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W poprzednim odcinku: naturalna dedukcja

▶ Reguły wprowadzania spójników logicznych: jak można
udowodnić formułę danej postaci?

▶ Reguły eliminacji spójników: jak można wykorzystać
formułę tej postaci do udowodnienia innej?

◦

Dowód formalny

Dowód formalny osądu Γ ⊢ φ w naturalnej dedukcji,
to drzewo skończone, w którym każdemu wierzchołkowi
przypisano pewien osąd. Przy tym:

▶ Korzeniowi drzewa przypisano osąd Γ ⊢ φ.
▶ Osąd przypisany dowolnemu wierzchołkowi powstaje

z osądów przypisanych jego dzieciom poprzez
zastosowanie jednej z reguł wnioskowania.

▶ Liściom przypisano osądy postaci ∆, α ⊢ α.

Dowód osądu ⊢ φ nazywamy dowodem formuły φ.

◦

Reguły wnioskowania: aksjomat i implikacja

Γ, φ ⊢ φ (Ax)

Γ,A ⊢ B

Γ ⊢ A → B
(W→)

Γ ⊢ A Γ ⊢ A → B

Γ ⊢ B
(E→)

◦

Reguły dla koniunkcji

Γ ⊢ A Γ ⊢ B
(W∧)

Γ ⊢ A ∧ B

Γ ⊢ A ∧ B
(E∧)

Γ ⊢ A

Γ ⊢ A ∧ B
(E∧)

Γ ⊢ B

◦

Reguły dla alternatywy

Γ ⊢ A
(W∨)

Γ ⊢ A ∨ B

Γ ⊢ B
(W∨)

Γ ⊢ A ∨ B

Γ ⊢ A ∨ B Γ,A ⊢ C Γ,B ⊢ C
(E∨)

Γ ⊢ C

◦

Reguły dla prawdy, fałszu i negacji

(W⊤)
Γ ⊢ ⊤

Γ ⊢ ⊥
(E⊥)

Γ ⊢ A

Γ,A ⊢ ⊥
(W¬)

Γ ⊢ ¬A

Γ ⊢ ¬A Γ ⊢ A
(E¬)

Γ ⊢ ⊥

Γ,¬A ⊢ ⊥
(E¬¬)

Γ ⊢ A

◦

Poprawność i pełność (dla rachunku zdań)

Twierdzenie (o pełności)

▶ System naturalnej dedukcji jest poprawny: Jeśli formuła
ma dowód (jest twierdzeniem) to jest tautologią.

▶ System naturalnej dedukcji jest pełny : Każda tautologia
ma dowód.

◦



Poprawność

Twierdzenie: Jeśli osąd Γ ⊢ α ma dowód, to Γ |= α.

Dowód: Dowód jest przez indukcję ze względu
na wielkość. . . dowodu Γ ⊢ α.

Rozważamy kilka przypadków,
zależnie od ostatniej użytej reguły.

I o tym już była mowa w grudniu.

◦

Ale jak udowodnić pełność?

Można użyć lematu Kalmára. Zaleta: dowód jest prosty.

Wada: działa tylko dla klasycznego rachunku zdań.

No i o tym też już była mowa w grudniu.

◦

Użyjmy dla odmiany metody algebraicznej
Najpierw takie ćwiczenie. Znaczeniem formuł, zamiast zer
i jedynek, niech będą na przykład podzbiory płaszczyny.

Interpretacja ϖ jest taka, że ϖ(p) ⊆ R2 dla każdego symbolu
zdaniowego p.

▶ [[⊥]]ϖ = ∅ oraz [[⊤]]ϖ = R2;

▶ [[p]]ϖ = ϖ(p), gdy p jest symbolem zdaniowym;

▶ [[¬α]]ϖ = −[[α]]ϖ (dopełnienie);

▶ [[α ∨ β]]ϖ = [[α]]ϖ ∪ [[β]]ϖ;

▶ [[α ∧ β]]ϖ = [[α]]ϖ ∩ [[β]]ϖ;

▶ [[α → β]]ϖ = −[[α]]ϖ ∪ [[β]]ϖ

◦

Znaczenie implikacji

[[φ→ ψ]]ϖ = −[[φ]]ϖ ∪ [[ψ]]ϖ

Ćwiczenie

Formuła φ jest tautologią klasycznego rachunku zdań wtedy
i tylko wtedy, gdy [[φ]]ϖ = R2 przy każdej interpretacji ϖ na
płaszczyźnie.

Szkic dowodu (⇐) Jeśli ϱ jest interpretacją zerojedynkową,
to weźmy ϖ(p) = R2 gdy ϱ(p) = 1
oraz ϖ(p) = ∅, gdy ϱ(p) = 0.

Łatwo sprawdzić, że dla dowolnej formuły ψ zachodzą
równoważności:

[[ψ]]ϖ = R2 ⇔ [[ψ]]ϱ = 1 i [[ψ]]ϖ = ∅ ⇔ [[ψ]]ϱ = 0

A więc [[φ]]ϱ = 1.

Ćwiczenie

Formuła φ jest tautologią klasycznego rachunku zdań wtedy
i tylko wtedy, gdy [[φ]]ϖ = R2 przy każdej interpretacji ϖ na
płaszczyźnie.

Szkic dowodu (⇒) Teraz weźmy jakąś interpretację ϖ
na płaszczyźnie i dowolny punkt A ∈ R2. Rozpatrzmy
interpretację zerojedynkową ϱ:

ϱ(p) = 1 wtedy i tylko wtedy, gdy A ∈ ϖ(p).

Przez łatwą indukcję udowodnimy, że

[[φ]]ϱ = 1 wtedy i tylko wtedy, gdy A ∈ [[φ]]ϖ.

Ale φ jest tautologią i A jest dowolny, więc [[φ]]ϖ = R2.

Jak to można uogólnić?

Obserwacja 1: W naszym ćwiczeniu użyliśmy rodziny
zbiorów P(R2). Tak samo będzie dla każdej rodziny P(X ),
i nie tylko. Wystarczy jakiekolwiek ciało zbiorów.

Ciało zbiorów to taka rodzina zbiorów R ⊆ P(X ), że:

▶ ∅,X ∈ R;
▶ jeśli A,B ∈ R, to także A ∩ B ,A ∪ B ∈ R;
▶ jeśli A ∈ R, to także −A ∈ R.

(Dowód taki sam.)

Obserwacja 2: To w ogóle nie muszą być zbiory. Można
wziąć dowolną algebrę Boole’a.

Algebra Boole’a to uporządkowany zbiór ⟨B ,≤⟩ z elementem
najmniejszym 0 i największym 1, w którym są określone dwa
działania dwuargumentowe ∪ i ∩ i jedno jednoargumentowe
działanie −, w ten sposób, że dla każdych a, b, c ∈ B :

▶ a ∩ b jest kresem dolnym podzbioru {a, b};
▶ a ∪ b jest kresem górnym podzbioru {a, b};
▶ a ∪ −a = 1 i a ∩ −a = 0;
▶ a ∩ (b ∪ c) ≤ (a ∩ b) ∪ (a ∩ c).

Oczywiście każde ciało zbiorów jest algebrą Boole’a.

Twierdzenie Stone’a o reprezentacji Każda algebra
Boole’a jest izomorficzna z pewnym ciałem zbiorów.



Wniosek

Formuła jest jest tautologią klasycznego rachunku zdań
wtedy i tylko wtedy, gdy przyjmuje wartość 1
przy dowolnej interpretacji w dowolnej algebrze Boole’a.

Algebra formuł

Czy relacja ≤ w zbiorze F wszystkich formuł

α ≤ β ⇔ ⊢ α → β

jest relacją porządkującą?

Nie, bo nie jest antysymetryczna. No to weźmy relację
równoważności

α ∼ β ⇔ ⊢ α ↔ β

i uporządkujmy klasy abstrakcji.

Zbiór L = F/∼, uporządkowany relacją

[α]∼ ≤ [β]∼ ⇔ ⊢ α → β

nazywamy algebrą Lindenbauma-Tarskiego.

Ale czy ta relacja

[α]∼ ≤ [β]∼ ⇔ ⊢ α → β

to naprawdę jest porządek?

Zwrotność: Zawsze ⊢ α → α – to łatwe:

α ⊢ α
(W →)

⊢ α → α

Antysymetria: Jeśli ⊢ α → β oraz ⊢ β → α, to ⊢ α ↔ β.

Ale α ↔ β to tak naprawdę koniunkcja (α → β) ∧ (β → α).

⊢ α → β ⊢ β → α
(W∧)

⊢ (α → β) ∧ (β → α)

[α]∼ ≤ [β]∼ ⇔ ⊢ α → β

Przechodniość: Załóżmy ⊢ α → β oraz ⊢ β → γ.

Niech Γ = {α → β, β → γ}.

Γ, α ⊢ β → γ

Γ, α ⊢ α → β Γ, α ⊢ α
(E →)

Γ, α ⊢ β
(E →)

Γ, α ⊢ γ
(W →)

Γ ⊢ α → γ
(W →)

α → β ⊢ (β → γ) → (α → γ)
(W →)

⊢ (α → β) → (β → γ) → (α → γ)

Jeśli teraz ⊢ α → β i ⊢ β → α, to trzeba dwa razy użyć
reguły (E →) i dostaniemy ⊢ α → γ.

Łatwa, ale ważna uwaga

α ∼ β ⇔ ⊢ α ↔ β

(Pamiętamy, że α ↔ β to tak naprawdę koniunkcja
(α → β) ∧ (β → α).)

Fakt: Klasa 1 = [⊤]∼, to klasa wszystkich twierdzeń.

Dowód: Po pierwsze, jeśli ⊢ α, to także ⊤ ⊢ α, bo ⊤ można
wszędzie bezkarnie dopisać. (To się nazywa osłabianie.)
Stąd ⊢ ⊤ → α. Analogicznie ⊢ α → ⊤, bo ⊢ ⊤.

Po drugie, jeśli ⊢ ⊤ → α, to ⊢ α, bo ⊢ ⊤.

Algebra formuł

Zbiór L = F/∼, uporządkowany relacją

[α]∼ ≤ [β]∼ ⇔ ⊢ α → β

nazywamy algebrą Lindenbauma-Tarskiego.

Ale czy to jest algebra Boole’a?

Czy algebra formuł jest algebrą Boole’a?

Porządek jest: [α]∼ ≤ [β]∼ ⇔ ⊢ α → β

Operacje i stałe łatwo wskazać:

1 = [⊤]∼, 0 = [⊥]∼.

[α]∼ ∪ [β]∼ = [α ∨ β]∼
[α]∼ ∩ [β]∼ = [α ∧ β]∼
−[α]∼ = [¬α]∼.

Ale czy spełnione są wszystkie żądane warunki?

Czy algebra formuł jest algebrą Boole’a?

Czego potrzebujemy?

Alternatywa jest kresem górnym a koniunkcja dolnym:

▶ ⊢ α → α ∨ β oraz ⊢ β → α ∨ β;
▶ jeśli ⊢ α → γ i ⊢ β → γ, to ⊢ α ∨ β → γ;
▶ ⊢ α ∧ β → α oraz ⊢ α ∧ β → β;
▶ jeśli ⊢ γ → α i ⊢ γ → β, to ⊢ γ → α ∧ β.

Negacja jest dopełnieniem:

▶ ⊢ α ∧ ¬α → ⊥ oraz ⊢ α ∨ ¬α.

Jeszcze dystrybutywność:

▶ ⊢ α ∧ (β ∨ γ) → (α ∧ β) ∨ (α ∧ γ).



Chyba najtrudniejsza część

¬(α ∨ ¬α), α ⊢ α

¬(α ∨ ¬α), α ⊢ α ∨ ¬α ¬(α ∨ ¬α), α ⊢ ¬(α ∨ ¬α)

¬(α ∨ ¬α), α ⊢ ⊥

¬(α ∨ ¬α) ⊢ ¬α

¬(α ∨ ¬α) ⊢ α ∨ ¬α ¬(α ∨ ¬α) ⊢ ¬(α ∨ ¬α)

¬(α ∨ ¬α) ⊢ ⊥

⊢ α ∨ ¬α

Reszta łatwa.

Dowód twierdzenia o pełności

Załóżmy, że φ jest tautologią klasycznego rachunku zdań.
Zatem ma wartość 1 w każdej algebrze Boole’a przy każdym
wartościowaniu.

No to weźmy algebrę Lindenbauma L i wartościowanie
ϖ(p) = [p]∼. Wtedy [[α]]ϖ = [α]ϖ dla każdej formuły α
(łatwa indukcja).

W szczególności [[φ]]ϖ = [φ]ϖ.
A skoro to tautologia, to także [[φ]]ϖ = 1 = [⊤]∼.

Ale to właśnie znaczy, że ⊢ φ

Nieco silniejsza wersja twierdzenia o pełności

Twierdzenie (łatwe) Dla dowolnej formuły φ i dowolnego
skończonego zbioru formuł Γ zachodzi równoważność:

Γ |= φ wtw, gdy Γ ⊢ φ

Twierdzenie uogólnione: Dla dowolnej formuły φ
i dowolnego zbioru formuł Γ zachodzi równoważność:

Γ |= φ wtw, gdy Γ ⊢ φ

Ale co znaczy Γ ⊢ φ, jeśli Γ jest zbiorem nieskończonym?

Że Γ0 ⊢ φ, dla pewnego skończonego podzbioru Γ0 ⊆ Γ.

◦

Nieco silniejsza wersja twierdzenia o pełności

Twierdzenie uogólnione: Dla dowolnej formuły φ
i dowolnego zbioru formuł Γ zachodzi równoważność:

Γ |= φ wtw, gdy istnieje taki skończony
zbiór Γ0 ⊆ Γ, że Γ0 ⊢ φ.

Twierdzenie (o zwartości): Jeżeli Γ |= φ, to istnieje taki
skończony podzbiór Γ0 ⊆ Γ, że Γ0 |= φ.

◦

Zwartość

Twierdzenie (o zwartości): Jeżeli Γ |= φ, to istnieje taki
skończony podzbiór Γ0 ⊆ Γ, że Γ0 |= φ.

Wniosek: Jeżeli każdy skończony podzbiór zbioru Γ
jest spełnialny, to cały zbiór Γ jest spełnialny.

Dowód: Jeśli Γ nie jest spełnialny, to Γ |= ⊥. Z twierdzenia
o zwartości istnieje więc skończony niespełnialny podzbiór.

◦

Przykład: kolorowanie nieskończonego grafu

Niech G będzie nieskończonym zbiorem, w którym określono
symetryczną relację r .

(Myślimy o G jak o zbiorze wierzchołków nieskończonego
grafu i o relacji r jak o zbiorze krawędzi tego grafu.)

Relacja r jest trójkolorowa, gdy istnieje taki podział zbioru G
na trzy składowe, że żadne dwa elementy zbioru G , należące
do jednej składowej, nie są w relacji r .

(Wierzchołki połączone krawędziami są różnych kolorów.)

Relacja r jest trójkolorowa w podzbiorze H ⊆ G , gdy
trójkolorowa jest relacja r ∩ (H × H) w zbiorze H .

◦

Kolorowanie nieskończonego grafu

Twierdzenie: Jeśli relacja r jest trójkolorowa w każdym
skończonym podzbiorze zbioru G , to jest trójkolorowa w G .

Dowód: Zdefiniujemy pewien nieskończony zbiór Γ formuł
rachunku zdań. Użyjemy do tego (nieskończenie wielu)
zmiennych zdaniowych postaci pia, dla a ∈ G oraz i ∈ {1, 2, 3}.

Intuicja: pia czytamy „wierzchołek a ma kolor i ”.

W zbiorze Γ są takie formuły:

αa = (p1
a ∨ p2

a ∨ p3
a) ∧ ¬(p1

a ∧ p2
a) ∧ ¬(p1

a ∧ p3
a) ∧ ¬(p3

a ∧ p2
a),

dla każdego a ∈ G . (Element a ma dokładnie jeden kolor.)

βab = ¬(p1
a ∧ p1

b) ∧ ¬(p2
a ∧ p2

b) ∧ ¬(p3
a ∧ p3

b),
dla każdej pary ⟨a, b⟩ ∈ r . (Elementy a i b są różnego koloru.)

◦

Kolorowanie nieskończonego grafu

αa = (p1
a ∨ p2

a ∨ p3
a) ∧ ¬(p1

a ∧ p2
a) ∧ ¬(p1

a ∧ p3
a) ∧ ¬(p3

a ∧ p2
a)

βab = ¬(p1
a ∧ p1

b) ∧ ¬(p2
a ∧ p2

b) ∧ ¬(p3
a ∧ p3

b)

ΓH = {αa | a ∈ H} ∪ {βab | ⟨a, b⟩ ∈ r ∩ H × H}, dla H ⊆ G .

Γ = ΓG .

Zbiór ΓH jest spełnialny wtw, gdy relacja r jest trójkolorowa
w podzbiorze H . A tak jest dla wszystkich skończonych H .

Niech Γ′ ⊆ Γ będzie skończony. Wtedy Γ′ ⊆ ΓH dla pewnego
skończonego H ⊆ G . Zatem Γ′ jest spełnialny.

Z twierdzenia o zwartości cały zbiór Γ jest spełnialny, czyli
relacja r jest trójkolorowa.

◦



Naturalna dedukcja pierwszego rzędu

◦

Wprowadzanie ∀

Weźmy dowolne y . (Cel: A(y))
...
Zatem A(y).

Zatem ∀x A(x).

Γ ⊢ A(y)
y ̸∈ FV(Γ)

Γ ⊢ ∀x A(x)

◦

Eliminacja ∀

...
∀x A(x)

...
Ponieważ ∀x A(x), więc A(t).

gdzie t jest dowolnym termem (także zmienną).

Γ ⊢ ∀x A(x)

Γ ⊢ A(t)

◦

Wprowadzanie ∃

...
A(t)

...
Ponieważ A(t), więc ∃x A(x)

gdzie t jest dowolnym termem.

Γ ⊢ A(t)

Γ ⊢ ∃x A(x)

◦

Eliminacja ∃
∃x A(x)

...

Niech y będzie takie, że A(y) (Cel: B)
...
Zatem B .

Ponieważ ∃x A(x), więc B .

Γ ⊢ ∃x A(x) Γ,A(y) ⊢ B
(y ̸∈ FV(Γ) ∪ FV(B))

Γ ⊢ B

◦

Przykład: ∀x(P(x) → C ), ∃y P(y) ⊢ C

Załóżmy, że ∀x(P(x) → C ) oraz ∃y P(y) (Cel 1: C )
Niech y będzie takie, że P(y). (Cel 2: C )
Ponieważ ∀x(P(x) → C ), więc P(y) → C .
Ponieważ P(y) oraz P(y) → C , więc C .

Ponieważ ∃y P(y), więc C

Oznaczenie: Γ = {∀x(P(x) → C ),∃y P(y)}

Γ ⊢ ∃y P(y)

Γ,P(y) ⊢ ∀x(P(x) → C )

Γ,P(y) ⊢ P(y) → C Γ,P(y) ⊢ P(y)

Γ,P(y) ⊢ C

Γ ⊢ C

◦

Przykład: ∃x∀y P(x , y) → ∀y∃x P(x , y)

Załóżmy ∃x∀y P(x , y) (Cel: ∀y∃x P(x , y))
Weźmy dowolne y . (Cel: ∃x P(x , y))
Niech x będzie takie, że ∀y P(x , y). (Cel: ∃x P(x , y))
Ponieważ ∀y P(x , y), więc P(x , y).
Ponieważ P(x , y), więc ∃x P(x , y).

Ponieważ ∃x∀y P(x , y), więc ∃x P(x , y).
Zatem ∀y∃x P(x , y).

Zatem ∃x∀y P(x , y) → ∀y∃x P(x , y).

Ćwiczenie: Napisać dowód formalny.

◦

Twierdzenie o pełności

Twierdzenie: Dla dowolnej formuły φ i dowolnego
zbioru formuł Γ zachodzi równoważność:

Γ |= φ wtedy i tylko wtedy, gdy Γ ⊢ φ

Twierdzenie (o zwartości): Jeżeli Γ |= φ, to istnieje
taki skończony podzbiór Γ0 ⊆ Γ, że Γ0 |= φ.

◦



Zwartość logiki pierwszego rzędu

Twierdzenie (o zwartości): Jeżeli Γ |= φ, to istnieje
taki skończony podzbiór Γ0 ⊆ Γ, że Γ0 |= φ.

Wniosek: Jeżeli każdy skończony podzbiór zbioru Γ
jest spełnialny, to cały zbiór Γ jest spełnialny.

Dowód: Jeśli Γ nie jest spełnialny, to Γ |= ⊥. Z twierdzenia
o zwartości istnieje więc skończony niespełnialny podzbiór.

◦

Zastosowanie twierdzenia o zwartości

Fakt: Nie istnieje formuła φ spełnialna dokładnie w tych
modelach, gdzie interpretacją symbolu relacyjnego r jest
relacja dobrego porządku.

Dowód: Załóżmy, że takie φ istnieje. Zdefiniujmy formuły

αn = r(x2, x1) ∧ ¬r(x1, x2) ∧
r(x3, x2) ∧ ¬r(x2, x3) ∧
. . .
r(xn, xn−1) ∧ ¬r(xn−1, xn)

(Sens: wartości x1, x2, . . . , xn tworzą skończony ciąg malejący.)

Zbiór Γ = {αn | n > 1} ∪ {φ} jest niespełnialny.
Ale każdy jego skończony podzbiór Γ0 jest spełnialny,
na przykład w ⟨N,≤⟩. Sprzeczność.


