, \quad F \circ G=\mathrm{id} .
$$

Define application as $a \cdot b=F(a)(b)$ so that $G(f) \cdot a=f(a)$.

Reflexive сро

$F: D \rightarrow[D \rightarrow D], \quad G:[D \rightarrow D] \rightarrow D, \quad F \circ G=i d$.
Define application as $a \cdot b=F(a)(b)$ so that $G(f) \cdot a=f(a)$.
Define interpretation as

- $\llbracket x \rrbracket_{v}=v(x)$;
- $\llbracket P Q \rrbracket_{v}=\llbracket P \rrbracket_{v} \cdot \llbracket Q \rrbracket_{v} ;$
- $\llbracket \lambda x . P \rrbracket_{v}=G\left(\lambda \mid a . \llbracket P \rrbracket_{v[x \mapsto a]}\right)$.

Reflexive cpo

$F: D \rightarrow[D \rightarrow D], \quad G:[D \rightarrow D] \rightarrow D, \quad F \circ G=i d$.
Define application as $a \cdot b=F(a)(b)$ so that $G(f) \cdot a=f(a)$.
Define interpretation as

- $\llbracket x \rrbracket_{v}=v(x)$;
- $\llbracket P Q \rrbracket_{v}=\llbracket P \rrbracket_{v} \cdot \llbracket Q \rrbracket_{v} ;$
- $\llbracket \lambda x . P \rrbracket_{v}=G\left(\lambda \mid a . \llbracket P \rrbracket_{v[x \mapsto a]}\right)$.

Fact: This is a (well-defined) lambda interpretation.
(Use continuity of App and Abs.)

Reflexive сро

Theorem
A reflexive cpo is a lambda-model.

Reflexive cpo

Theorem
A reflexive cpo is a lambda-model.

Proof.

Prove weak extensionality: let $\llbracket \lambda x \cdot M \rrbracket_{v} \cdot a=\llbracket \lambda x \cdot N \rrbracket_{v} \cdot a$, all a.
Note that $\llbracket \lambda x \cdot M \rrbracket_{v} \cdot a=G\left(\lambda l a . \llbracket M \rrbracket_{v[x \mapsto a]}\right) \cdot a=\llbracket M \rrbracket_{v[x \mapsto a]}$, and thus $\lambda \mid a \cdot \llbracket M \rrbracket_{v[x \mapsto a]}=\lambda \lambda a \cdot \llbracket N \rrbracket_{v[x \mapsto a]}$. By the injectivity of G, it follows that $\llbracket \lambda x \cdot M \rrbracket_{v}=\llbracket \lambda x \cdot N \rrbracket_{v}$.

