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My research interests are related to widely understood applications of mathematics in biology
and medicine. From the mathematical point of view I successfully use dynamical systems to analyze
models describing mainly various processes associated with tumor growth and treatment, as well as
immune system (also in the context of tumor-immune system interactions), heart action pathologies,
epidemiological and ecological processes, and dyadic interactions.

In all real processes there appear delays that reflect e.g. feedback loops or time necessary to
obtain the reaction of a given system to specific external signal, especially in systems with control;
c.f. Fig. 1. Delays are mainly used to reflect the time of duration of some process composed of several

Figure 1.

subprocesses we do not want to describe in more details. The reason for omitting these subprocesses
could be different, e.g. we would like to decrease the number of equations in the system or the details
of the heuristic description are not known; c.f. Fig. 2.

Figure 2.

Therefore, I frequently use infinite-dimensional semi-dynamical systems generated by delay dif-
ferential equations. That is why I include below some necessary information about such equations
and notation used in the theory of DDEs.

The book by J. Hale from 1977 [18] remains the main text-book on the theory of functional- dif-
ferential equations (which we call DDEs) for years. Completed version of this book was published in
1993 [19], and the next edition appeared in 1997. From application point of view other text-books are
important. I can mention the book of Y. Kuang [26] which includes, apart from theoretical base, many
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examples of models coming from applications. Similarly, in the text-book [14] many specific models
with delays are studied. Although recently new books on that topic have appeared, in particular by
O. Diekmann et al. [9], the text-book by Hale is still considered as the one to be cited in articles of
other researchers. In my papers I also gave citations to this book, although while studying a Hopf
bifurcation I apply the approach of Diekmann et al.

Let Ω denote an arbitrary space and ϕ : [a, b]→ Ω, [a, b] ⊂ � be an arbitrary function. Let us fix
τ > 0 and t ∈ [a + τ, b], under the assumption b > a + τ. We define a new function ϕt as a translation
of the function ϕ restricted to the interval [t − τ, t] into the interval [−τ, 0], that is

ϕt(s) = ϕ(s + t) dla s ∈ [−τ, 0] .

Figure 3 presents schematic construction of the function ϕt.

ϕ
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Figure 3. Construction of ϕt.

This translation allows to define semi-dynamical system in a Banach space Cτ of continuous
functions with a domain [−τ, 0] (with values in �n with standard supremum norm) associated with an
autonomous system of delay differential equations (DDEs)

ẋ(t) = F(xt) for t ≥ 0 , (1)

where x(t) ∈ �n, F : Cτ → �
n is a given operator, ẋ denotes a right-hand side derivative of x(·) with

respect to time. If a solution of System (1) with an arbitrary initial function ϕ0 ∈ Cτ is defined for all
t ≥ 0, then orbits form a semi-dynamical system {xt, t ≥ 0} ⊂ Cτ. DDEs generate semi-dynamical
systems as in general they are irreversible in time. This means that for a given initial function ϕ0

we are not able to prolog a solution on the interval [−2τ,−τ] without additional assumptions, and
prolongation on the next intervals of the delay length needs more and more assumptions.

In general, non-autonomous equations are also an object of theoretical study. In this type of
equations the right-hand side depends on time explicitly, F = F(t, xt), which may be important in
specific applications (in particular for processes with parameters depending on time, like in the case
of seasonal changes). Nevertheless, even for such equations we consider the space Cτ, in which most
of theorems known from ODEs have their analogues (like theorems about existence, uniqueness and
backward prolongation of solutions, as well as linearization theorem).

Let us notice that for any arbitrary τ > 0 one can always make time scaling taking τs = t and
obtain unit delay as a result. We should also stress that the assumption that the delay is finite is
important and the case τ = +∞ should be treated separately (c.f. [20]).

In my research I mainly use equations with discrete delays. In this case general system reads

ẋ(t) = G
(
t, x(t), x(t − τ1), x(t − τ2), . . . , x(t − τk)

)
, (2)

where G : � × �nk → �n is some function. Notice that x(t − τi) = xt(−τi), and hence (2) could be
easily rewritten as an equation defined in � × Cτ. Introducing only delays in discrete form does not
simplify the theory or reduce the space dimension, which is still infinite dimensional Banach space of
continuous functions defined on [−τ̄, 0] (where τ̄ = max j∈{1,...,k} τ j), but allows to use the so-called step
method. This method is just a method of mathematical induction adapted for DDEs which is useful
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for proving specific properties of the considered equation on the interval of the length of the smallest
delay, I` = [`min j∈{1,...,k} τ j, (` + 1) min j∈{1,...,k} τ j], basing on the theory of ODEs. Clearly, in each
interval I` Equation (2) becomes non-autonomous ODE with known functions x(t − τ j), j = 1, . . . , k,
as t − τ j ∈ Im for some m < `. Most frequently, this methods is used to prove prolonagability of
solutions for all t > 0, and is easier to exploit, as it allows to conduct the analysis in the space �n

instead of Cτ. Moreover, for DDEs with discrete delays the stability analysis simplifies even more
comparing to the general case, because a characteristic function allows to consider

n∑
j=0

anλ
j +

∑
`

n−1∑
j=0

b`, j e−λτ̃` ,

where τ̃` = α1τ1 + α2τ2 + · · · + αkτk, and moreover α j ∈ �, j = 1, . . . , k, α1 + α2 + · · · + αk ≤ n.

Indeed, stability analysis, especially in the context of global stability, is one of the most important
topics in analysis of DDEs describing real processes occurring in nature. On the other hand, nonneg-
ativity for nonnegative initial functions is important as well. This is because of the interpretation of
the model variables. We should remember that by introducing time delays we may lose nonnegativity
of solutions. More precisely, if the original model without delay preserves nonnegativity, when a
delay is introduced into some negative term, then typically solutions become negative for large delays
(c.f. [4]). In biomathematical literature there nevertheless appear articles in which the authors seem
do not know or do not remember about this property, e.g. [5, 12].

I shall present a very simple example. Consider the Cauchy problem ẋ = a − x(t), a > 0, x(0) =

x0 > 0 for which we obtain the solution x(t) = a + (x0 −a) e−t > 0. The same equation with delay, that
is ẋ = a − x(t − τ), and with initial function x(t) = a + β cos t, t ∈ [−τ, 0] for τ = π

2 , has the solution
x(t) = a + β cos t for all t > 0, and this solution takes negative values for a > β; c.f. Fig. 4.

Figure 4.

In general, studying global stability for DDEs is difficult, if at all possible, for example it is
hard to propose an appropriate Lyapunov functional. As an example I can mention the well known
Hutchinson equation [22] (classic logistic equation with delay). This equation has been proposed in
1948, but even until today its dynamics is not completely known and is still an object of research
(see the discussion in [26]) and the Wright hypothesis [39] proposed more than 60 years ago has not
been settled yet. Short introduction to the theory of DDEs in the context of applications to simple
biomedical models was presented in my review work [M4], while main problems associated with the
introducing of delays are described in [A17].

Apart from semi-dynamical systems generated by DDEs in my research I also used finite-di-
mensional systems generated by ODEs (which could be treated as equations of the form (1) with
F(φ) = f (φ(0)) for some function f ) or discrete dynamical systems. Moreover, when the space
distribution seemed to be important, I studied the influence of diffusion on the dynamics of the systems
considered. However, reaction-diffusion equations also generate dynamical systems, and therefore
could be analyzed within this framework.

More precisely, from the analytical point of view in my research I use following approaches:
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— nonlinear systems of ordinary differential equations studied in the context of global existence
of unique nonnegative solutions, local and global stability of steady states (with the usage of
Lyapunov functions or other techniques dedicated for specific models), occurrence of limit cycles
and other bifurcations, including Hopf bifurcation;

— linear and nonlinear systems of delay differential equations in the same context as above, in par-
ticular studying bifurcations (including stability switches) with respect to increasing delay;

— nonlinear equations with diffusion, both without and with delays, in the contexts as above;
— systems including external influence on the dynamics, like impulses or control (including optimal

control problems).

From the application point of view my research has been focused on the following topics:
— modeling of immune reactions, including the influence of vaccinations and tumor immunotherapy

together with its effectiveness;
— modeling of avascular tumor growth, studying the influence of delays onto that growth, necrotic

core formation;
— tumor angiogenesis process, antiangiogenic therapy and combined therapies;
— cancer mutations;
— radiation induced bystander effect;
— chemotherapy of tumors: acquired drug resistance and optimal control in the context of ADR;
— modeling of androgen deprivation therapy in prostate cancers;
— delays in biochemical reactions;
— modeling of dyadic interactions;
— modeling of heart action;
— epidemiological models: influence of vaccines, heterogeneous populations – modeling of the

spread of tuberculosis;
— eco-epidemiological models;
— modeling in neurosciences: recognition in ambivalent situations.

1. Modeling of immune reaction

My earliest research was focused on modeling immune reaction. I studied this process on the
basis of simplest Marchuk’s model [30].

1.1. Marchuk’s model

The model was proposed by G.I. Marchuk in 1980 and in the simplest form it describes humoral
immune reaction, that is the type of immune reaction in which antigen (that cause this reaction) is
eliminated by antibodies (proteins transmitted in lymph and blood, which is the reason of the name
“humoral”). We describe the evolution of three variables V , C and F in time. These variables represent
the density of antigen, plasma cells, which produces antibodies, and antibodies, respectively. The
system dynamics is described by a system of ordinary differential equations with discrete delay

V̇(t) = (β − γF(t)) V(t),
Ċ(t) = αV(t − τ)F(t − τ) − µC (C(t) −C∗) ,
Ḟ(t) = ρC(t) − (µF + ηγV(t)) F(t).

(3)

In this model the rate of change of the antigen density depends on this density (parameter β is in-
terpreted as the growth rate, but also as the antigen aggressiveness) and on immune reaction (term
FV stands for elimination of the antigen by antibodies, parameter γ reflects probability of meeting,
recognizing and eliminating the antigen). Antibodies are produced by plasma cells, while the process
of plasma cell production is triggered by signals which are sent by antigen-antibody complexes. Time



Research Statement 5

delay τ reflects the time needed to send the signal and produce new plasma cells. Parameter C∗

describes the so-called physiological level of plasma cells, while µ−1
C is the mean life-span for these

cells. Antibodies are produced by plasma cells, die in immune reaction against antigens (parameter η
reflects the mean number of antibodies necessary to eliminate one antigen), and their mean life-span
is equal to µ−1

F .
Basic properties of System (3) were studied by the team of Marchuk [30], c.f. also [M1, M3].

Global dynamics of the model without delay was analyzed by my supervisor, Prof. Wiesław Szlenk,
but the results have not been published by him. On the basis of his notes, my bachelor’s students,
Jarosław Badowski and Tomasz Trabszys, prepared their bachelor’s thesis, and moreover the main
results were published by us in [C15, C16].

In [Z1, A1] I presented the result of my master’s thesis. I studied the model with distributed
time delay (interestingly, my earliest papers [Z1, A1] and one of the newest works [C57] are devoted
to similar topics – analysis of the influence of distributed delay onto the dynamics of some specific
model) and proposed conditions of local stability of steady states. System (3) has two steady states:
A = (0,C∗, F∗), F∗ = ρC∗/µF , describing healthy organism (meaning that there is no antigen, while
plasma cells and antibodies remain on their physiological levels), and positive state B = (V̄ , C̄, F̄),
which reflects chronic disease. This state exists under the assumption αρ > ηγµC and β > γF∗ or for
inverse inequalities.

It turns out that the distributed form of delay does not change conditions of stability much. These
conditions remain similar to the ones for discrete delay. The only difference is that the mean delay
appears in it. In the proof I used generalized Mikhailov criterion which is presented in Subsection 14.

I also considered other modifications and generalizations of Marchuk’s model (3). Immunologists
working with us that time were interested in the influence of interleukins (cytokines that regulate
various immune processes), and that is why I proposed the modification of (3) which includes this
influence [A2]. However, this model proved itself too complex to study anything else than local
stability under some specific conditions. Together with Marek Bodnar we revisited the topic in [Z24].
The next idea of immunologists was to consider the influence of vaccines [Z4, C1, C2]. After “bad”
experience with high complexity of the interleukin model, I proposed simplified model of vaccinations
studied its global stability in [A4]. Another idea was to propose discrete time model [Z2], which could
be easier to understood for medicals, but it had no effect.

In parallel, I conducted research on global dynamics of System (3), including bifurcations with
respect to increasing delay. I focused on those topics in [Z3, A3, A5, Z8, A8, C3, A14]; notice that in
[A3, A5] I presented main results of my PhD thesis. In particular, I proved that if αρ > ηγ (µC + β) eβτ

and β < γF∗, then any solution of System (3) with initial data reflecting healthy organism infected
by some dose of an antigen at time t = 0 (that is V0(s) = 0 for s < 0, V0(0) = V0 > 0, C0(s) = C∗,
F0(s) = F∗, we call it “standard initial condition”) tends to the steady state A. Notice, that the
standard initial condition is not continuous (and therefore does not belong to Cτ), however the step
method allows to find the solution on the interval [τ, 2τ], and after that the standard theory may be
used (that is the theory for an initial function from Cτ). As for the steady state B, assuming that
β > γF∗ i αρ > ηγ (µc + β) eβτ, we can prove that any solution of System (3) has its mean value (i.e.
there exists limt→+∞

1
t

∫ t

0
X(s)ds, where X(t) denotes the solution) and this mean is equal to B. This

theorem could be interpreted in the following way. Independently of an initial dose of the antigen the
solution oscillates around the state B, which means that there is no possibility of recovery. On the
other hand, we should remember that this result is purely analytic, while in reality we are not able
to detect densities (not only in the case of considered antigen) below some threshold value, and this
should be considered as cure in practice.

In my last article devoted to Marchuk’s model [A14] I proved that there is a stable supercritical
Hopf bifurcation when the positive steady state loses stability. In this analysis I based on the approach
from [9]. I present this approach below.
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In general we consider a system of the form

ż = H(zt, α) = L(zt, α) + G(zt, α), H(0, α) = 0, (4)

where zt = xt − x̄ ∈ � (in this approach we formally extend the values from � into �), x̄ is the steady
state that changes stability with increasing bifurcation parameter α ∈ I, where I denotes the interval
of admissible values of α, operator H : C × I→ � is sufficiently smooth, L, G : C × I→ � are linear
and non-linear part of (4) in the neighborhood of the steady state z̄ = 0, respectively.

The approach of Diekmann et al. is based on the theory of normalised bounded variation functions
(NBV) defined on [0, 1] (for the Banach space C of functions defined on [−1, 0]). Riesz representation
theorem implies that for every φ ∈ C and continuous operator L there exists exactly one NBV ζ, such
that L(φ) =

∫ 1

0
dζ(θ)φ(−θ) (this is a Riemann-Stieltjes integral). This means that NBV with maximal

variation norm is a space adjoint to C . Hence, L(φ) = 〈ζ, φ〉, and the form ζ(θ, α), with α being a
bifurcation parameter, is uniquely determined by the linear operator L.

With the equation ż = L(zt) the operator T (t) : C → C , T (t)φ = zt could be related. Here
z is a solution of our equation with some initial function φ ∈ C . Then T (t), t ≥ 0, is a strongly
continuous semi-group generated by an infinitesimal generator A, with the domain dense in C [18,
19], which allows to use the semi-group theory. If for some critical α0 the generator A has a pair of
purely imaginary eigenvalues ±iω0, where ±i ω0 are single and do not cross the imaginary axis with
non-zero speed as α increases, then a Hopf bifurcation occurs. In order to calculate eigenvalues of the
characteristic equations

∆(λ, α) = λ −

∫ 1

0
dζ(θ, α) e−λθ .

The generator A has purely imaginary eigenvalue iω0, if there exist p ∈ �, p , 0, such that
∆(iω0, α0)p = 0, and a function Φ(θ) = eiω0θ p, while A is for eigenvalue iω0. On the other hand, if A∗

is the adjoint operator, then the eigenvector reads Ψ(θ) = q eiω0θ, where q ∈ �, q , 0, q∆(iω0, α0) = 0
and 〈Ψ,Φ〉 = qd1∆(iω0, α0)p, where d1 is a derivative with respect to the first coordinate, which is
λ here. If ±iω0 are single eigenvalues, then we can normalize 〈Ψ,Φ〉 to 1 and choose q, such that
〈Ψ,Φ〉 = 1, which means qd1∆(iω0, α0)p = 1.

Stability of periodic solutions appearing on the central manifold as a result of bifurcation is deter-
mined by the coefficient µ2 of the third term in Taylor expansion [9]. This coefficient can be calculated
as

µ2 =
Rec

Re (qd2∆(iω0, α0)p)
, (5)

where d2 is the second derivative with respect to the second variable (bifurcation parametr), which is
α here, while c = cI + cII + cIII ,

cI = 1
2qd3

1G(0, α0)(Φ,Φ, Φ̄),
cII = qd2

1G(0, α0) (ΨΦ̄(·, 0),Φ) ,
cIII = 1

2qd2
1G(0, α0)

(
ΨΦ(·, 2iω0), Φ̄

)
,

where di
1, i = 2, 3, denote ith derivatives with respect to the first variable (zt) and

ΨΦ1(θ, a) = eaθ(∆(a, α0))−1d2
1G(0, α0)(Φ,Φ1),

with Φ1 = Φ̄ and Φ1 = Φ for cII or cIII , respectively.
If µ2 > 0, then supercritical Hopf bifurcation is present. In particular, periodic solutions exist for

α > α0. If additionally the steady state is stable for α < α0, then bifurcating periodic solutions are
stable within the central manifold. Moreover, if the generator A has no eigenvalues in the right-hand
complex half-plane, then the central manifold is attracting, and this means that the periodic orbits are
stable. If µ2 < 0, then the bifurcation is subcritical and periodic orbits exists for α < α0. If the steady
state is stable for α < α0, then the periodic orbits are unstable, obviously.
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I used the method described above in [A14], as well as in [C14, C24, C28, C42]. I would like to
emphasize that calculation of Coefficient (5) for systems of DDEs is challenging in general.

Subsequent research projects within this topic were conducted together with M. Bodnar and con-
cerned seasonality of immune reactions, especially in the context seasonal changes of the weather. In
such a case it is natural to consider main parameters of the model to be periodic functions. This topic
was considered in [Z6, C3, C4, Z19]. First, in [Z6, C3, C4] we focused on System (3) with coefficient
α depending on time, while in [C18] these preliminary results were extended to the case when both α
and ρ are time dependent. We assumed that these functions are continuous and bounded. Under this
assumption it is easy to show that unique solutions exist globally in time (for t ≥ 0). If ρ is periodic
with period T , then we can prove (applying appropriate estimations and Gronwall’s Lemma) that for
any t0 there is exactly one value f0 for which a solution of the problem

Ḟ = C∗ρ(t) − µF F, F(t0) = f0,

is periodic with period T . Moreover, if β and V0 are sufficiently small, while f0 is large enough, then
solutions of System (3) tend to some periodic function as t → +∞. If both functions α(t) and ρ(t)
are periodic, then we are able to prove the existence of periodic solutions for small delays. The proof
is based on the Leray-Schauder fixed point theorem. Compactness of the operator (which is one of
the important assumptions of this theorem) is a consequence of compact embedding of C([−τ, 0],�3)
into C1([−τ, 0],�3).

1.2. Immunotherapy of tumors

My experience in modeling of immune reaction turned out to be very useful in mathematical
analysis of immune reaction against tumors and tumor immunotherapy. In particular, in [A10] I
focused on such interpretation of Marchuk’s model. My main research in this field was conducted with
the team of Prof. Zvia Agur from the Institute of Medical Biomathematics (Bene, Atharot, Israel). I
was involved in mathematical analysis of immunotherapy of brain tumors (articles [C23, C37, C43]
are related to that topic), and immunotherapy of prostate cancer [C56]. Tumor immunotherapy is a
wide topic and it includes many actions focused on stimulation of immune reaction against tumor
cells. It is still a nonstandard therapy, as clinical trials are very expensive. However, some of these
trials showed that this therapy could be useful, and allows to predict doses for successful treatment.
Therefore, I think these articles are among my most important achievements from application point
of view. The review article [C67] on the personalized immunotherapy of cancers was prepared by us
during the COVID-19 pandemic.

In [C12], together with Jacek Waniewski and Petar Zhivkov, we studied simplified model, in which
we took into account two variables: size of specific immune response X and size of tumor Y . In this
model a function describing immune reaction plays an important role. We assumed that the equation
describing tumor cells dynamics is of “standard” predator-prey form (c.f. [31]), that is underlying
growth is exponential, while the term XY reflects elimination of tumor cells due to immune reaction.
If there is no antigen (tumor cells in this model), then we observe constant production of precursor
cells and their natural mortality. Consequently, if there are no tumor cells the specific immunity is kept
on a constant level which is called background immunity. The presence of antigen causes an increase
of immunity proportionally to X, with proportionality coefficient being a function (F). We assume
that F is bounded either with respect to both variables, or with respect to tumor size only. Formation
of complexes tumor cell-cytotoxic T lymphocyte could lead to the lymphocyte death, which is again
expressed by the bilinear term XY . We considered two types of F – in both cases it was a Hill function
with some coefficient α, but it could be the function of the variable Y or Y/X. In [C12] asymptotic
dynamics of that model depending on parameter values was studied. What is important, this model
was used by Monika Joanna Piotrowska [33] to describe a specific (mice) experiment. This shows a



8 Urszula Foryś

power of such approach – although the model is very simple, it is able to reflect immune reaction in
the experiment.

Next, together with M. Bodnar we focused on more complex model of immune reaction against
tumors. Our research was inspired by the paper [12], were the authors obtained false results which
are associated with the fact that solutions of that model could take negative values. More on that topic
could be found below in Subsection 9 where I describe biochemical reactions with delay. In [C53]
we proved that the model proposed in [12] has undesired properties, and therefore we proposed a
modification together with global analysis in the case of non-immunogenic tumor (that is the tumor
does not cause immune response).

1.2.1. Immunotherapy of glioma

Glioma is a name of the family of brain tumors, and high grade (III and IV) gliomas give very
poor prognosis – for grade IV the mean survival does not exceed 1.5 years even with highest standard
therapy. My first work [C23] (together with Y. Kogan, Natalie Kalev-Kronik and other members of
the team) considers those cancers.

Basic model of glioma immunotherapy (with the focus on most aggressive GBM – glioblastoma
multiforme) was proposed in [24] and generalized in our article [C23]. Immune reaction was de-
scribed by six nonlinear ODEs, and although part of them has a simple structure, the structure of the
equation describing changes of tumor size is so complex, that it is difficult to analyse this model.
More precisely, the first equation reads

Ṫ = r(T )T − fT (x)gT (u)h(T )CT,

where T and C reflect the size of tumor and effector cells, i.e. cytotoxic lymphocytes (CTLs) pop-
ulation, respectively, r(T ) is the tumor growth rate, fT (x) describes reduction of the effectiveness
of effector cells due to the presence of TGF-β (transforming growth factor-beta), gT (u) reflects the
dependence of effector cells on the number of MHC class I receptors presented by one tumor cell, and
h(T ) describes “overcrowding” effect associated with the tumor growth. Other model equations de-
scribe changes in time of effector cells density, number of MHC class I and II receptors, and densities
of TGF-β and interferon-gamma (INF-γ).

In the article we focused on the existence of steady states and their stability, as well as proposing
conditions of effective treatment, that is conditions of stability of the healthy state. We also have
prepared the analysis of reduced (assuming quasi-steady approximation) model consisting of four
equations for which we studied global stability and obtained as simple as possible formulas reflecting
therapeutic doses. This awaits for the approval of Prof. Z. Agur.

In next papers [C37, C43, Z28] together with my collaborators from the UW (M. Bodnar, M.J. Pi-
otrowska and J. Poleszczuk) we tried to propose a simplified model in which complexity of immune
reaction was reflected by time delay (as it was done in Marchuk’s model). Among these articles the
most important is [C37], where we studied sensitivity of the model with respect to parameters changes
and the reduction has been proposed on that basis.

In [Z23, A16] I studied simplified model with the influence of space reflected by diffusion process.
There are interested numerical simulations showing the spread of tumor depending on the number of
primary sites.

1.2.2. Immunotherapy of prostate cancer

One of my newest articles (together with M. Bodnar and Y. Kogan) [C56] describes the results
of mathematical analysis of a model proposed in [25]. The model reflects the cascade of immune
reactions appearing as a result of vaccine for PC (prostate cancer). Our analysis showed that asymp-
totic dynamics could be described by one equation which allows to estimate the results of therapy in
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an easy way. In the first part of this article we proposed a general equation which in a specific case
reduces to the one for PC immunotherapy. We considered the following Cauchy problem

ẋ = x F(t, x), x(t0) = x0, x0, t0 ≥ 0, (6)

with F satisfying conditions: F is continuous and uniformly bounded, increasing with respect to x
and locally Lipschitz with respect to x inD = �2

+ (�+ = [0,+∞) here), F(t + 1, x) = F(t, x), that is F
is t-periodic with period 1.

Notice, that for t-periodic function it is enough to consider initial data with t0 ∈ [0, 1), while
proposed assumptions guarantee existence of unique, global in time (for t ≥ 0) solutions of (6).
Moreover, for x0 > 0 there is x(t) > 0 for t ≥ 0.

Our main analytical result presented in [C56] is the theorem relating asymptotic dynamics of
Problem 6 to mean value of F for t = 0.

Under our assumptions:
— if FA =

∫ 1

0
F(s, 0)ds > 0, then any solution of Problem (6) with x0 > 0 tends to +∞ as t → +∞;

— if FA =
∫ 1

0
F(s, 0)ds < 0 and F(t, x) → f (t) > 0 uniformly as x → +∞, then there exists a curve

γ : [0, 1)→ (0,+∞), such that if
x0 < γ(t0), then solutions of Problem (6) tend to 0;
x0 > γ(t0), then solutions of Problem (6) tend to +∞;
x0 = γ(t0), then x(t0 + 1) = γ(t0) and γ extended periodically to [1,+∞) is a periodic solution

of Problem (6).
The proof of this theorem is based on integrating the equation on the interval [t + n, t + n + 1] for fixed
t ∈ [0, 1) and n ∈ � and applying assumed properties of F and its mean in the second part of the
proof.

Notice that if F(t, x) does not depend on t, that is F(t, x) = G(x) for some continuous, locally
Lipschitz function G, then
1. either there exists x̃ > 0 such that G(x̃) = 0 and then x(t) → 0 for 0 < x0 < x̃, while x(t) → +∞

for x0 > x̃;
2. either G(x) > 0 for x > 0 and then x(t)→ +∞ for every x0 > 0.

Second part of [C56] is devoted to the description of PC immunotherapy model (seven equations
reflecting specific immune response and tumor growth) and the influence of vaccine. First we consid-
ered single vaccine, and next a series of vaccines included as impulses to the model. We applied the
theorem proved in the first part and showed that to achieve cure after single vaccine the tumor growth
rate must be sufficiently small, while natural influx of mature dendritic cells should be large enough.
It is not possible in the case of parameters estimated in [25]. Therefore, the series of vaccinations is
needed. In the final part of the article we proposed a condition guaranteeing cure.

1.3. Modeling of immune reaction in the presence of HIV virus

Some of my results were also related to the analysis of immune reaction against tumor cells in the
situation when a patient has AIDS. Articles [Z22, C21, C30] (together with M. Bodnar and Zuzanna
Szymańska or with J. Poleszczuk) are focused on that topic in the context of delayed reaction ac-
cording to the presence of HIV. However, comparing to other results I obtained in the area of tumor
modeling and treatment, I think that these results are more theoretical, probably without chances for
application.

Lastly, inspired by Prof. Priti Kumar Roy (during his stay at the UW), we studied (together with
my PhD student Marcin Choiski, and then also with Mariusz Bodzioch from Warmian- Masursian
University in Olsztyn) CD4+T lymphocyte immunotherapy of patients with HIV virus ([C60]).
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2. Modeling avascular tumor growth

Next research topic I was involved considers the growth of tumor during the first stage of devel-
opment, that is avascular tumor growth. My interests in carcinogenesis were directly related to my
participation in international grants within 5. and 6. EU Programmes. More precise description of
processes associated with tumor development may be found in my monograph [M2].

It is assumed that at the initial stage of the growth tumor forms a compact structure in which cells
are nourished via diffusion of nutrients from outside into the tumor. This is avascular stage of the
growth. It is obvious that during the growth this structure must reach a size in which the amount
of nutrients inside the tumor is not sufficient for all cells to proliferate. This leads to formation
of so called necrotic core – cells for which there is not enough nutrient become quiescent (do not
proliferate) and eventually die due to hunger. This type of death is called necrosis. The final, stable
structure has about 2 mm of diameter, and its destabilization is strongly related to the begging of the
next stage of tumor growth, that is angiogenesis process.

Initially I conducted the research on tumor growth modeling together with M. Bodnar. First
articles were devoted to the first avascular stage of this growth in the context of time delay influence.
Simple models of that type are based on the idea of multicellular spheroids (MCS). This is the idea of
spatially symmetric growth of cellular colony described by H.P. Greenspan [16]. I explain this idea in
Subsection 3 considering relations with the logistic equation. Our research was based on [6], where
the author proposed to include time delay into cellular processes, in particular to the term describing
proliferation, and next to regulatory apoptosis. Apoptosis is a kind of cell death which is natural in
such a sense that it is not caused by external conditions (like lack of nutrients in the case of necrosis)
but is programmed (like “suicide”) to keep an organism in good condition. In [C6] we dealt with the
model with time delay in proliferation process which is described by

ẋ(t) = −cx(t) + σex(t − τ) −
a

15
x5/3(t − τ), (7)

where x(t) = R3(t) reflects tumor volume (R(t) is MCS radius at time t), apoptosis is constant with
coefficient c, σe reflects constant density of nutrients outside MCS (as well as on the surface, that is
for r = R(t), where r denotes the distance from the centre of MCS), τ is the delay od proliferation with
respect to diffusion of nutrients, and a is a constant reflecting the balance between consumption and
diffusion of nutrients. It also means that all nutrients appearing inside MCS are consumed. This is
obvious that such equation could describe only that type of MCS in which all cell proliferate. Notice,
that for τ = 0, the inequality σe > c must be fulfilled in order to keep the tumor in proliferating state.
Therefore, the tumor must stabilize at the level x̄ =

(
15(σe−c)

a

)3/2
.

When introducing delay we see that the right-hand side of Equation (7) includes a negative term
with delay, and therefore it is of great importance to study nonnegativity of solutions. We proved the
following properties of Equation (7).

— If initial function satisfies x0(s) ∈
[
0,

(
15σe

a

)3/2
]

for s ∈ [−τ, 0] and σe
c < 25

18

√
15, then the solution

remains in the same interval for t ≥ 0. On the other hand, if 153/2

27 > σe >
55/2

2·33/2 c, then there are

solutions exceeding the value
(

15σe
a

)3/2
.

— Equation (7) has two steady states. Trivial state (x = 0) is unstable regardless of delay. Stability
of the positive state x̄ =

(
15σe−c

a

)3/2
depends on the model parameters, including delay. If σe < 4c,

then x̄ is stable independently of the delay. If σe > 4c, then there exists critical τc, such that for
τ < τc the sate x̄ is stable, for τ = τc there is a Hopf bifurcation and periodic solutions appear.

— If 2σe < 5c and initial function satisfies x0(s) ∈
(
0,

(
15σe

a

)3/2
)

for s ∈ [−τ, 0], then any solution
tends to x̄ as t → ∞.

In [C7] we introduced delay into regulatory apoptosis. In this case the models reads

ẋ(t) = σx(t) − âx5/3(t) + θ f (x(t − τ)), (8)
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where f (z) = −σ̂z + âz5/3, â = a
15 , σ̂ = σe − σh, and σh is a coefficient reflecting the influence of

regulatory apoptosis, an therefore it could be positive and negative as well.
We also studied the range of parameter values for which solutions of Equation (8) remain non-

negative, positive steady state exists, steady states are stable/unstable and Hopf bifurcation appears.
Delays in both processes were considered in [Z9, Z13, Z16].

The next stage is formation of necrotic core which is associated with MCS exceeding the critical
value for which the density of nutrients inside MCS in insufficient for all cell to proliferate. This was
considered in [C9] (together with Anna Mokwa-Borkowska). In particular we were interested in the
thickness of the proliferating rim. It depends on the parameters, obviously, but in most of the cases
considered it was really slim. In [Z15, C10] we again (together with M. Bodnar) introduced delay
to the model considered in [C9]. We studied the influence of delay onto that model dynamics, as
in [C6, C7]. The results of mentioned papers [C6, C7, C9, C10] were included into my habilitation
monograph [M2].

3. Logistic equation and its generalizations in the description of tumor
dynamics

Logistic equation and its various generalizations where used by me and my collaborators many
times. In particular, we used this equation to describe avascular tumor growth. Currently, it is as-
sumed that the logistic equation has no biological interpretation (c.f. the discussion in [31]), while its
common usage is associated only with its simplicity and well known properties. In the description of
tumor growth the Gompertz model [13] is most often applied. This is probably connected with the
fact that it was used for the first time as the mathematical model describing tumor growth in some
experiment [27, 28]. On the other hand, the Greenspan model [16] is (or seems to be) biologically
approved. In line with this, I think that the result obtained by me together with M. Bodnar in [C13]
is important. We showed that the logistic equation could be derived as underlying law for cellular
colony growth on Petri dish (that is in �2).

3.1. Derivation of the logistic equation in the context of tumor growth

In [C13] we based on reaction-diffusion equation proposed by [16]
∂

∂t
σ(t, x) = D∆xσ(t, x) − P, for t ≥ 0, |x| ≤ R(t),

σ(t,R(t)) = σe,

where x ∈ �n (in Greenspan case n = 3, we decided to generalize his idea to the abstract n-dimensional
case), |x| is Euclidean norm, σ represents the density of nutrients, R(t) is the outside MCS radius, P
is the rate of consumption of nutrients by tumor cells, and Greenspan assumed P = const. We also
assume that outside MCS the density of nutrients is constant, equal to σe, which means that it is
constant at the boundary of MCS. tumor volume changes proportionally to the proliferation of cells,
as well as natural cells death (with coefficient σ).

Next, we assume that the diffusion of nutrients is much faster than the tumor doubling time.
Hence, we can (formally) use quasi-steady approximation and assume that σ(t, x) is radially symmet-
ric (more precise analysis of similar approximation but for more complex model is described in [Z27]
– for the Hahnfeldt et al. model [17]). In our case, solving ordinary equation of the second order we
obtain

σ(t, r) = σe −
a

2n

(
R2(t) − r2

)
,
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with a = P/D. Using this formula for σ we derive the equation

V̇ = αV
(
σe − c −

a
n(n + 2)

V2/n
)
,

with α reflecting the growth rate, and V = Rn could be interpreted as tumor volume. Moreover, for
n = 2 we obtain the logistic equation, also known as the Verhulst equation [37]. In classic case, for
n = 3 we obtain the exponent 2/3, and the Greenspan equation [16].

3.2. Logistic equation and similar equations

Main topic of our research described in [C13] was to compare several theoretical equations with
the experimental data. We considered two equations

ẋ(t) =

−r x(t − τ) ln |x(t − τ)| for x(t − τ) , 0,
0 for x(t − τ) = 0,

(9)

ẋ(t) = rx(t − τ) (1 − (x(t − τ))γ) , (10)

that is the Gompertz equation (that could be obtained by generalization of the logistic equation) and
the equation which becomes logistic for γ = 1 or Greenspan for γ = 2/3.

Notice that both models (9) and (10) belong to the class of those equations (c.f. [4]), for which the
right-hand side takes negative values. This means that one of the main points of our analysis has been
to check if it is possible to remain in positive region, because only then the models have biological
meaning. We proved the following properties of the equations above.
1. For Equation (10) with γ = 1, if τ < τ0, where rτ0 is the smallest positive root of W(rτ) =

(rτ)3 + 4(rτ)2 − 16, then all solutions remain positive under the assumption that initial values
belong to the interval [0, 1]. The state x̄ = 1 is locally asymptotically stable for τ < π

2rγ , and for
τ = π

2rγ there is a Hopf bifurcation.
If τ < 1

rγ , then the state x̄ = 1 is globally stable in the set

A := {ϕ ∈ Cτ : 0 ≤ ϕ(t) ≤ 1 , t ∈ [−τ, 0]} .

2. For Equation (9), if τ < τ0, where rτ0 is the smallest positive root of F(rτ) = 1−rτ
(

rτ
e

)
ln

(
1 + rτ

e

)
,

then all solutions remain positive under the assumption that initial values belong to the interval
[0, 1]. The state x̄ = 1 is locally asymptotically stable for τ < π

2r , and for τ = π
2r there is a Hopf

bifurcation.
If τ < 1

r , then the state x̄ = 1 is globally stable in the setA.

An important part of this research was to construct a specific algorithm which allowed to find
parameters to best reproduce experimental results from [34]. The results seem to confirm that the
Gompertz equation reflects these data in the best way.

The earliest article devoted to the logistic equation with delay [C5] presents results of master’s
thesis of Remigiusz Kowalczyk. We studied the influence of delays introduced to various terms of the
right-hand side, taking into account the classic version of the Verhulst equation ẋ = rx(1 − x) (with
K = 1), as well as the competitive version ẋ = rx − ax, where a reflects intraspecific competition.
It occurs that the best properties from application point of view have equations with single (that is
classic one) and double delay (as in Equation (10)). Moreover, the last model was proposed in [34] to
describe experimental data for tumor growth, and therefore it is an object of my research.

I continued a research on various types of equations (like logistic and Gompertz) in the context of
tumor growth and treatment. In [Z29, C39] we (together with M. Bodnar and M.J. Piotrowska) studied
the logistic equation with delay and quasi-periodic treatment function, while in [C40] we conducted a
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study of the Gompertz model in the same context. In [C28] together with M.J. Piotrowska I analyzed
existence and a type of Hopf bifurcation for the Gompertz model with delay. In [C49] we (with Jan
Poleszczuk and Ting Liu) studied the logistic equation with delay and treatment reflected by impulses,
which seems to be closer to reality than other forms of treatment description (like in [Z29, C39, C40]).

3.3. Logistic equation with delay and diffusion

In [Z10, C8] together with Anna Marciniak-Czochra I studied logistic equation with delay and
diffusion. We considered both classic and double delayed equation as a reaction-diffusion problem
with zero-flux boundary conditions. Similarly to the case without diffusion – until the solutions of
double delayed model remain positive, they have similar dynamics to the classic version. What is
important, our analysis showed that diffusion has no effect on the stability of the positive steady state
and destabilization is related to the delay and not diffusion.

4. Modeling of tumor angiogenesis

When the tumor exceeds critical size, necrotic core is formed inside MCS. In this stage tumor
cells secrete biochemical signals and these signals initiate the process of tumor angiogenesis. This
is a process of new blood vessels formation from existing ones. This process is very complex, obvi-
ously, in particular complex space structures are formed during it. However, we can consider average
quantities and use dynamical systems in the description of that process dynamics.

My first article [C11] on that topic was prepared in the framework of cooperation of Prof. Z. Agur
and her team from the IMBM (Israel). It was based on articles of this team [2, 3]. This article
[C11] was included into my habilitation, where I also analyzed its simplified version; c.f. also [Z18].
In [C11] together with Yuri Kogan and Yuri Kheifetz I focused on proving that there are always
oscillatory solutions in the considered model. The model is described by a system of three DDEs
describing tumor size, size of vessels network and amount of regulating proteins. It should be em-
phasized that reflecting oscillations by a mathematical model was the main idea of the authors of
the original papers [2, 3], as such type of the behavior was observed in experiments. However, in the
proposed model there is no possibility of non-oscillatory solutions, while simple monotonic dynamics
of the system is observed in nature as well, or even more often. In line with that we (together with M.
Bodnar) proposed ([C17]) a modification of the model studied in [C11]. We considered 3 equations
with discrete delays of the form

Ṅ(t) = αN(t)
(
1 −

N(t)
1 + f1(E(t − τ1))

)
,

Ṗ(t) = f2(E(t))N(t) − δP(t),

Ė(t) =

(
f3(P(t − τ2)) − α

(
1 −

N(t)
1 + f1(E(t − τ1))

))
E(t),

(11)

where N reflects tumor size, P stands for density of proteins regulating growth and maturation of
blood vessels, E is effective vessel density (measured in terms of vessels volume divided by tumor
size).

Functions f j, j = 1, 2, 3, are continuous and fulfill the following conditions. Functions f1, f3 are
increasing, f1(0) = 0, limx→∞ f1(x) = b1 > 0, f3(0) < 0, f3(c3) = 0, limx→∞ f3(x) = b3 > 0, while f2 is
decreasing, limx→∞ f2(x) = 0.

Analysis of the existence and stability of steady states under the assumption τ1 = τ2 = 0 proved
complicated. Analytical results we obtained could be summarized as follows. Let us denote g(x) =

f2(x)(1 + f1(x)) − δc3. System (11) has the following steady states:

A = (0, 0, 0), B = (1, a2/δ, 0), C j = (N̄ j, c3, Ē j),
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where N̄ j = 1 + f1(Ē j), while Ē j are positive solutions of the equation g(Ē) = 0.
For τ1, τ2 = 0, assuming differentiability of f1, f2, f3, we obtain:

1. the steady state A is a saddle;
2. the steady state B is:

locally asymptotically stable for a2 < c3δ,
unstable for a2 > c3δ;

3. the steady state C j is:
locally asymptotically stable for g(Ē j) < 0,
unstable for g(Ē j) > 0.

Points 1. and 2. are a simple consequence of the Jacobian matrix form. Stability of C j depends on
the sign of the free term of the characteristic function. We showed that this sign is related to the sign
of the derivative of g which defines states C j.

Let us assume C j = (N̄ j, P̄ j, Ē j), j = 1, 2, ... and 0 < Ē1 < Ē2 < . . . .
Depending on the model parameters, in generic cases we obtain:

— either the number of positive steady states is even, and then those with even indexes are locally
asymptotically stable,

— either the number of positive steady states is odd, and then those with odd indexes are locally
asymptotically stable.
Assuming specific forms of f j, that is

f1(E) =
b1E2

c1 + E2 , f2(E) =
a2

1 + d2E
, f3(P) =

(a3 + b3)P2

c2
3b3

a3
+ P2

− a3,

we showed that in the space of parameters (a2, b1) a hysteresis loop appears. In numerical simulations,
with increasing delay we observed destabilization of the positive steady state and Hopf bifurcation.

In [C36] we came back to the problem of dependence of System (11) on delays. Portion of the
results presented in this paper was obtained by Ewa Nizińska in her master’s thesis, while the rest
of the research was conducted together with M.J. Piotrowska and M. Bodnar. It turned out that the
stability of the states A and B does not depend on the magnitude of delay (which is again a simple
consequence of the form of characteristic functions), while stability of positive states depends on the
sign of the derivative g′(Ē j). If g′(Ē j) > 0, then the state C j is unstable regardless of the delay. The
proof is based on the Mikhailov criterion (c.f. Subsection 14). We showed that the state is unstable in
the case without delays and the change of the argument for positive delays could not be equal to 3π/2,
which implies instability. For specific cases when one of the delays is equal to 0, we proved theorems
on stability of positive steady states. We used the method described in Subsection 14. The results are
complex, and therefore I do not present them here. Analytical results were completed by numerical
simulations, in particular for basins of attraction for two positive states in the case of bistability.

My newest article on that model [C57] was written together with Emad Attia and M. Bodnar. In
this article the results from [C36] were extended to the case of Erlang distributed delays. In that case
the delay is infinite, so another space must be considered; c.f. [20].

In our case distributed delays are of the form∫ ∞

0
f (τ)G

(
x(t − τ)

)
dτ,

where f : [0,∞) → �+
0 is a probability density with finite mean. We need to control the behavior of

functions ϕ : (−∞, 0] → �2 for t → −∞. Now, C = C((−∞, 0],�n) and it seems natural to choose
the space of bounded continuous functions BC =

{
ϕ ∈ C : sup |ϕ| < ∞

}
. However, the space BC does

not fulfill one of the assumptions guaranteeing local existence of unique solutions. Therefore, for an



Research Statement 15

arbitrary continuous nondecreasing positive function η : (−∞, 0] → �+, limθ→−∞ η(θ) = 0 we define
Banach space

Kη =

{
ϕ ∈ C : lim

θ→−∞
ϕ(θ)η(θ) = 0 and sup

θ∈(−∞,0]
|ϕ(θ)η(θ)| < ∞

}
,

with the norm ‖ϕ‖η = supθ∈(−∞,0] |ϕ(θ)η(θ)| for ϕ ∈ Kη. Function η must be chosen in such a way
that we control the behavior of initial functions at −∞. If delays are finite, that is densities have
compact supports, initial functions fulfill ϕ ∈ Cτ, τ = τmax , where [−τmax , 0] includes the supports,
which is equivalent to considering the space Kη with the function η = 1 on the interval [−τmax , 0]
and decreasing to 0 at −∞. If supports are unbounded and initial functions ϕ are unbounded, then we
need to choose an appropriate function η. One of the possibilities is to choose η(θ) = eθ. However,
this assumption does not simplify the analysis, and therefore we presented our results in general case,
without assuming specific form of η. However, it is important that the chosen space fulfills all axioms
postulated in [20].

Some of the results concerning the delay in tumor growth were presented in [Z36]. Some results,
in particular those in which there is no dependence on the delays, were extended to any integral delay
without assuming its specific form. However, for most of the results we needed to assume the specific
form of the density function. Applied tools are not very different from those for discrete delays,
however specific calculations and estimations are very laborious.

Yet another article [C19] considers the process of angiogenesis. It is based on the results of
bachelor’s thesis of J. Poleszczuk. In [C19] we proposed a model of angiogenesis taking into account
that vessels created during angiogenesis are irregular, tangled and leaky. Therefore, it is estimated
that large amount of chemotherapy does not enter inside of the tumor, while the part that enters
is not spread evenly. The model taking into account these features could possibly allow to plan
normalization of the vessels structure.

4.1. Articles related to the Hahnfeldt et al. model

Part of the most important results obtained by me and my team was inspired by the Hahnfeldt et
al. model [17]. This model was proposed in 1999 and describes the process of angiogenesis using two
ODEs. The first equation reflects the dynamics of tumor on the basis of Gompertz law, but instead
of constant carrying capacity a variable reflecting size of vessels network was used. More precisely,
this variable reflects the size of vessels network necessary to nourish the tumor of given volume. The
second equation describes the changes of vessels network in time. In the general form the model reads

ṗ = −rp ln p
q ,

q̇ = −µq + bS (p, q) − dI(p, q),
(12)

where r is the tumor growth rate, µq is spontaneous loss of vessels, the term bS (p(t), q(t)) stands for
stimulation of vessels formation, while −dI(p(t), q(t)) reflects inhibition of this formation. In [17] the
authors derived the following relation between I(p, q) and S (p, q):

I(p, q)
S (p, q)

= pαqβ, where α + β = 2/3.

Eventually, comparing speeds of various processes, Hahnfeldt et al. [17] proposed the equation

q̇ = bpαq1−α − (ap2/3 + µ)q.

In the literature, System (12) with α = 1 is mainly called Hahnfeldt et al. model [17], as it was
eventually studied in this paper. The model with α = 0 (and with delay) ws analyzed by A. d’Onofrio
and A. Gandolfi [10]. Similar model was also proposed by Ergun et al. [11].
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Analyzing the space portrait of System (12) and using the Dulac-Bendixson criterion and the
Poincaré-Bendixon theorem it is easy to check that for b > µ there is a positive steady state of
System (12) which is globally stable in the set (�+)2 (we study System (12) under the assumption
0 < α ≤ 1, because for α > 1 the term describing stimulation of the vessels formation loses biological
meaning). Stability of steady states was studied by me and M. Bodnar in [Z20, C20], mainly in the
context of the influence of delay introduced into the model on this model dynamics. After the change
of variable u = p/q and a proper scaling we studied the model that reads

ṗ(t) = −rp(t) ln u(t − τ1),

u̇(t) = −u(t)
(
r ln u(t − τ1) + b (u(t − τ2))α − a (p(t − τ3))2/3

)
,

(13)

where τ j, j = 1, 2, 3, reflect delays present on the macroscopic level in the considered processes,
that is tumor growth, vessels stimulation and vessels inhibition. Applying the method described in
Subsection 14 we proved the following properties of System (13).
— If τ1 = τ > 0 and τ2 = τ3 = 0 or τ2 = τ3 = τ > 0 and τ1 = 0, then there exists τc > 0, such that the

positive steady state is stable for τ < τc and unstable for τ > τc.
— If τ2 > 0 and τ1 = τ3 = 0, then

if r < αb, then the positive steady state is stable for all delays τ2 > 0;
if r > αb, then the positive steady sate is stable for small τ2 and loses stability for some

threshold value τ2,c > 0.
Next, in [C24, C42] together with M.J. Piotrowska I studied a Hopf bifurcation for the Hahnfeldt

et al. and d’Onofrio-Gandolfi models, first for only one delay appearing in the model (that is either
the growth of tumor is delayed or the vessels formation is delayed; c.f. [C24]), and next for both
non-zero delays ([C42]). In the second paper we based on numerical analysis partially, as analytical
formulae for Coefficient (5) are too complex in this case.

It should be noted that the macroscopic model (12) was derived in [17] from the microscopic
model – Hahnfeldt et al. described the process of diffusion-consumption of stimulators and inhbitors
of angiogenesis, which under some assumptions (e.g. radial symmetric) could be simplified to ODE
(similarly to the Greenspan model; c.f. Subsection 3). However, in [17] the derivation was described
very briefly and formally, without proper reasoning. In [Z27] we presented the results of research on
that derivation (main results of J. Poleszczuk master’s thesis). We proved that formal steps presented
in [17] are well-founded from mathematical point of view. Understanding of the microscopic pro-
cesses governing tumor angiogenesis allowed to propose in [C27] (together with J. Poleszczuk and
M. Bodnar) alternative way of the mathematical description of anti-angiogenic treatment. In standard
description (like in [17]) this therapy is reflected by additional death term in the equation describing
changes of vessels. However, from the microscopic model we concluded that the therapy should be
described differently in the case when drugs inhibits stimulation or stimulate inhibition of the vessels
formation. In our research we focused on the class of drugs directly blocking proteins stimulating
angiogenesis, which reflects in blocking blokuje VEGF (vascular endothelial growth factor). Beva-
cizumab (Avastin R©) is a drug belonging to this class.

More precisely, in general case the second equation of System (12) with standard treatment term
reads

q̇ = −µq + bS (p, q) − dI(p, q) − equ,

where u reflects the amount of drug applied. In [C27] we proposed alternative modification of the
Hahnfeldt et al. model

ṗ = −rp ln
p
q
,

q̇ = −µq +
l

a + u
S (p, q) − dI(p, q).

In [Z30] and [C44] (with J. Poleszczuk and M.J. Piotrowska) we studied optimal treatment having
in mind combined treatment, where anti-angiogenic therapy could be used as a complement of stan-
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dard therapy. In that context, it seems that proposing a proper objective functional is of the most
importance, as it is important what we optimize. We proposed the following objective functional

P[u(·)] = p(T ) − k1
q(T )
p(T )

+ k2

T∫
0

u(t)dt,

where T (> 0) describes (fixed) duration of treatment, k1, k2 reflects the decision which of the thera-
peutic goals is more important, while the last term stands for side effects of the drug application. In
line with this we additionally assume that

∫ T

0
u(t)dt ≤ Amax for some constant Amax. In our opinion,

this functional emphasized the role of vessels normalization in better distribution of the drug inside
the tumor.

We proved that the optimal strategy consists of intervals in which we apply full dose, no dose, as
well as intermediate doses, while bang-bang strategies are not optimal, and the change between full
and no dose is always through intermediate doses.

More recently, with my PhD student Piotr Bajger and M. Bodzioch, I focused on sensitivity of
tumor cells with respect to therapy ([Z37]). In System (12) we divided the whole cellular population
into two groups – sensitive and resistant to therapy (chemotherapy, but we can also consider other
types of tumor therapies). The result that seems to be most important from a patient point of view
is connected with simulations in which we plotted survival times. In clinics the typical therapeutic
scheme is “full dose – no dose”, while in our model of competition between sensitive and resistant
cells this scheme dose not lead to highest survival. Maximal survival time is obtained for intermediate
doses.

Last papers on the process of angiogenesis ([C27], [C44], [Z37]) are important in my opinion,
because of their potential impact on the tumor treatment.

5. Modeling of cancer mutations

Due to hypotheses, carcinogenesis is a multistage process, and the formation of cancer is preceded
by the sequence of mutations. Typically there are 3 to 7 mutations; c.f. [32]. In several of my research
papers I analyzed models of cancer mutations on the basis of [1]. This topic was also included
into my habilitaion monograph, but only two-stage mutation was considered there (c.f. also [A13]).
Simplified version (only one mutation) I presented in [Z14], while in [Z17] I studied the influence
of delay onto the one-stage model dynamics. Later, in [A15] I extended some results to the general
n-dimensional case. More precisely, I analyzed three models

ẏ0 = y0
(
a0(1 − y0) − µ1y1

)
,

ẏi = yi
(
ai(1 − yi) − µi+1yi+1 + ηiyi−1

)
, for i = 1, . . . , n − 1

ẏn = yn
(

1+ ηnyn−1
)
,

, (14)

ẏ0 = y0
(
a0(1 − y0) − µ1y1

)
,

ẏi = yi
(
ai(1 − yi) − µi+1yi+1 + ηiyi−1

)
, for i = 1, . . . , n − 1

ẏn = yn
(

1 – ηnyn−1
)
,

, (15)

ẏ0 = y0
(
a0(1 − y0) − µ1y1

)
,

ẏi = yi
(
ai(1 − yi) − µi+1yi+1 + ηiyi−1

)
, for i = 1, . . . , n − 1

ẏn = yn
(
–1 + ηnyn−1

)
,

, (16)

where y0 stands for healthy cells population, while yi, i = 1, . . . , n, describes the size of cellular
population on the ith stage of mutations. Systems (14), (15) and (16) differ in the influence of the
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environment on the last stage of mutations, and reflect favorable, competitive and unfavorable envi-
ronment, respectively.

In [A15] I studied global dynamics of these models. I showed that ẏi grows at most linearly for
all i ∈ {0, 1, . . . , n}, which yields global existence of solutions in time. For System (16) there is also
ẏn ≥ yn, and therefore yn → ∞, which means that in favorable environment cancer cells grow to
infinity. The rest of the paper focused on other systems. In (15) the same effect as for (14) could
be observed. However, we are able to choose such parameter values for which yn is bounded. I also
studied various kinds of steady states that could be present in these models. Using the method of
Lyapunov functionals I analyzed global stability. For System (16) I proved that if there is unique
positive steady state, then it is globally stable. On the other hand, for System (15) the positive steady
state is unstable, if exists, which is a simple consequence of the Jacobian matrix form. The stable
state is reflected by yn = 0 and other coordinates are nonzero (again if this state exists). Notice, that
this state is unstable for System (16). If both the states do not exists, we should focus on the states
with more zero coordinates.

In the basic article [1] the authors studied reaction-diffusion equations, so I decided to study the in-
fluence of diffusion as well. It turns out that these systems belongs to the class of equations for which
Lyapunov functions for ODEs could be easily translated into the functional for reaction-diffusion
equations with zero-flux boundary conditions by integration. Hence, the results for global stability
remain unchanged.

In [Z31, C41] we considered the influence of delay and diffusion on the model dynamics. In [Z32,
C48] the influence of delays into two-stage model dynamics was analyzed.

6. Radiation induced bystander effect

Article [C52] presents main results of the first PhD thesis of J. Poleszczuk. The thesis was pre-
pared on the basis of experiments conducted in Silesian Technical University under the supervision of
Prof. Maria Wideł. Experiments were related to so called bystander effect and was conducted to study
radiation induced bystander effect (that is the influence of radiation on cells not directly exposed to
radiation) and appearance of senescent cells (this means cells that are not able to proliferate but do not
follow apoptotic path and remain in the organism). It turns out that depending on the dose of radio-
therapy there appear various kinds of bystander effects. In the article results of the experiments were
analyzed statistically and we proposed a modification of standard linear-quadratic model describing
effects of radiotherapy with the influence of bystander effect. Although from mathematical point
of view we used simple tools, the results presented in [C52] could potentially have some practical
impact, as they could be used to propose better radiotherapeutic protocols, and therefore I think they
belong to my most important results.

7. Chemotherapy of tumors: acquired drug resistance

Last several years I have focused on chemotherapy of tumors in the context of acquired drug
resistance (ADR). Together with M. Bodnar we considered two simple models of ADR syndrom
to compare two hypotheses on acquiring drug resistance ([Z39], [C66]). Analytical results are not
sufficient to decide which hypothesis is more probable. We can only conclude that more experiments
focusing on the problem are needed.

Another problem in this direction is related to optimal control. This research has been conducted
together with P. Bajger and M. Bodzioch, and started with the Hahnfeldt et al. model for heteroge-
neous tumors ([Z37]) described above. Then we considered simplified model without angiogenesis,
focusing on competition between sensitive and resistant tumor cells subpopulations [C62]. The most
important part of our work is optimal control problem in which we propose to minimize not only
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tumor size (during and at the end of treatment) and drug side-effects but also to penalize presence of
resistance subpopulation. In this research we considered the following optimal control problem:

Minimize

J(u(·)) = ω1n1(T ) + ω2n2(T ) +

∫ T

0

(
η1n1(t) + η2n2(t) + ξG

(
n2(t)−n1(t)

ε

)
+ θu(t)

)
dt (17)

over all measurable functions u : [0,T ]→ [0, 1] with respect to the dynamics

ṅ1 = γ1n1 (1 − n1 − n2) − τ1n1 + τ2n2 − n1u(t),
ṅ2 = γ2n2 (1 − n2 − n1) + τ1n1 − τ2n2,

(18)

where n1, n2 are the non-dimensional volumes of cells respectively sensitive and resistant to chemother-
apy, u : [0,T ]→ [0, 1] is the non-dimensional chemotherapy dose (or control), and G reflects penalty
related to the presence of resistant cells (in simulations we used G(z) = 1

2 (1 + tanh(z))). Coefficients
γ1, γ2 are the non-dimensional proliferation rates, τ1, τ2 are the non-dimensional mutation rates, ω1,
ω2, η1, η2, ξ and θ are non-negative weights. The timescale in (18) was chosen so that the coefficient
in front of the chemotherapy-induced cell death is 1 and the cell populations were rescaled by the
maximal size (arrying capacity in population models). In order to penalize the resistant population
even further, one can chose the weights so that ω2 > ω1 and η2 > η1.

In C62 we presented some analytical results about the structure of optimal control. In particular we
showed that there exist singular controls which satisfy Legendre-Clebsch condition and thus locally
optimal. The singular arc and the singular control may also be calculated explicitly in terms of the
state variables. We identified four regions in the phase space and classified them according to a
possibility of locally optimal “no dose – full dose” and “full dose – no dose” switches occurring in
each of them. Finally, we showed that the optimal control has to end with a full dose interval under
some additional restriction. Next, we referred to a numerical method to find the optimal control. It
occurred to be of the form “full dose – singular – full dose”. The singular interval in the middle –
during which the control is applied at about 10% of the full dose – is crucial in preserving the sensitive
phenotype. The singular control maintains the number of sensitive cells just above the number of
resistant cells. Note that the singular interval stems directly from the resistance penalty function G
being present in the objective functional (17). These results support our hypothesis that inclusion of
explicit resistance penalty in the objective functional leads to the low-dose metronomic-type protocols
being optimal.

These results have been further extended: analytically, for simpler model, without mutation com-
ponents, and numerically, for the Hahnfeldt et al. type of model with angiogenesis process included.
Two manuscripts are in review now.

8. Androgen deprivation therapy in prostate cancers

This is my newest research topic related to the Bekker Program financed by the National Agency
for Academic Exchange (NAWA). The research has been conducted in Israel with IMBM team.
Within the project - based on clinical data from Mayo Clinic - we developed mathematical model
for the growth of prostate cancer in hormone-sensitive stage (HSPC) and its treatment with androgen
deprivation therapy (ADT). Tumor size is reflected by measured amount of prostate specific antigen
(PSA). We proposed and fitted to the data an underlying tumor growth model (using the data of
those patients for whom records of PSA before the start of ADT were available); proposed a phar-
macokinetic model of the administered drug (leuprolide) and fitted it to the data available from FDA
records; proposed a testosterone secretion model and fitted it to the available data. Then we com-
bined the above models into one model and fitted it to the data from patients treated with continuous
ADT. Next, we proposed a model which includes two resistance mechanism: one influencing the
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testosterone path and second influencing PSA. At all stages of the model development I performed
mathematical analysis confirming our choices. Mathematical analysis of the full model for constant
drug amount was performed as well and a manuscript presenting the process described above has
been prepared. I plan to send it to publication after final approval by other authors (Alon Nahshoni
and Moran Elishmereni).

9. Biochemical reactions with time delay

As it has been mentioned in the introduction, sometimes authors of articles on modeling real
phenomena using DDEs do not pay attention to basic mathematical properties of such equations, like
nonnegativity of solutions. One of such articles is [5], where the authors claimed that oscillations
observed in some simple biochemical reactions channels appear as a result of delays. They described
the first of considered channels by one linear DDE, which is known to have negative solutions [4].
Discussing the models proposed in [5] we noticed (with J. Poleszczuk and M. Bodnar) [C31] that
solutions not only can have negative values but always take negative values when the delay exceeds
critical value for which Hopf bifurcation occurs. It considers one DDE of the form

ẋ(t) = A − Bx(t) −Cx(t − τ) (19)

with initial data

x(t) =

0 for t ∈ [−τ, 0),
x0 for t = 0,

(20)

and whenever negative solutions appear, they have no biological meaning. In [5] Equation (19) de-
scribes a reaction channel for some protein which could degrade either instantaneously or with some
delay – this means that the second reaction lasts significantly longer (with mean value equal to τ).
Scheme of this channel reads

∅
A
−−→ X, X

B
−−→ ∅, X

C
==⇒ ∅, (21)

where X denote the considered protein. Scheme (21) means that the protein is produced by DNA
with constant rate A, while intensities of degradation are B and C, for instantaneous and delayed
degradation, respectively.

In [5] the authors presented results of stochastic simulations and formally calculated correlation
function for stationary distribution, which in their opinion confirmed oscillations caused by the delay.
On the other hand, it is known that for C > B and τ > τc := arccos(−B/C)

√
C2−B2

Equation (19) has oscillatory
solutions (c.f. [18, 19, 26]). In our article [C31] we proved that if τ > τc then for every x0 ≥ 0 there
exists such time point t̄ < 4τ at which the solution of (19)–(20) takes negative value. The proof of
that fact is based on proposing the formula for solution on each interval [nτ, (n + 1)τ), which could be
proved by mathematical induction. However, formulas are complex, and necessary calculations are
tedious. This is probably the reason that it was not clearly stated in the literature before.

Notice that initial data (20) covers all cases important from biochemical point of view, so we
concluded that Equation (19) is not a proper mathematical description of biochemical reaction. In
line with that in [C25] (together with Jacek Miȩkisz, J. Poleszczuk and M. Bodnar) we proposed an
alternative description of biochemical reactions with delays, while in [C26] we presented mathemati-
cal analysis of the models describing Reaction 21 and two other reaction channels from [5].

The description of Reaction (21) proposed by us reads

ẋ(t) = A − (B + C)x(t),

u̇(t) = Cx(t) −Cx(t − τ) e−Dτ −Du(t),
(22)

where D is the rate of instantaneous degradation of those reactants which are in the path of delayed
degradation. Clearly, in Scheme 21 we do not exclude the situation when a protein chosen for delayed
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degradation at time t−τ is degraded in the path of instantaneous reaction before t. We see that the first
equation of System (22) is linear, and the whole system is separable. Therefore, although the delay
appears in the second equation, our system could be solved analytically, and the delay plays a role of
a “usual” parameter. We calculated analytical solutions of System (22) and showed that permanent
oscillations are not possible. Hence we concluded that one reaction of this kind is not able to cause
oscillatory dynamics.

Second reaction channel considered in [5] is a protein production with negative feedback, which
could be described by the following system

ẋ(t) = Ad0(t − τ) − Bx(t),

ḋ0(t) = −k1x(t)d0(t) + k−1(γ − d0(t)),
(23)

where x reflects the amount of proteins, d0 stands for active DNA, while γ is the overall amount of
DNA. Usually γ = 1 and then d0 is a proportion of active DNA. For System (23) we proposed initial
data

x(t) = x0(t), d0(t) = d0(t) for t ∈ [−τ, 0].

In Supplement to the article of Bratsun et al. [5] the formulation of this model appeared, but there is
no mathematical analysis there.

Denote
Ω = [0,+∞) × [0, γ], Ω1 =

[
0,

Aγ
B

]
× [0, γ],

CΩ = {ϕ ∈ Cτ : ϕ(t) ∈ Ω}, CΩ1 = {ϕ ∈ Cτ : ϕ(t) ∈ Ω1}.

We showed that CΩ is positively invariant for System (23) and proved that if all coefficients are
positive, then there exists exactly one positive steady state (x̄, d̄0) which is locally asymptotically
stable for all τ > 0. For τ = 0 this state is globally stable in �+, while if Ak1γ < 2Bk−1 and τ > 0 this
state is also globally stable in CΩ. Local stability was proved using standard linearization method,
while for global stability we proposed Lyapunov functions for τ = 0 and τ > 0 separately. For τ = 0
the functional is defined in (�2)+, while for τ > 0 we need to define it in �Ω. Discrete form of the
delay allows for reducing the problem of negativity of the derivative along the solution of (23) to the
problem of positivity of some real matrix (3 × 3 in this case).

Third reaction channel considered in [5] is a modification of the previous reaction. In addition,
it is assumed that a protein is able to bind to DNA and block its own production only in the form of
dimer. Therefore, it is necessary to from two-protein complexes (dimers). The model describing this
channel reads

ẋ(t) = Ad0(t − τ) − Bx(t) − k2x2(t) + 2k−2x2(t),

ẋ2(t) =
k2

2
x2(t) − k−2x2(t) − k1x2(t)d0(t) + k−1(γ − d0(t)),

ḋ0(t) = −k1x2(t)d0(t) + k−1(γ − d0(t)).

(24)

Notation is the same as for System (23), and x2 stands for density of dimers. As before, we proposed
proper initial data on [−τ, 0]. We again showed the existence of unique positive steady state (x̄, x̄2, d̄0)
which is locally asymptotically stable for τ = 0. Moreover,

1. if
√

2
k−1k−2

k1k2
>

Aγ
2B

then the steady state is locally asymptotically stable for all τ > 0;

2. if
√

2
k−1k−2

k1k2
<

Aγ
2B

then the steady state is locally asymptotically stable for τ ∈ [0, τ0), and for

τ = τ0 a Hopf bifurcation appears.
Other stability changes for the steady state of System (24) are not possible.

Results presented in [C26] showed that to obtain oscillatory behavior one should consider not
only the delay, but the delay together with feedback and dimers formation. Therefore, the hypothesis
formulated in [5] is false and at least three reactions of the considered type (that is of bilinear form)
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are necessary for oscillations. The series of our papers is meaningful, because it showed that using
DDEs one needs to be careful, and moreover, only detailed mathematical analysis could lead to proper
conclusions. Therefore, I also singled out and attached these articles.

10. Modeling of dyadic interactions

Interesting part of my research is related to modeling of dyadic interactions, commonly known
as “Romeo and Juliet” models. The main paper on that topic is [C35] in my opinion, as it was pub-
lished in a journal of sociological scope. In this article (together with Natalia Bielczyk and Tadeusz
Płatkowski) we studied the influence of delays into the relationship between partners. The model
variables were interpreted as intensities of emotions of partners in their relationship. For the first time
a model of such type was proposed by Strogatz [35, 36]. In [C35] we studied the linear system, as
studying stability we usually make linearization, so analysis of stability is typically associated with
linear analysis. The delay reflects slower reaction of one of the partners either to its own emotions or
to the emotions of a partner. In most general case the model we considered reads

ṙ(t) = a11r(t − τ11) + a12 j(t − τ12),
j̇(t) = a21r(t − τ21) + a22 j(t − τ22),

(25)

where r and j stand for the partners emotions, while τkl ≥ 0, k, l ∈ {1, 2} are the delays of reactions.
It is obvious that if τkl = 0 for some k, l ∈ {1, 2} then this reaction is instantaneous. In the cases we
considered one of the delays τkl was nonzero.

This way we made a systematic study of linear DDEs with single discrete delay in the context of
possible stability switches. In the proofs we used the methods described in Subsection 14. In line
with that this article could also be included to my analytical results, however these results were also
interpreted in psychological language.

Taking into account the fact that real relationships are not linear in [C32] we (together with
M. Bodnar and N. Bielczyk) proposed nonlinear model in which stabilization due to the presence
of delay (for specific values of the delay) is possible. We concluded that for some type of couples it
is beneficial if one of the partners does not react immediately but will think a little bit (but not too
long) before reaction. It could lead to stabilization of this couple. Introductory results on that topic
were presented in [Z26]. Next, in [Z33] together with Małgorzata Półtorak we proposed a model in
which we are able to describe positive and negative emotions separately (in classic models the mean
emotion is described). This model needs further discussion as it has some undesirable mathematical
properties (it is not defined in the whole (�+)2).

Next article [C59] (together with M.J. Piotrowska and Joanna Górecka) is related to the influence
of optimism and pessimism into our social life (when and which persons have a chance to constitute
and maintain a relationship, not necessarily romantic one).

I also considered an influence of time delays into the classic discrete model of Gottman, Murray
et al. [15] of marital interactions ([Z38], [A19]). Lastly, the research on the influence of time delays
has been continued together with my master’s students Katarzyna Cytlak and Natalia Jankowska. We
obtained interesting results, again related to the actors attitude to life (optimism/pessimism) [C68]
(together with M.J. Piotrowska).

11. Modeling of heart action

Another research topic I was involved came due to cooperation with Beata Jackowska-Zduniak.
This topic is modeling of heart action and its pathologies. In [C45] we used (together with M. Bodnar)
van der Pol equation with delay to reconstruct abnormal heart action observed in tachycardia. Van
der Pol equation is a prototype ODE of the second order used in the description of oscillators, as it
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has a limit cycle for some range of parameter values. More precisely, we used this equation in its first
order form that reads

ẋ = y,

ẏ = −a(x2 − 1)y − f x(x + d)(x + e),
(26)

where parameter values were fixed in such a way that System (26) reflects real frequencies of heart
beat. Abnormal heart action was described by feedback with delay:

ẋ = y(t) + k
(
x(t − T ) − x(t)

)
,

ẏ = −a
(
x2(t) − 1

)
y(t) − f x(t)

(
x(t) + d

)(
x(t) + e

)
.

We analytically studied the influence of delay ans numerically reproduced abnormal heart action
observed in tachycardia.

Next article [C55] presented research on various types of tachycardia on the basis of more complex
models, like Hodgkin-Huxley model [21] (well known model used in the description of action poten-
tials) or Yanagihara-Noma-Irisawa model [40]. We again introduced delays to reflect pathologies in
heart action. It turns out that proposed models successfully reproduce differences between various
types of tachycardias.

12. Ecological, epidemiological and eco-epidemiological models

My interests related to ecological problems were initiated during my cooperation with National
Forest Research Institute. I was involved in investigation of possible prognostic abilities of mathemat-
ical models in the context of forests pest gradations. Article [Z7] (with M. Bodnar) is devoted to that
topic. Next, I modeled coral reefs. The model was based on diffusion-consumption idea, the same as
for avascular tumor growth ([Z11], [Z12]). Together with Zuzanna Szymańska ([Z21, C22]) I came
back to ecological problems and studied relations between heterothropic and autotrophic organisms.
In [C47] together with my bachelor’s student Paweł Matejek I studied the possibility of explaining an
unusual disproportion in predator species in Australia on the basis of the prey-predator model with
carrying capacity for preys. The article has mainly a review character, but the presented interpretation
is interesting and I used it in popularizing way many times, in particular I prepared an article for
“Delta” (which was awarded the Deans Award for the best article in 2014).

In turn, my interests of epidemiological models have started with my cooperation with the team of
Prof. Anping Liu from China University of Geosciences in Wuhan. The first work on that topic [C34]
prepared together with Meihong Qiao was devoted to SICR model, in the context of vaccinations
against Hepatitis B.

Last time I focused on the spread of epidemics in heterogeneous populations ([C64], [C65]). I
has been inspired by M. Bodzioch (UWM in Olsztyn) and his research on active case founding of
tuberculosis in a subpopulation of homeless people in Warmian- Masurian Province of Poland.

12.1. Modeling of vaccinations

In [C34] we studied a model in which the whole population is divided into four classes: S, I, C i
R – susceptible, infected, carriers and resistant. As usual in such type of models, as variables reflect
fractions of persons in each of the considered classes, we were able to reduce the model and consider
the system of three ODEs

Ṡ = µ − (βI + εβC)S − µS ,
İ = (βI + εβC)S − γ1I − µI,

Ċ = qγ1I − γ2C − µC,
(27)

with positive parameters. This system was considered in the set

Ω = {(S , I,C) ∈ R3
+ : S + I + C ≤ 1}, (28)
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which is positively invariant for (27).
One of the most important parameters in epidemiological models is so called basic reproduction

number R0. It gives the information about the threshold of epidemic. If the value if R0 is less than 1,
then the disease does not spread as one infected individual is able to infect less than one susceptible.
In our model

R0 =
β

γ1 + µ
+

qγ1

(γ1 + µ)
εβ

(γ2 + µ)
.

We proved that if R0 ≤ 1 then the only steady state (1, 0, 0) (disease free equilibrium, DFE) is globally
stable, while for R0 > 1 there exists positive steady state

S ∗ =
1
R0

=
(γ1 + µ)(γ2 + µ)
β(µ + γ2 + εqγ1)

, I∗ =
µ(µ + γ2)

β(µ + γ2 + εqγ1)
(R0 − 1),

C∗ =
µqγ1

β(µ + γ2 + εqγ1)
(R0 − 1),

which is locally stable, and moreover it is globally stable under some additional assumptions.
Global stability of DFE was investigated using the method proposed in [23]. In this method the

system should be rewritten in the form

Ẋ1 = A1(X)(X1 − X∗1) + A12(X)X2,

Ẋ2 = A2(X)X2,
(29)

where X1 ∈ �
n1
+ , X2 ∈ �

n2
+ , X = (X1, X2) and System (29) is defined in positively invariant set

ΩX ⊂ �
n1+n2
+ . In general, X1 stands for all uninfected classes, while X2 reflects other ones. For

System (29) we assume:
1. (29) is dissipative in positively invariant set ΩX;
2. steady state X∗1 of subsystem

Ẋ1 = A1(X1, 0)(X1 − X∗1)

is globally stable in the canonical projection of ΩX into Rn1
+ ;

3. matrix A2(X) is Metzler (that is all off-diagonal terms are nonnegative) and irreducible for any
X ∈ ΩX;

4. there exists a matrix Au
2 which bounds from above all matrices from the setM = {A2(X) : X ∈

ΩX}, and either Au
2 < M or if Au

2 ∈ M, that is Au
2 = maxΩXM, then for any X ∈ ΩX such

that Au
2 = A2(X) we have X ∈ Rn1

+ × {0} (meaning that the points realizing maximum lie in the
submanifold of disease free states);

5. α
(
Au

2

)
≤ 0, where α

(
Au

2

)
, is the spectral bound for Au

2.
In [23] it was proved that if Assumptions 1.–5. are satisfied then DFE is globally stable for Sys-
tem (29). We showed that for R0 < 1 these assumptions and fulfilled for System (27), which implies
global stability of DFE.

For positive state (S ∗, I∗,C∗) we proved global stability (inside the set Ω) proposing a Lyapunov
function, assuming that

β < min{2µ + γ1 + γ2, 2µ + (1 − q)γ1, (2µ + γ2)/ε}.

The main topic of [C34] was to study the influence of vaccines onto the model dynamics. These
vaccines were modeled using impulses. We assumed that vaccines are given at times nτ, n ∈ �, where
τ is the time interval between two impulses (vaccines), while S (nτ−) reflects the size of susceptible
class just before nth vaccine. For a given fraction p ∈ [0, 1] of vaccinated individuals we wanted to
find an optimal distance τ between two subsequent impulses. Hence, we studied the system

Ṡ = µ − (βI + εβC)S − µS ,
İ = (βI + εβC)S − γ1I − µI,

Ċ = qγ1I − γ2C − µC,

 t , nτ,

S (t+) = (1 − p)S (t), t = nτ, n ∈ �+.

(30)
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We used the comparison method for equations with impulses [29]. We proved that if

R1 =
β

µ + δ
·

1 − e−µτ

1 − (1 − p) e−µτ
< 1, δ = min{(1 − q)γ1, γ2}, q < 1,

then solutions of System (30) tend to (S ∗(t), 0, 0), where

S ∗(t) = 1 −
p

1 − (1 − p) e−µτ
e−µ(t−nτ), nτ < t ≤ (n + 1)τ, n ∈ �+.

We concluded that the condition of effective vaccination is:

τ <
1
µ

ln
β − (1 − p)(µ + δ)

β − µ − δ
or p > (1 −

β

µ + δ
)(1 − eµτ).

In [C51] we studied epidemiological model with delay and impulsive birth rate (such type of birth
rate could be explained in the framework of external influence onto the considered ecosystem).

12.2. Modeling the spread of epidemic in heterogeneous populations

Research on the spread of epidemic in heterogeneous populations (e.g. we considered tubercu-
losis for homeless and non-homeless people) is conducted by me together with M. Bodzioch, in the
framework of PhD of M. Choiski. We based on a simple SIS model, because the data for other groups
in the populations are not available. We studied a class of models assuming Malthusian growth of
the population [C65] as well as a constant influx of individuals to the population [C64]. To describe
the spread of the disease in the heterogeneous population we used criss-cross type models. The
most important conclusion from our analysis is related to the fact that conditions that are sufficient
to eliminate the disease from the single subpopulations could not act in the same way in the case of
the whole heterogeneous population. Hence, the presence of (even small) subgroup of people with
higher rate of the disease spread could lead to the pandemic in the whole population, which seems to
be important in the context of COVID-19.

12.3. Eco-epidemiological models

Subsequent papers with the team of Prof. A. Liu focused on combination of ecological and
epidemiological topics. Such a combination has been a new trend of eco-epidemiological studies.
We analyzed the prey-predator model with infection in the prey species. In [C46] the system of
reaction-diffusion equations was considered and we studied this system in the context of influence of
diffusion on the model dynamics. It turns out that for this model we were able to propose a Lyapunov
function as the system belongs to that class of problems for which the Lyapunov function for ODE
version could be adapted for diffusion version via integration. Additional analysis of that model was
performed in [C61] (together with Piotr Radziski – this was partially his bachelor’s thesis). In [C50]
we studied the influence of stochastic effects.

13. Modeling in neurosciences

Analysis of the influence of time delays into the dynamics of simple systems of equations leads
also to interesting results in the context of neurosciences. In [C58], [C63], together with N. Bielczyk
and master’s students Katarzyna Piskała and Natalia Płomecka (also with other coauthors) we studied
a system of two equations describing interactions between two neuronal populations. The system
describes an ambivalent situation, where “win” of one population means the choice of one of the
two available options. Including delays we show that sometimes such choice is not easy, and the
brain considers both options subsequently. In particular, it could be related to the increasing age and,
consequently, delays.

In [Z42] I presented several real situations which could be described by similar simple models.
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14. Analytical results for some classes of DDEs

In this subsection I present results obtained by me and my collaborators for some general classes
of DDEs, however these results were also motivated by specific applications. I consider these results
an important part of my research because it is not a frequent case to obtain analytical results for
general equations in the case of DDEs. Therefore these articles are attached to this statement.

14.1. General equation motivated by the logistic model

In many problems studied by me (and not only by me, c.f. [31, 34]), like avascular tumor growth,
there appeared an equation which could be generalized as{

ẋ(t) = α f (x(t − 1)), t ≥ 0,
x(t) = ϕ(t), t ∈ [−1, 0],

(31)

where f : �+ → � is a continuous function satisfying the following conditions: f (0) = f (1) = 0, f is
positive in the open interval (0, 1) and has one positive maximum. In particular, in [34] such type of
equation with logistic f (that is f (x) = x(1 − x)) was proposed to describe the change of tumor cells
population in the experiment on mice.

First analytical results obtained by me under some stronger assumptions (in particular for uni-
modal function f fulfilling inequalities α ≤ 1 and | f ′(1)| ≤ 1) I published in [A11]. In [C14] we
(with M. Bodnar) weakened the conditions on f assuming only that f is nonincreasing on the interval
(c,+∞), where c ∈ (0, 1) is the point at which f achieves its maximum. In turn, inequalities assumed
in [A11] were replaced by the condition of positivity of the function 1 − x + α f (1 + α f (x)) on the
interval (c, 1].

More precisely, if the function g(x, α) = 1 − x + α f (1 + α f (x)) is positive in the interval [c, 1)
then for any initial function ϕ with the values in [0, 1] there exists a global nonnegative solution x(t)
of Problem (31), and if ϕ . 0 then x(t) → 1 as t → +∞. We also showed that g is decreasing with
respect to the second variable, so there exists unique critical αc such that g(x, α) > 0 for all α < αc

and x ∈ [c, 1), while for α > αc there exists such x̄ ∈ [c, 1) that g(x̄, α) < 0.
The proof is based on considering two possibilities. Either a solution remains above or below 1

starting form some time point t̄, and then this solution tends to 1, obviously. If not, then there exists an
infinite sequence (tn)∞n=0 such that x(tn) = 1, x(t) ≥ 1 for t ∈ (t2k, t2k+1) and x(t) ≤ 1 for t ∈ (t2k+1, t2k+2).
Moreover, tn → +∞. Estimating the solution on subsequent intervals (tn, tn+1), separately for even
and odd natural number n, we obtained two sequences: xk bounds x(t) from below in the intervals
(t2k−1, t2k) and yk bounds x(t) from above in the intervals (t2k, t2k+1). We derived the recurrent formula
and concluded that xn is convergent under the assumption, which also implies the convergence of yn.

Notice, that the assumption of this theorem are weaker then those in [A11], which could be
checked e.g. for the Gompertz function (that is for f (x) = −x ln x). Assuming that f is sufficiently
regular we were able to simplify these assumptions. We proposed such simplifications in [C14], and
we used some of them in [C13] in the analysis of specific models.

Second part of [C14] was devoted to the study of possible destabilization of positive steady state
and the appearance of Hopf bifurcation. We used the method proposed by Diekmann et al. [9]; c.f. (5).
We showed that the steady state x̄2 ≡ 1 of Equation (31) is destabilized when α exceeds critical value
α0 = π/(2| f ′(1)|) and if f is of class C3 and

(11π − 4)
(
f ′′(1)

)2 > π f ′′′(1) f ′(1)

then for α = α0 there is a stable Hopf bifurcation.
This work was also complemented with several examples of application of the theorems we

proved; c.f. also [C13].
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As I mentioned before, Equation (31) was motivated by the version of delayed logistic equation
considered in [34]. This equation, in contrary to the classic version (c.f. [31]), has some undesirable
properties, in particular it has negative solutions for large values of the delay. Because during our
studies it turned out that there are no significant qualitative and quantitative differences between the
classic equation and that proposed in [34] until the solution to the second one remains positive, there-
fore in specific applications we can try to fit both of the equations as well. Sometimes it is important
to introduce death term to the model explicitly, for example in tumor growth modeling such term
could reflect some form of a treatment. On the other hand, as time after which the triggered death is
observed is much shorter comparing to the cell cycle length or time of pregnancy, we usually assume
that the death term is not delayed. That is why we (with M. J. Piotrowska and M. Bodnar) decided to
study in [C38] equations of the formẋ(t) = α

(
f (x(t − 1)) − g(x(t))

)
, t ≥ 0 ,

x(t) = ϕ(t) , t ∈ [−1, 0]
(32)

and ẋ(t) = α
(
x(t) f (x(t − 1)) − g(x(t))

)
, t ≥ 0 ,

x(t) = ϕ(t) , t ∈ [−1, 0] ,
(33)

where the function g reflects death, while x f (x) in (33) plays the same role as f in Equations (32) and
(31).

One of our aims was to study Hopf bifurcation, as we assumed that functions f and g are of
class C3. However, in the proof of existence and uniqueness of solutions for linear g we used the step
method, so it is enough to assume that f is integrable. Moreover, in general case g(0) = 0 and g is
nondecreasing. It is known that solutions of Equation (32) could be negative, and therefore in the
analysis presented in [C38] we assumed the existence of nonnegative solutions defined for all t ≥ 0.
Next, to guarantee existence of positive steady state x̄ = 1 we assume f (1) = g(1). Main results
obtained by us on that topic were presented in [C38]. They were concerned with the occurrence of
(degenerated or nondegenerated) Hopf bifurcation and stability of periodic orbits appearing due to
the bifurcation; c.f. (5).

General results are rather complex, and obtained conditions have no clear biological interpretation.
Depending on the parameters, which are the derivatives of f and g up to the third order, we are able
to show that there is a Hopf bifurcation may be super- or subcritical. For example I present below one
of the results obtained for Equation (33) under the assumption that the derivatives of the second and
third order of both f and g are zero at x̄ = 1 (we can interpret it as functions that are linear near the
positive steady state). Let us define

α0 =
arccos a0−b1

a1√
a2

1 − (b1 − a0)2
, where a0 = f (1), a1 = − f ′(1), b1 = g′(1).

If b1−a1 < a0 < b1 + a1 then the positive steady state x̄ = 1 of Equation (33) is locally asymptotically
stable for 0 < α < α0, unstable for α > α0 and for α = α0 there is a Hopf bifurcation. Moreover,
1. if b1 − a1ξ0 < a0 < b1 + a1 then the bifurcation is supercritical;
2. if b1 − a1 < a0 < b1 − a1ξ0 then the bifurcation is subcritical;
where ξ0 ≈ −0.145 is the only zero of the function

F(ξ) = −
(
12ξ2 − 10ξ − 1

) √
1 − ξ2 −

(
8ξ2 − 16ξ − 3

)
arccos(−ξ), ξ ∈ [−1, 1].

Although in the literature partial results on that topic could be found – for example in [38] a
version of Poincaré-Bendixson theorem for Equation (32) with decreasing f fulfilling x f (x) < 0 and
g(x) = x, there were no systematic study for Equations (32) and (33) with general functions f and g,
especially in the context of the type of Hopf bifurcation which was our main aim. I therefore think
that this research is important.
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14.2. Equation motivated by the Cooke model

In [C54], motivated by the article [7], together with Gang Huang and A. Liu we considered the
following equation

y′(t) = F
(
yt(0), yt(−τ)

)
− cyt(0), c > 0, (34)

where F : R2 → R is of class C1. We studied Equation (34) in the set

Ω = {φ ∈ Cτ : ∀t ∈ [−τ, 0], 0 ≤ φ(t) ≤ 1},

under the assumption that F fulfills:
1. F(u, v) ≥ 0 for u, v ∈ [0, 1] and F(1, v) < c for v ∈ [0, 1];
2. F(u, 0) = 0 for u ∈ [0, 1].
Assumption 1. implies that Ω is positively invariant with respect to Equation (34), while 2. is sufficient
for y = 0 to be a steady state (it is stronger than necessary condition F(0, 0) = 0, however is important
in the proof of global stability).

Often in specific situations instead of strong inequality in 1. it is enough to assume F(1, v) ≤ c for
v ∈ [0, 1]. In such a case if y reaches the value y(t) = 1 and y′′(t) ≤ 0 then Ω is still invariant.

In [C54] we studied global stability using proper Lyapunov functionals and the Lyapunov-LaSalle
theory; c.f. [19]. First using U1 : Ω→ R defined as

U1(φ) =

φ(0)∫
0

lim
v→0

F(0, v)
F(σ, v)

dσ +

0∫
−τ

cφ(θ)dθ, (35)

under additional assumptions: F is of class C2 and partial derivatives of F satisfy inequalities Fu(u, v) ≤
0, Fv(u, v) ≥ 0, Fuv(u, v) ≤ 0, Fvv(u, v) ≤ 0, Fv(0, 0) ≤ c, we proved that the state y = 0 is globally
stable in Ω.

Next we considered positive steady state under the assumptions guaranteeing the existence of that
state (e.g. it is enough to assume Fv(0, 0) > c). Defining

U2(φ) =

φ(0)∫
y∗

F(y∗, y∗)
F(σ, y∗)

dσ − y∗ ln
φ(0)
y∗

+ c

0∫
−τ

(
φ(θ) − y∗ − y∗ ln

φ(θ)
y∗

)
dθ, (36)

we were able to prove global stability of the positive steady state inside the set Ω.
As analysis of global stability for DDEs is not an easy task, in particular proposing a proper

Lyapunov functional is not obvious, I decided to mention this paper as important in my research.

15. Other analytic results

In papers [A12] and [Z25, C29] I presented two useful tools for analysis of stability of DDEs.
The methods are known in literature, however are not commonly used in biomedical applications,
and therefore I decided to popularize them showing their powerful on some specific examples. In
[A12] I considered the so called Mikhailov criterion which originally was proposed for ODEs, and as
a tool for DDEs has been known mainly for engineers.

In the simplest version this criterion allows to localize roots of a pseudopolynomial

W(λ) = P(λ) + Q(λ) e−λτ, (37)

where P and Q are polynomials, deg.P is greater than deg.Q and W has no roots on the imaginary
axis. Then the change of the argument of the vector W(iω) as ω increases from 0 to ∞ is equal to
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π
2 deg.P if and only if all roots of W are located in left-hand complex half-plane. More general – this
statement is true for any number of discrete delays, as well as distributed delays on finite intervals
(for infinite intervals some additional assumptions could be necessary). In [A12] I presented precise
proof for several discrete delays (the poof is base on the Principle of Argument) and discussed several
examples of application showing that this is a useful tool.

In [C29] together with Joanna Skonieczna I presented the method of destabilization analysis com-
ing from the article [8]. This method is based on continuity of eigenvalues with respect to the param-
eters. This means that stable steady state may be destabilized when some parameters (typically delay)
changes if eigenvalues cross imaginary axis from left to right-hand complex half-plane with nonzero
speed. To this end we define an auxiliary function which is build on the basis of the characteristic
quasipolynomial (37) in the following way

F(ω) = |P(iω)|2 − |Q(iω)|2.

Looking for zeros of this function F we are able to establish destabilization (if F has positive zero
then purely imaginary eigenvalues exist) and possibility of stability switches (if F has more positive
zeros). In [C29] we presented simple version of the proof and examples of practical applications of
this method.

16. Other articles

Papers [A6] and [A9] are review articles devoted to mathematical modeling of disease trans-
mission both on the level of single individual and the whole population, as well as development of
cancerous diseases.

In [A18] I listed several interesting examples of application of dynamical systems to the descrip-
tion of natural phenomena. It is also a review article.

Papers [Z5, A7] are devoted to the life and achievements of Prof. Wiesław Szlenk.
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C21 M. Bodnar, U.F., Z. Szymańska, Model of AIDS-related tumour with time delay, Applicationes
Mathematicae 36(3), 2009, 263–278.
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Z22 M. Bodnar, U.F., Z. Szymańska, Model of AIDS-related tumour with time delay, in Proceedings
of the XIII National Conference on Application of Mathematics in Biology and Medicine, Leszno
n. Warsaw, ed. WMIM UW, Warsaw, 2008.

Z23 U.F., Spatial effect on interactions between brain tumour and immune system – influence of dif-
fusion, in Proceedings of the XIII National Conference on Application of Mathematics in Biology
and Medicine, Leszno n. Warsaw, ed. WMIM UW, Warsaw, 2008.

Z24 M. Bodnar, U.F., Modelling of an immune reaction under the influence of interleukin, in Pro-
ceedings of the XV National Conference Application of Mathematics in Biology and Medicine,
Szczyrk, ed. Politechnika Śla̧ska, Gliwice, 2009.
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