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1 Simple one-dimensional dynamical systems

— birth/death and migration processes, lo-

gistic equation.

Generally, in our course we will talk about two main types of dynamical
systems: continuous and discrete. Our study will be based on the well known
biological models. We start from a very simple example — modelling of a
birth process.

1.1 Linear models of birth/death and migration pro-
cesses.

Let N(t) denotes the density of some population at time t. We want to
construct as simple as possible mathematical model that can predict the
density N(t+∆t), where ∆t > 0 is a length of time interval we are interested
in. Assume that

• an environment is very favourable for our species, i.e. there is enough
food and place for every individual,

• all individuals are the same, we are not able to distinguish between
them,

• a birth process is uniform and there is no death in the interval [t, t+∆t),
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• each individual divides (has children) every σ time units, the number of
children per each individual and each birth moment is the same (equal
to λ).

Then
N(t + ∆t) = number of parents + number of children,

i.e.,

N(t + ∆t) = N(t) + λ
∆t

σ
N(t),

where the term ∆t
σ

describes the number of birth moments for every individual
in the interval [t, t + ∆t).

Finally, we obtain the equation

N(t + ∆t) =

(

1 + λ
∆t

σ

)

N(t). (1)

Now, using Eq.(1) we build two dynamical systems — discrete and contin-
uous. The discrete one is almost ready. Assume that the time interval has
the length of one unit. Then ∆t = 1. Using the notation of sequence theory
we get

Nt+1 = rdNt, with Nt = N(t) and rd = 1 +
λ

σ
. (2)

We obtain so-called recurrent formula defining the sequence (Nt) (recurrence
means that we calculate the next term of the sequence knowing the previous
term). This sequence describes the birth process with constant birth rate rd

in the language of discrete dynamical systems. ”Discrete” means that the
time is measured in discrete time moments, namely, t is a natural number
(t ∈ N). We are not interested in other time moments between t and t + 1.

On the other hand, we can build the continuous model. Let rewrite Eq.(1)
in the following way

N(t + ∆t) − N(t)

∆t
=

λ

σ
N(t).

Now, we should remind that, for every function f with real values, the ratio

f(t + ∆t) − f(t)

∆t

is called the difference quotient and if there exists a limit of this ratio as an
increment ∆t tends to 0, then it is called the derivative of f at the point
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t. The derivative describes instantaneous (local) changes of the function.
We write df

dt
or ḟ to underline that it is the derivative with respect to time

(normally, f ′(x) is used, for the function of real variable x).
Hence, for ∆t → 0, we obtain

Ṅ(t) = rcN(t), with rc =
λ

σ
. (3)

It is so-called ordinary differential equation (ODE) that tells us about the
changes of population at every time t. If we know the solution, we also know
the behaviour of population at every time. Therefore, such a model is called
”continuous” because the time is continuous in it.

We compare these two models. The discrete version, i.e. Eq.(2) is the
geometric sequence (this is a sequence with a constant ratio xn+1

xn
, for every

n ∈ N) with common ratio

Nt+1

Nt

= rd > 1.

Therefore, such a sequence is always increasing (the next term is greater
than the previous one). It is easy to see that if N0 = 0, then Nt = 0, for
every t. If there are no parents, there are no children. Assume that N0 > 0.
The sequence is unbounded in such a case. If not, then it is increasing and
bounded and therefore, it has a limit. Let N̄ denotes this limit. We have

N̄ = lim
t→+∞

Nt = lim
t→+∞

Nt+1,

because (Nt) and (Nt+1) are the same sequences except of the first term —
(Nt) starts from N0 while (Nt+1) starts from N1. Therefore, from Eq.(2) we
obtain N̄ = rdN̄ . This means that either N̄ = 0 or rd = 1. Our sequence is
increasing. Thus, N̄ > N0 > 0 and rd > 1, from the definition. It contradicts
the assumption that the sequence is bounded and we have already proved
that

lim
t→+∞

Nt = +∞.

On the other hand, knowing the recurrent formula we are sometimes able
to calculate so-called general term of the sequence. At the beginning we try
to calculate several terms of the sequence starting from arbitrary N0. We see
that

N1 = rdN0, N2 = rdN1 = r2
dN0, N3 = r3

dN0,
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and so on. Hence, we postulate that Nt = rt
dN0, for every t ∈ N. This

formula should be proved using the principle of mathematical induction. We
have three steps of this method.
1. We check the formula for t = 0.

Checking: For t = 0 we obtain N0 = r0
dN0 that is true.

2. We assume this formula for some t = k and postulate a thesis for t = k+1.
Assumption: Nk = rk

dN0.
Thesis: Nk+1 = rk+1

d N0.
3. We prove Thesis.

Proof: From the recurrent formula we have Nk+1 = rdNk. Next, using
Assumption we obtain Nk+1 = rdNk = rd(r

k
dN0) = rk+1

d N0 which proves
Thesis.
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An example of solution to Eq.(2).

Now, we focus on the continuous model, i.e. Eq.(3). We want to find
a function N(t) with the derivative proportional to itself. We see that the
function identical to 0 (N(t) ≡ 0) satisfies the equation. If N(t) > 0, we can
rewrite Eq.(3) in the form

Ṅ

N
= rc.

Now, we make a substitution

ln N(t) = f(t),

for some differentiable function f . Calculating derivatives of both sides with
respect to t we obtain

Ṅ(t)

N(t)
= ḟ(t).
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Therefore, ḟ(t) = rc and the function f has constant derivative. This means
that this function is linear, i.e.

f(t) = rct + c, where c = const.

Hence, ln N(t) = rct + c and finally,

N(t) = Cerct, C = ec > 0,

where e is the Euler number.
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An example of solution to Eq.(3).

We see that the solution to our model Eq.(3) is exponential with positive
exponent rct, for t > 0 and therefore, it growths to infinity with increasing t.

Summing up — for the birth process there is no qualitative difference
between the behaviour of solutions to continuous and discrete models. The
only difference (quantitative, obviously) is the birth rate. For the continuous
model this rate rc is simply positive, while for the discrete one it should be
greater than 1 to describe this process. If we fix rc > 0, then we can find
rd > 1 such that both solutions to discrete and continuous models are the
same at t ∈ N. Namely, rd = erc. Due to identity erct = (erc)t we obtain
erct = rt

d, for every t and this means that the solutions with the same initial
value N0 are the same, for t ∈ N.
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Similarly, we can model parallel processes of birth and death to obtain
equations of the form

Nt+1 = (rd − sd)Nt or Ṅ = (rc − sc)N,

where sd and sc are death rates.
In the discrete case we have sd ≤ 1 because the number of dead individuals

cannot be greater than the number of all individuals. Therefore, the net
growth rate of population αd = rd − sd > 0 and the number of individuals
increases for αd > 1, it is constant for αd = 1 and decreases for αd < 1. In the
last case we have common ratio αd ∈ (0, 1) and then the geometric sequence
is decreasing to 0.

In the continuous case the net growth rate αc ∈ R. If it is positive, the
number of individuals grows, if it is equal to 0, the number is constant, for
αc < 0 this number decreases to 0.

In the same way we study processes of migrations. In the easiest case we
assume that the number of migrating individuals is constant in time. Then
we obtain

Nt+1 = αdNt + β or Ṅ = αcN + β,

with β ∈ R describing constant migration.
For such a models the behaviour of solutions is also similar in both cases.

The reason of this similarity lies in the linearity of these models. In the
examples above we have used two equations

Nt+1 = F (Nt) or Ṅ(t) = F (N(t)),

where the right-hand side of equations (i.e. F ) is linear. For non-linear
models the differences can be large.

1.2 Logistic equation.

As an example of non-linear model we study the famous logistic (Verhulst)
equation. We start with the continuous version because it is much simpler.
How to construct this model? In the previous considered case we have as-
sumed that the birth rate does not depend on external conditions and it is
constant independently on the number of individuals. In the logistic model
it is assumed that individuals compete for environmental resources such as
food, place and so on. Therefore, if the number of individuals is large, they
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are not able to spend the same amount of energy for reproduction as in the
case of small population. Consider the ratio Ṅ

N
which describes the local (in

time) changes of population per one individual. In the birth process it is
constant. In the logistic equation it depends on the number of individuals
and it is a decreasing function of this number. The simplest form of such a
function is linear. Therefore,

Ṅ

N
= r − bN,

where the coefficient b > 0 describes the magnitude of competition. Rewrit-
ing this equation in the form

Ṅ = rN

(

1 − b

r
N

)

and defining K = r
b

we obtain

Ṅ = rN

(

1 − N

K

)

, (4)

the well know logistic equation.
To study the behaviour of solutions of one ODE (as the logistic equation

Eq.(4)) we can either find its solutions (if it is possible) or study its phase
portrait. We use both methods to compare results.

Consider ODE of the form

ẋ = F (x)

with F : R → R continuously differentiable (this assumption guaranties the
existence and uniqueness of solutions and we will talk about it later).

Finding solutions. At the beginning we assume that F (x) 6= 0, for
every x ∈ R. We ”technically” treat the derivative ẋ = dx

dt
as the ratio of two

separate terms dx and dt and write our equation in the following integral
form

∫

dx

F (x)
=

∫

dt.

If we are able to find a function G such that dG
dx

= 1
F (x)

(as we have found for

Eq.(3)), then we have
∫

dG =

∫

dt
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and therefore, G(x(t)) = t+C, with some constant C. Next, if G is invertible,
then x(t) = G−1(t+C). This method is called the separation of variables and
can be used also for ODEs of the form ẋ = F1(x)F2(t), for which we obtain
the integral equation

∫

dx
F1(x)

=
∫

F2(t)dt.
If the function F has some number of zeros, e.g. let x1, . . . , xn be zeros

of F , then for each xi, i = 1, . . . , n, we have F (xi) = 0 independently on t
and therefore, x(t) ≡ xi are constant (stationary) solutions to our equation.
Zeros of F are often called critical points or steady (stationary) states of the
system.

Practically, in the case of Eq.(4) we obtain

∫

dN

N(r − bN)
=

∫

dt

under the assumption that N 6= 0 and N 6= K. We can decompose the ratio
1

N(r−bN)
into so-called simple quotients (simple quotient is such a quotient

that cannot be decomposed into simplest quotients with denominators pos-
sessing real zeros), i.e. we find constants A and B such that

1

N(r − bN)
=

A

N
+

B

r − bN
.

Taking the right-hand side into the common denominator we get

1

N(r − bN)
=

Ar − AbN + BN

N(r − bN)

and comparing numerators we find that Ar = 1 and B − Ab = 0. Hence,
A = 1

r
and B = 1

K
. Finally, the integral form reads as

∫

dN

rN
−
∫

dN

r(N − K)
=

∫

dt.

Normally, we want to find a solution N(t) for some initial value N(0) = N0 >
0. In such a case we calculate definite integrals from 0 to t with respect to
time and from N0 to N(t) with respect to N . Therefore, we have

∫ N(t)

N0

dN

rN
−
∫ N(t)

N0

dN

r(N − K)
=

∫ t

0

dt.
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The primitive function for 1
N−D

is equal to ln |N − D|, for a constant D ∈
R. Hence,

∫ N(t)

N0

dN

rN
=

1

r
(ln |N(t)| − ln |N0|) =

1

r
ln

∣

∣

∣

∣

N(t)

N0

∣

∣

∣

∣

and similarly,

∫ N(t)

N0

dN

r(N − K)
=

1

r
(ln |N(t) − K| − ln |N0 − K|) =

1

r
ln

∣

∣

∣

∣

N(t) − K

N0 − K

∣

∣

∣

∣

.

In our case N = 0 and N = K are constant solutions to Eq.(4) and all
solutions are unique. Therefore, the solution with N0 > 0 is positive (it
cannot cross N = 0) and the solution with N0 > K stays in the same region
N > K. This means that we can neglect both absolute values to obtain

1

r

(

ln
N(t)

N0

− ln
N(t) − K

N0 − K

)

= t,

and next

ln
N(t)(N0 − K)

N0(N(t) − K)
= rt.

Taking the exponent we get

N(t)(N0 − K)

N0(N(t) − K)
= ert

and finally, calculating N(t) we find that

N(t) =
K

1 +
(

K
N0

− 1
)

e−rt
. (5)

This is the explicit formula for every solution with positive N0. We see that
N(t) → K as t → +∞. We have just obtained a surprising result — Formula
(5) is true not only for non-constant solutions but also for the solution N ≡ K
(we’ve assumed N 6= K!). Moreover, if we rewrite it in the form N(t) =

N0K
N0+(K−N0)e−rt , then it is true, for every solution with N0 ≥ 0. It occurs
that this situation is rather usual for the separation of variables’ method —
obtained formulae give us more information than we’ve expected.
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Solutions to Eq.(4) for different initial values.

Studying the phase portrait. In this method we draw the graph of
F (x) that describes the right-hand side of equation. This graph shows the
dependence between x and ẋ = F (x). The co-ordinates are x and ẋ on this
graph.

Let x1 < . . . < xn be zeros of F . We know that each of xi, i = 1, . . . , n,
is a constant solution to our equation. Every solution is unique. Therefore,
if x0 ∈ (xi, xi+1), then the solution for this initial value stays in the same
region (xi, xi+1).

In every interval (xi, xi+1) the function F is either positive or negative.
Assume that it is positive. This means that ẋ > 0 in this region and the
solution x(t) is increasing. Therefore, x(t) is increasing and bounded that
means it has a finite limit. Consequently, F (x(t)) also has a finite limit. But
F (x) = ẋ and hence, ẋ has the same limit. It is obvious that ẋ must tend to
0 (if not, then the growth of x(t) is linear and x(t) crosses xi+1). This means
that F (x(t)) → 0 and finally, x(t) → xi+1. Similarly, if F (x) is negative in
(xi, xi+1), then x(t) is decreasing and x(t) → xi.

If x0 < x1 and F (x) is negative in this region, then x(t) decreases but it
has no limit, because there is no point for which F (x) → 0 there. Hence, x(t)
decreases to −∞. If F is positive, then x(t) increases to x1. On the opposite
side, for x0 > xn, if F is positive, then x(t) increases to +∞, if it is negative,
then x(t) decreases to xn.

At the end we complete the graph with the arrows situated in the x-
axis directed from the left to the right-hand side in the regions where F is
positive and in opposite direction where F is negative. Such a graph with the
arrows we call the phase portrait (for one dimensional continuous dynamical
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system).
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Phase portrait for Eq.(4).

For the logistic equation Eq.(4) we have F (x) = rx
(

1 − x
K

)

and we are
interested in the domain [0, +∞). F is a parabola with zeros at x = 0 and
x = K and the vertex at x = K

2
. Hence, x = 0 and x = K are constant

solutions. F (x) > 0 for x ∈ (0, K) and F (x) < 0 for x > K. This means that
the solution with x0 ∈ (0, K) is increasing and tends to K with t → +∞,
while for x0 > K the solution decreases to K. Therefore, for every x0 > 0
the solution tends to K and this result is the same as obtained previously.
We complete our analysis finding regions of convexity/concavity and possible
points of inflection. We start from the calculation of the second derivative
ẍ(t). We know that ẋ = rx

(

1 − x
K

)

and hence,

ẍ = rẋ − 2bxẋ = rẋ
(

1 − 2
x

K

)

.

We are looking for such a point that ẍ = 0. Therefore, x = K
2

or ẋ = 0
(i.e. x = 0 or x = K). The only interesting point is x = K

2
because x = 0

and x = K are constant solutions so, they are not the points of inflection.
If x ∈ (0, K

2
), then ẍ > 0 and the solution is convex, if x ∈ (K

2
, K), then

ẍ < 0 and this implies concavity of solutions. This means that if there exists
a point t̄ such that x(t̄) = K

2
, then this is the point of inflection for x(t).

Because solutions increase in the region (0, K), then such a point exists only
if x0 < K

2
. Hence, for x0 ∈ (0, K

2
) the solution has well-know S-shape, it is
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convex at the beginning and changes its behaviour when reaches the value
x = K

2
(it increases very fast — almost exponentially — at the beginning

and much slower for large t). This type of S-shape curve is also called the
logistic curve. If x0 ∈

[

K
2
, K
)

, then the solution increases but it is concave
and its growth is slow. If x0 > K, then the solution is decreasing and convex.

All the properties above we can also study using the explicit form of
solution but it seems that the method of phase portrait is simpler and it
is more general because it can be used even if we are not able to calculate
solutions explicitly.

Now, we turn to the discrete case. How to obtain discrete version of
Eq.(4)? We use the inverse method to those for the birth process — instead
of the derivative Ṅ we write the difference quotient for N(t) and then the
approximation has the form

N(t + ∆t) − N(t)

∆t
= rN(t)

(

1 − N(t)

K

)

.

Taking ∆t = 1 and writing N(t) = Nt we obtain

Nt+1 = r̃Nt(1 − b̃Nt), with r̃ = r + 1, and b̃ =
r

K(r + 1)
.

Substituting xt = b̃Nt we get

xt+1 = r̃xt(1 − xt)

which means that it is one-parameter model. We write r instead r̃, for
simplicity. Therefore, we study the sequence

xn+1 = rxn(1 − xn) (6)

which is the well-known discrete logistic equation. Our sequence is the iter-
ation of the function F (x) = rx(1 − x). From the biological point of view
we want to have xn ≥ 0 for every n. It is obvious that if x0 = 0 or x0 = 1,
then xn = 0 for every n ≥ 1. Let x ∈ [0, 1] and we are looking for parameter
values such that F (x) ∈ [0, 1]. F (x) is a parabola with zeros at x = 0 and
x = 1 and maximum at x = 1

2
. The maximal value is F ( 1

2
) = r

4
. Hence, if

0 ≤ r ≤ 4, then F (x) ≤ 1 for x ∈ [0, 1]. On the other hand, the parameter
r should describe the birth process, as in the continuous case. This implies
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r > 1. From the mathematical point of view it is not necessary. Finally, the
domain for the model is [0, 1] and the parameter r ∈ [0, 4]. It is an example
of the unit interval iteration.

For r ∈ [0, 1], Eq.(6) describes the death process combined with the
competition process so, we expect the extinction of the population. We
prove it using known methods.

Analysis of the model we start from finding constant solutions. Hence,
xn+1 = xn, i.e. x = F (x) (in the discrete case the constant solution is the
constant point of the right-hand side of equation). For the logistic equation
we have x = rx(1−x). This implies x = 0 or 1 = r(1−x), i.e. x̄ = r−1

r
. The

solution x̄ is interesting for us when x̄ > 0 (it is always less than 1) which
implies r > 1.

Therefore, for r ∈ [0, 1] we have only one constant solution x = 0. For
r ∈ (1, 4] we have two constant solutions — x = 0 and x̄ = r−1

r
.

Other interesting solutions are periodic solutions (or cycles). The solution
(xn) is periodic with the period m ≥ 1 (we assume that constant solution
is periodic with the period equal to 1) if xn+m = xn for every n ∈ N and
xn+k 6= xn for k < m. Such a periodic solution we can express as the set S =
{x0, . . . , xm−1}. If the cycle S attracts solutions from some neighbourhood of
it, then we call it attractive or stable cycle. S is called repulsive (or unstable)
if in any neighbourhood we can find a solution that is far from our cycle. The
precise definition we will write later.

In the case of differentiable function F there is an easy method of checking
stability of the cycle S. We calculate so-called multiplicator of the cycle S,
i.e.,

µ(S) = F ′(x0) · · ·F ′(xm−1),

that is the product of derivatives at all the points xi ∈ S.
If |µ(S)| < 1, then the cycle is stable, if |µ(S)| > 1, then the cycle is un-

stable. The case |µ(S)| = 1 must be studied for every model separately. If S
is a constant solution, i.e. S = {x0}, then µ(x0) is simply the derivative of F
at this point. If S is a cycle of a period m, then each of the points from S is a
constant solution for F m, i.e. F m(xi) = xi, i = 0, . . . , m−1. Studying stabil-

ity of Xi as a constant solution of F m we check the derivative d
dx

F m(x)
∣

∣

∣

xi

. The

iterations of F are defined recurrently, i.e. F m(x) = F
(

F (m−1)(x)
)

. Calcu-

lating the derivative we obtain d
dx

(F m(x)) = F ′
(

F (m−1)(x)
)

d
dx

(

F (m−1)(x)
)

.
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Finally,

d

dx
(F m(x)) = F ′

(

F (m−1)(x)
)

· F ′
(

F (m−2)(x)
)

· · ·F ′(F (x)) · F ′(x).

For our cycle we have F (xi) = xi+1, F (xi+1) = xi+2 = F 2(xi) and so on.
Therefore, the multiplicator of S is equal to the product of the derivatives
at each of the points from S.

Now, we calculate the derivative F ′(x) = r(1 − 2x). For our constant
solutions we have F ′(0) = r and F ′( r−1

r
) = 2 − r.

Hence,
F ′(0) ∈ [0, 1) for r ∈ [0, 1), i.e. the constant solution 0 is attractive,
F ′(0) > 1 for r > 1 and then 0 is repulsive,
F ′(x̄) > 1 for r ∈ [0, 1) and then x̄ is repulsive,
F ′(x̄) ∈ (1,−1) for r ∈ (1, 3) and then x̄ is attractive,
F ′(x̄) < −1 for r > 3 and then x̄ is repulsive.
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Phase portraits for Eq.(6) and different values of parameter r:
r < 1 at the top, r ∈ (1, 2) at the left and r ∈ (2, 3) at the right.

Now, we know local stability of existing constant solutions (except the
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points where |F ′| = 1). The next step of analysis is to study global stabil-
ity. The differences between local and global stability (attractivity) is the
following — ”local” attractivity concerns some neighbourhood of attractive
solution while ”global” attractivity concerns all solutions to the model, all of
them are attracted by such a solution.

Assume that r ∈ (0, 1] (the case r = 0 is trivial). We show that our
sequence (xn) is decreasing for x0 ∈ (0, 1). Hence, we want to show that
xn+1 < xn, i.e. rxn(1 − xn) < xn. Due to positivity of xn the last inequality
is equivalent to r(1 − xn) < 1 and finally, to xn > r−1

r
which is true because

r−1
r

≤ 0 < xn. This implies that x = 0 is globally stable.
Similarly, we show that x̄ is globally stable, either monotone or oscillating,

for appropriate r.
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Solutions to Eq.(6) for values of r corresponding to phase portraits above.

It occurs that the magnitude of µ can tell us not only about stability
of periodic solution but also about monotonicity of other solutions that are
attracted by it. For the constant solution, if µ > 0, then the convergence is
monotonic (starting from some t ≥ 0) while for µ < 0 we have monotonic
subsequences that oscillate around attractive solution. Therefore, if r ∈
(1, 2), then the convergence to x̄ is monotonic and if r ∈ (2, 3), then the
solutions oscillates around x̄.

At r = 3 the solution x̄ looses stability. Now, there appears the periodic
solution (cycle) ¯̄x with the period equal to 2 which is stable. Such a type of
behaviour is called doubling period bifurcation. ”Bifurcation” always means
that there is a qualitative change of the solution’s behaviour. Here, from
the constant solution (with period 1) we obtain the periodic solution with
period 2. This bifurcation occurs due to the changes of the graph of F 2(x).
For r ≤ 3 this graph intersects the line y = x (in x − y co-ordinates) in the
same points as F (x), i.e. x = 0 and x = x̄. For r > 3 there appear two new
points of intersection that create the periodic solution.
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We calculate our cycle as a constant solution for F 2 which is different
from x = 0 and x = x̄. We have

F 2(x) = F (rx(1−x)) = r(rx(1−x))(1−rx(1−x)) = r2x(1−x)(1−rx+rx2).

We are looking for constant solutions and hence,

x = r2x(1 − x)(1 − rx − rx2).

We are interested in x 6= 0. Therefore,

W (x) = r3x3 − 2r3x2 + r2(r + 1)x + 1 − r2 = 0.
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Phase portraits for Eq.(6) and r > 3.

We know that x̄ = r−1
r

is the zero of W (x). Hence, we divide W (x) by
x − x̄ to obtain

r3x2 − r2(r + 1)x + r(r + 1) = 0.

Now, we can easily find zeros of the quadratic equation above. We have

∆ = r4(r + 1)2 − 4r4(r + 1) = r4(r + 1)(r − 3) = r4(r2 − 2r − 3)

and hence

¯̄x1 =
r + 1 −

√
∆1

2r
, ¯̄x2 =

r + 1 +
√

∆1

2r
, where ∆1 = r2 − 2r − 3.
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The set ¯̄x = {¯̄x1, ¯̄x2} forms our periodic orbit.
For our cycle the multiplicator is equal to

µ(¯̄x) = r2
(

1 − 2¯̄x1
) (

1 − 2¯̄x2
)

=

= r2
(

1 − 2
(

¯̄x1 + ¯̄x2
)

+ 4¯̄x1 ¯̄x2
)

= 4 + 2r − r2.

Hence, |µ| < 1 for r ∈ (3, 1 +
√

6).
In the case of periodic solution with the period 2 the magnitude of its

multiplicator implies that if µ > 0, then the subsequences (F 2n(x0)) and
(F 2n+1(x0)) are monotone starting from some n, one of them is increasing
and the second one is decreasing. We can show that µ > 0 for r ∈ (3, 1+

√
5).

If µ < 0, then both of these subsequences oscillate around ¯̄x1 and ¯̄x2 such
that the subsequences (F 4n(x0)), (F 4n+1(x0)), (F 4n+2(x0)) and (F 4n+3(x0))
are monotone.

When r crosses 1 +
√

6, the next bifurcation appears. It is the same
type of bifurcation — instead of the cycle with period 2 we obtain the cycle
of period 4, and so on. We do not study all bifurcations in details. There
appear successively periodic orbits with periods 2k, 3 · 2k, 5 · 2k, . . . , k ∈ N,
and finally . . . , 7, 5, 3 (i.e. odd numbers). The last period that appears is 3.
The successive periods are connescted with the so-called Sharkovski order.
The first number in this order is 3. One of the consequences of the Sharkovski
order is that if the function f : [0, 1] → [0, 1] has a point with the period 3
(i.e. f 3(x) = x and f(x) 6= x, f 2(x) 6= x), then it has points with all periods.
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Solution to Eq.(6) for r = 4.

For every discrete dynamical system with some parameter that can be
changed we can draw so-called bifurcation diagram. This is a graph of at-
tractive solutions depending on the parameter. For the logistic equation this
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bifurcation diagram has a very interesting shape. It is a fractal. The main
characteristic of fractals is a property of self-congruency. Every small piece
of this diagram is the same as the whole one. It is know as the Fingenbaum
tree.
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Fingenbaum tree.

For r = 4 it can be shown that the behaviour of solutions to Eq.(6) is
chaotic. There are many concepts of chaos. One of the most popular is those
proposed by Devaney. He said that the function f : X → X (where X is
the metric space with the distance function d) is chaotic when it has three
properties:
1) topological transitivity (for every non-empty open sets U, V ⊂ X there
exists n ∈ N such that fn(U) ∩ V 6= ∅),
2) density of periodic points (for every x ∈ X and its neighbourhood Ux

there exists a periodic point of f that lies in Ux),
3) sensitivity for initial data (there exists δ > 0 such that for every x ∈ X
and its neighbourhood Ux there are y ∈ Ux and n ≥ 0 that the inequality
d (fn(x), fn(y)) > δ is satisfied).

This concept of chaos is called deterministic (because it is generated by
deterministic equation). It occurs that in one-dimensional case where the
domain of f is some interval (e.g. [0, 1]) the only important property is the
first one. If f : [0, 1] → [0, 1] is topologically transitive, then it has dense
periodic points and is sensitive for initial data. Topological transitivity (two
sets lying far one from the other initially are joined by some points after
some iterations) and sensitivity for initial data (points lying in a very small
distance initially are far away after some iterations) measure (in some sense)
irregularity of f while density of periodic solutions shows that for a large
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number of points the behaviour is regular.
Coming back to the logistic function F (x) = 4x(1 − x), we study the

iterations of

G(x) =

{

2x for x ∈
[

0, 1
2

]

2(1 − x) for x ∈
(

1
2
, 1
] (7)

instead of F . The functions F and G are topologically conjugate, i.e. there
exists a homeomorphism (a continuous function that has a continuous in-
verse) h : [0, 1] → [0, 1] such that h ◦ F = G ◦ h, i.e. for every x ∈ [0, 1]
the identyty h(F (x)) = G(h(x)) holds. This homeomorphism is h(x) =
2
π

arcsin
√

x. Therefore, all topological properties of F and G are the same.
Topological transitivity is a property of open sets. Every open set can be
generated by open intervals and therefore, it is enough to show it for these
intervals. The function G has a stronger property — for every open interval
I ∈ [0, 1] there exists m > 0 such that Gm(I) = [0, 1]. This property is obvi-
ous. The function G is extensive (its derivative is equal to 2 when exists, i.e.
for x 6= 1

2
). If 1

2
/∈ I, then the length of G(I) is a double length of I. If 1

2
∈ I,

then there exists ε > 0 such that [0, ε] ⊂ G(I). We have Gm([0, ε]) = [0, 2mε]
for 2mε < 1 and Gm([0, ε]) = [0, 1] for 2mε > 1. This implies topological
transitivity of the logistic function F and this means that F is chaotic.

1.3 Exercises

1. Consider the continuous model of birth/death with migration, i.e. the
equation

Ṅ = αcN + β.

a) Find a solution for every N0 ≥ 0 depending on αc and β.
b) Make an analysis of phase portraits depending on αc and β.
c) Explain the behaviour of solutions in terms of birth/death rates and

the rate of migration.
2. Consider the discrete model of birth/death with migration, i.e. the equa-
tion

Nt+1 = αdNt + β.

a) Find a general term of this sequence for every N0 ≥ 0 depending on
αd and β.

b) Make an analysis of the behaviour of the sequence depending on αd

and β.
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c) Explain the behaviour of the sequence in terms of birth/death rates
and the rate of migration.
3. Compare the behaviour of solutions to the models analysed in 1 and 2.
4. Consider the discrete logistic equation, i.e.,

xn+1 = rxn(1 − xn).

a) Show that the constant solution x̄ = r−1
r

is globally stable (all solutions
are either monotone or oscillate around x̄) for r ∈ [1, 3].

b) Find a cycle with period 2 and show that it is globally stable (the
appropriate subsequences are monotone or oscillating) for appropriate r > 3.

c) Show that h(x) = 2
π

arcsin
√

x conjugates the logistic function F (x) =
4x(1 − x) and G(x) = 2x for x ∈ [0, 1

2
]. Explain why G(x) = 2(1 − x) for

x ∈ (0, 1
2
].

2 Analysis of two-dimensional models on the

background of the Poincare-Bendixon the-

orem.

At the beginning we study a system of two linear ODEs. It is necessary to
understood the behaviour of non-linear systems that are of our main interest.

2.1 Linear two-dimensional systems.

In this subsection we focus on the analysis of linear systems of two ODEs.
Such a system reads as

{

ẋ = ax + by
ẏ = cx + dy

. (8)

Not every system of the form above can have biological interpretation. One
of such interpretations is the following — let x, y denote the density of
immature and mature individuals of some species, respectively. Only mature
individuals can reproduce. Therefore, the density of new born immature
individuals is proportional to the number of mature individuals with the
reproduction coefficient b > 0. Immature individuals mature with some
coefficient of maturation c > 0. Individuals in both stages die. The death
coefficients for mature individuals is d < 0 and for immature ones — a+c ≤ 0.
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The coefficient a < 0 describes the whole fraction of immature population
that leaves this stage either due to maturation or due to death.

From the mathematical point of view we are interested in all cases of
Eqs.(8), for every a, b, c, d ∈ R. It occurs that in linear case the unique
solution exists for every t. Looking for solutions to our system Eqs.(8) we
should remember that the linearity of equations is transfered to solutions.
Precisely, if (x1(t), y1(t)) and (x2(t), y2(t)) are solutions, then x1 + αx2, y1 +
αy2) is also a solution for every α ∈ R. In fact,

ẋ1 + αẋ2 = ax1 + by1 + αax1 + αby2 =

a(x1 + αx2) + b(y1 + αy2)

and similarly for the second co-ordinate of the new solution.
Therefore, solutions form a linear space. The dimension of this space is

the same as the dimension of the system. Hence, for Eqs.(8) this dimension is
equal to 2. To define the space of solutions we need to find two linearly inde-
pendent solutions to our system. Assume that this solutions are exponential.
Finally, we are looking for (x(t), y(t)) =

(

x0e
λt, y0e

λt
)

with two different val-
ues λ1 6= λ2. Clearly, if λ1 6= λ2, then these exponential functions are linearly
independent. We check it now. Let Aeλ1t + Beλ2t ≡ 0. Choosing t = 0 and
t = 1 we get

{

A + B = 0
Aeλ1 + Beλ2 = 0

.

Hence, −Beλ1 + Beλ2 = 0. Dividing by B 6= 0 we obtain eλ1 = eλ2 which
contradicts the assumption. This shows that A = B = 0 and eλ1t, eλ2t are
linearly independent.

Looking for exponential solutions to Eqs.(8)we obtain

{

λx0e
λt = ax0e

λt + by0e
λt

λy0e
λt = cx0e

λt + dy0e
λt ,

i.e.,
{

0 = x0(a − λ) + by0

0 = cx0 + y0(d − λ)
.

To have a non-trivial solution to the system above in the case of non-

degenerated matrix

(

a b
c d

)

we need the degeneration of

(

a − λ b
c d − λ

)

,

i.e. (a − λ)(d − λ) − bc = 0.
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In general case, the behaviour of solutions depends on the properties
of the so-called Jacobi matrix. Let F (x, y) denotes the right-hand side of
Eqs.(8), i.e. F = (F1, F2) with

F1(x, y) = (ax, by), F2(x, y) = (cx, dy).

We calculate partial derivatives of F1 and F2 and form the matrix

dF (x, y) =

(

∂F1

∂x
∂F1

∂y
∂F2

∂x
∂F2

∂y

)

∣

∣

∣

(x,y)
,

that is

dF (x, y) =

(

a b
c d

)

in our linear case. The matrix dF (x, y) is called the Jacobi matrix of the
function F (the system defined by the function F ). In the case of two or
more dimensional systems, the Jacobi matrix represents the derivative which
is a linear operator (from linear algebra we know that every linear operator
can be represented by a matrix and every matrix defines a linear operator).

In the case of non-degenerated Jacobi matrix we see that Eqs.(8) have
only one critical point (0, 0). If the system is non-homogenous, i.e.,

{

ẋ = ax + by + α
ẏ = cx + dy + β

,

then having another critical point (x̄, ȳ) (i.e. ax̄+bȳ+α = 0 and cx̄+dȳ+β =
0) we can translate the system such that (0, 0) is the critical point for the
new system. Namely, substituting v = x − x̄ and w = y − ȳ we obtain
v̇ = ẋ = a(v + x̄) + b(w + ȳ) + α = av + bw, and similarly for ẇ. Hence,
the new system is homogenous and (0, 0) is the critical point. The behaviour
of the system strongly depends on the character of the critical point. The
definitions of stability and instability of constant solution are exactly the
same as in the case of solutions to discrete dynamical systems. To check it
we should calculate so-called characteristic polynomial for the system which
is equal to the following determinant

det(dF (0, 0)− λI),

where I is the identity matrix. More precisely, if W (λ) denotes the charac-
teristic polynomial, then

W (λ) = λ2 − (a + d)λ + ad − bc.
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Hence, W (λ) = λ2−tr dF ·λ+det dF, where det dF denotes the determinant
of Jacobi matrix at the critical point (notice that for a linear case it does not
depend on this point, the matrix is constant), and tr dF denotes its trace.

The characteristic equation W (λ) = 0 has two complex zeros. This char-
acteristic polynomial W (λ) is exactly the same as this one obtained in cal-
culation of solutions of exponential form. Zeros of this polynomial are char-
acteristic values of the Jacobi matrix dF . Knowing the characteristic values
we can simplify our system such that the right-hand side is generated by the
matrix in so-called canonical form. This form depends on the characteris-
tic values and characteristic vectors. Let λi, i = 1, 2, denotes characteristic

values. Then a vector vi =

[

v1
i

v2
i

]

is called the characteristic vector for the

value λi, if dF · vi = λivi.
From now on, we focus on the systems with the simplest right-hand side

in the canonical form.

1) Case λi ∈ R and λ1 6= λ2 6= 0 (two real different non-zero characteristic
values). Eqs.(8) can be reduced to

{

ẋ = λ1x
ẏ = λ2y

, (9)

with the solutions x(t) = c1e
λ1t, y(t) = c2e

λ2t. It is easy to see that if both
λi < 0, then (0, 0) attracts all solutions, while for λi > 0 it is repulsive. In
this case the two linearly independent solutions that generate the space of
solutions are of the simpler form (0, eλ2t) and (eλ1t, 0). We can compare the
behaviour of solutions for different λi in the phase portrait. It is a graph of
the dependence between x and y where the dependence on the main variable
t is implicitly described by the arrows which shows the direction of dynamics
with increasing t. The curves that describes such a dependence in (x, y) co-
ordinates are called orbits of the system. Due to uniqueness of solutions two
orbits cannot intersect.

Hence, we are interested in the curves that create orbits in R2. Calculat-
ing it we divide the first equation of Eqs.(9) by the second one and obtain

dx

dy
=

λ1

λ2

x

y
, for y 6= 0,

that can be solve using the separation of variables. Namely,

λ2

∫

dx

x
= λ1

∫

dy

y
, x, y 6= 0,
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and finally,

y = Cx
λ2
λ1 ,

except the orbits for which x ≡ 0 or y ≡ 0. For x ≡ 0 we have the solution
(0, eλ2t), that means that y-axis forms orbits, while for y ≡ 0 we have (eλ1t, 0)
and hence, x-axis forms orbits. The shape of other orbits depends on the
sign and magnitude of characteristic values.

a) λ2 < λ1 < 0. The shape of orbits is parabolic, i.e. similar to the curves
y = ±x2. Every solution tends to 0 as t → +∞. The origin (0, 0) is called a
stable node.
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Phase portrait for negative characteristic values.

b) λ1 < λ2 < 0. The shape of orbits is similar to the curves y = ±|x| 1
2 .

Every solution tends to 0 as t → +∞. The origin (0, 0) is also a stable node.
The phase portraits is rotated of 90 deg in comparison to Case a).

c) λ2 > λ1 > 0. The shape of orbit is the same as in Case a) but every
solution is repelled from the origin. It is called an unstable node.
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Phase portrait for positive characteristic values.

d) λ1 > λ2 > 0. The dependence between Cases c) and d) is exactly the
same as for a) and b).

e) λ1 < 0 < λ2. The shape of orbits is hyperbolic, i.e. similar to the
curves y = ± 1

x
. In the x direction the solution is attracted by the origin,

while in the y direction it is repelled. The origin is called a saddle. We have
also two special orbits. If y0 = 0, then y(t) = 0 for every t and x(t) = x0e

λ1t.
Therefore, this orbit is the straight line y = 0 with the arrows directed into
the origin. Similarly, if x0 = 0, then the orbit is the straight line x = 0 with
the arrows directed outside the origin. These lines are so-called stable and
unstable manifolds, respectively (in more dimensional case we have subspaces
that are attracted or repelled from the saddle that forms these manifolds).
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Phase portrait for one negative and one positive characteristic values.

f) λ2 < 0 < λ1. The shape is the same as in Case e). The only difference
is that x and y replace its role.

2) Case λi ∈ R and λ1 = λ2 6= 0. If there exist two linearly independent
characteristic vectors, then Eqs.(8) reduces to

{

ẋ = λ1x
ẏ = λ1y

, (10)

while for only one characteristic vector we have

{

ẋ = λ1x
ẏ = x + λ1y

. (11)

It is obvious that orbits for Eqs.(10) are straight lines. If λ1 < 0, then the
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origin attracts all solutions. If λ1 > 0, then it is repulsive. It is called a
star-like node.

For Eqs.(11) the solutions are equal to x(t) = c1e
λ1t, y(t) = (c2 + c1t)e

λ1t.
Calculating orbits we obtain the following ODE

dy

dx
=

1

λ1
+

y

x
.

Substituting z = y

x
we get

dz

dx
=

x dy

dx
− y

x2

which yields

x
dz

dx
=

dy

dx
− z

and therefore,

x
dz

dx
=

1

λ1

.

Hence, λ1z + C = ln |x| and finally, y = x
(

c + 1
λ1

ln |x|
)

. It occurs that

these curves achieves its extremal values on the straight line y = − 1
λ1

x. The
origin is called degenerated node and is stable for λ1 < 0 and unstable for
the inverse inequality.
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Phase portraits for negative identical characteristic values.

3) Case λi ∈ C. Then λ1 = λ̄2, i.e. the characteristic values are conjugate.
Let λ1 = α+iβ, where i is the imaginary unit and α, β are real and imaginary
part of the characteristic values, respectively, with β > 0. Eqs.(8) can be
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reduced to the following one
{

ẋ = αx − βy
ẏ = βx + αy

. (12)

We can solve Eqs.(12) using polar co-ordinates

x = r cos θ, y = r sin θ.

For these co-ordinates
{

ẋ = ṙ cos θ − rθ̇ sin θ = αr cos θ − βr sin θ

ẏ = ṙ sin θ + rθ̇ cos θ = βr cos θ + αr sin θ
.

Multiplying the above equations by cos θ and sin θ, respectively we get
{

ṙ = αr

θ̇ = β
,

with the solution r(t) = r0e
αt, θ = θ0 + βt and orbits described by r = Ceαθ.

The obtained curves encircle the origin. If α 6= 0, then they are spirals. The
origin is called a focus in this case. It is stable for α < 0 and unstable for
α > 0. If α = 0, then r = const and orbits form circles. The origin is called
a centre. In this case the origin is neither attractive nor repulsive. It is
stable but in Lapunov sense (we will define it later). In this case the space
of solutions is generated by (r0e

αt cos(θ0 + βt), 0) and (0, r0e
αt sin(θ0 + βt)).
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Phase portraits for complex characteristic values.

4) At least one characteristic value is equal to 0 — this case is not in-
teresting from our point of view (we are not able to tell anything for such a
system in a non-linear case).
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2.2 Non-linear models.

Our study of non-linear systems we start with the description of some ex-
amples of two-dimensional continuous dynamical systems well known in bi-
ological applications. The first model is also the oldest one. It is know as
Lotka-Volterra prey-predator model. It describes coexistence of two species
in the environment where one of them is a predator for the second one. The
same situation describes the May model. These two systems of ODE differ in
the right-hand side of equations and this implies differences in the dynamics.
Another situation is described by the system of competing species. We have
two (or more) species that compete for the same food or other environmental
resources.

1. Lotka-Volterra model. Let V (t), P (t) denote the density of prey
and predator species, respectively. In the absence of predators, the envi-
ronment is favourable for preys and this species is governed by the birth
process, i.e. V̇ (t) = rV (t), with the reproduction coefficient r > 0. Con-
versely, if there are no preys, then predators have no food and hence, they
die which is described by the death process Ṗ (t) = −sP (t), with the death
coefficient s > 0. When a predator meets a prey, then it may hunt and have
a food which gives energy for life and reproduction. The number of prey-
predator encounters is proportional to V (t)P (t) (because it is assumed that
these meetings are random). Hence, the model reads as

{

V̇ (t) = rV (t) − aV (t)P (t)

Ṗ (t) = −sP (t) + abV (t)P (t)
, (13)

where a > 0 is the coefficient of hunting effectiveness and b > 0 is the
conversion coefficient (it describes how much energy one predator spend for
reproduction). From the biological point of view the inequalities a, b <
1 should be satisfied but mathematical analysis does not depend on the
magnitude of these coefficients and therefore, we do not assume additional
inequalities except of positivity of all coefficients.

We also consider another prey-predator model where we assume that the
environment for preys is bounded and then this species is governed by the
logistic equation, i.e.,

{

V̇ (t) = rV (t)
(

1 − V (t)
K

)

− aV (t)P (t)

Ṗ (t) = −sP (t) + abV (t)P (t)
, (14)
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where K is the carrying capacity for preys.

2. May model. We use the same notation as in the Lotka-Volterra
model. In the May model it is assumed that the dynamics of both prey and
predator species is governed by the logistic equation with constant carrying
capacity for preys and prey-dependent carrying capacity for predators. It is
also assumed that one predator cannot hunt and eat infinitely many preys
that is described by so-called Michaelis-Menten function. Therefore,







V̇ (t) = r1V (t)
(

1 − V (t)
K1

)

− aV (t)P (t)
1+aV (t)

Ṗ (t) = r2P (t)
(

1 − P (t)
K2V (t)

) , (15)

where r1, r2 are reproduction coefficients for preys and predators, respec-
tively, K1 is the carrying capacity for preys, V (t)K2 is the prey-dependent

carrying capacity for predators and aV (t)
1+aV (t)

is the hunting function of Michaelis-

Menten type (here, the hunting function is scaled such that one predator can-
not eat more then one prey due to the properties of the hunting function —
it increases from 0 to 1 as V increases from 0 to +∞). In the Lotka-Volterra
model one predator can eat infinitely many preys (the hunting function is
simply V (t) for that model). The May model has not typical structure. Typ-
ically, as in the Lotka-Volterra model, the same hunting function appears in
both equations.

3. Competition model. Now, we describe the situation when we have
two species competing for the same food. Both species are governed by the
same law — the logistic equation. The competition function has bilinear
form, as in the Lotka-Volterra model — two individuals compete only when
they meet and the number of meetings is random. Let N1(t) and N2(t) denote
the density of the first and the second species, respectively. Hence, the model
takes the form







Ṅ1(t) = r1N1(t)
(

1 − N1(t)
K1

− α12
N2(t)
K2

)

Ṅ2(t) = r2N2(t)
(

1 − N2(t)
K2

− α21
N1(t)
K1

) , (16)

where ri > 0 are net reproduction rates, Ki > 0 are carrying capacities and
αij are extra-specific competition coefficients, i, j = 1, 2, i 6= j.

In the literature, it can be found that two or more dimensional models
with bilinear right-hand side which describes some number of competing
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species coupled with prey-predator model are also called Lotka-Volterra (or
Volterra-Verhulst) models.

2.2.1 Existence and uniqueness and of solutions.

As we mentioned in the previous Section, if the right-hand side of the model
is continuously differentiable, then the solution exists and it is unique. We
know that the Jacobi matrix (which is composed with partial derivatives
of the right-hand side of ODE system) represents derivative. Therefore, if
partial derivatives are continuous, then the whole derivative is continuous.
Hence, it is enough to check continuity of partial derivatives.

1. For the Lotka-Volterra model we have the right-hand side of the form

F (V, P ) = (F1(V, P ), F2(V, P )),

F1(V, P ) = V (r − aP ), F2(V, P ) = P (abV − s),

where F1 and F2 are binomials (moreover, the right-hand side is bilinear, i.e.
it is linear as a function of each of its both variables, separately). Hence, both
these functions are defined over the whole space R2. Due to the biological
interpretation we are interested only in the first quarter [0, +∞)2.

Partial derivatives can be calculated as

∂F1

∂V
= r − aP,

∂F1

∂P
= −aV,

∂F2

∂V
= abP,

∂F2

∂P
= abV − s,

and the Jacobi matrix is

dF (V, P ) =

(

r − aP −aV
abP abV − s

)

.

These partial derivatives are linear and therefore, continuous in the whole
space, obviously. Thus, for every initial (V0, P0) ∈ [0, +∞)2 there exists
unique solution to Eqs.(13).

For the system with carrying capacity for preys, i.e. Eqs.(14) the only
difference is that F1(V, P ) = V

(

r − V
K
− aP

)

. The new F1 is also a binomial

and it has linear partial derivatives, where ∂F1

∂V
= r−2 V

K
−aP and the second
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partial derivative is the same as in the previous case. Hence, we have also
existence and uniqueness of solutions.

2. In the case of the May model the situation is slightly different because
the right-hand side of the model is not defined in the whole R2. Let denote
G(V, P ) = (G1(V, P ), G2(V, P )) with

G1(V, P ) = r1V

(

1 − V

K1

)

− a
V P

1 + aV
, G2(V, P ) = r2P

(

1 − P

K2V

)

.

As the domain of G we take (0, +∞) × [0, +∞) (but it is defined for every
(V, P ) such that V 6= 0 and V 6= − 1

a
).

The Jacobi matrix for Eqs.(15) is equal to

dG(V, P ) =





r1

(

1 − 2V
K1

)

− aP
(1+aV )2

− aV
1+aV

r2P 2

K2V 2 r2

(

1 − 2P
K2V

)



 .

The partial derivatives of G1 and G2 are rational functions. Therefore, they
are continuous in the regions where they are defined, i.e. for (V, P ) ∈ R2

such that V 6= − 1
a

and V 6= 0. Hence, for every initial value (V0, P0) such
that V0 > 0 and P0 ≥ 0 there exists unique solution to Eqs.(15).

3. For the competition model the analysis is exactly the same as for the
models above. The right-hand side of the system H(N1, N2) = (H1, H2)(N1, N2)
is a binomial with the linear Jacobi matrix

dH(V, P ) =





r1

(

1 − 2N1

K1
− α12

N2

K2

)

−α12
r1N1

K2

−α21
r2N2

K1
r2

(

1 − 2N2

K2
− α21

N1

K1

)



 .

Conclusions are also the same, obviously. For every non-negative initial data
there exists unique solution to Eqs.(16).

2.2.2 Non-negativity of solutions.

In this subsection we study non-negativity of solution for non-negative initial
data. There is no universal method for studying non-negativity of solutions
but for many models it can be done in the following way — assuming that
the initial data is non-negative we check the behaviour of solutions on the
boundary of the region, i.e. for at least one of the variables equal to 0 (we will
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use this method later when we will study phase portraits for our systems).
Another method is to change the model from ODE to integral form and check
non-negativity for it.

1. If V0 = P0 = 0, then we obtain the constant solution V = P ≡ 0. If
V0 = 0 and P0 > 0, then V ≡ 0 and P (t) = P0e

−st > 0 is the solution and
similarly, if P0 = 0 and V0 > 0, then P ≡ 0 and V (t) = V0e

rt > 0 is the
solution. If V0 > 0, P0 > 0, then we rewrite Eq.(13) in the following integral
form

∫ t

0

V̇ (ξ)

V (ξ)
dξ =

∫ t

0

(r − aP (ξ))dξ,

which yields

|V (t)| = V0e
R t

0
(r−aP (ξ))dξ .

Now, either V (t) = V0e
R t

0
(r−aP (ξ))dξ or (t) = −V0e

R t

0
(r−aP (ξ))dξ . But V (0) = V0

so, V (t) = V0e
R t

0
(r−aP (ξ))dξ > 0 independently on P . Similarly,

P (t) = P0e
R t

0 (abV (ξ)−s)dξ > 0,

independently on V . Therefore, if the initial data is non-negative, then the
solution is non-negative, too. Moreover, if the initial value is positive, then
the variable with this initial value is positive.

For the model with carrying capacity for preys we obtain the same under
the assumption V0, P0 > 0 or V0 = 0 and P0 > 0. In the third case, for
V0 > 0 and P0 = 0 we have P ≡ 0 and V̇ = rV

(

1 − V
K

)

, i.e. the logistic
equation. We know that the solution to the logistic equation is positive for
every positive initial value.Therefore, we conclude non-negativity.

2. and 3. As in 1 we write the models in the integral forms and conclude
that for non-negative initial data the solutions are non-negative.

2.3 Existence of solutions for every t ≥ 0.

To have the dynamical system we need that the solution exists for every
t ≥ 0. Now, we check this property for our models with non-negative initial
data.
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1. Knowing that the solutions are non-negative we can approximate
Eqs.(13) in the following way

{

V̇ = rV − aV P ≤ rV

Ṗ = −sP + abV P ≤ abV P
.

Hence, for every fixed t̄ > 0 we have V (t) ≤ V0e
rt̄ := V̄ and this implies

Ṗ ≤ abV̄ P . Therefore, P ≤ P0e
abV̄ t̄ which means that both variables and its

derivatives are bounded at every fixed t > 0. It occurs that if the variable
and its derivative are bounded for every fixed t, then the solution can be
extended forward this point and this implies existence of solutions for every
t ≥ 0 (we will show this later).

The same approximation we have for the system with carrying capacity
but for this system we can tell something more. Instead of linear approxi-
mation we can use the logistic one, i.e.,

V̇ ≤ rV

(

1 − V

K

)

.

This shows that the first co-ordinate of solution is not greater than the so-
lution to the logistic equation with the same initial value V0. The solution
to the logistic equation is always bounded — either by K (if V0 < K) or by
V0 (if V0 > K). Hence, the solution to our equation is also bounded by the
same value as the logistic one, namely V (t) ≤ max{V0, K}.

2. For the first equation of the May model we can use exactly the same
approximation as for V (t) in the Lotka-Volterra model. For the second equa-
tion the approximation is even simpler

Ṗ = r2P

(

1 − P

V K2

)

≤ r2P.

Hence, P (t) ≤ P0e
r2t and farther analysis is the same as in the previous

case. Now, we can also use the logistic approximation to conclude that both
variables are bounded for the May model. We have

V̇ ≤ r1V

(

1 − V

K1

)

,

which implies V (t) ≤ max{V0, K1}. Let define A := max{V0, K1}. Then

Ṗ ≤ r2P

(

1 − P

AK2

)

,
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which is the logistic approximation with carrying capacity AK2. Hence,
P (t) ≤ max{P0, AK2}.

3. The approximation is similar to 2, namely

Ṅi ≤ riNi

(

1 − Ni

Ki

)

for i = 1, 2.

Hence, Ni(t) ≤ max{Ni(0), Ki}, i = 1, 2, and therefore, the solution exists
and it is bounded for every t ≥ 0.

2.3.1 Characteristic polynomials and local stability analysis.

In this subsection we study the existence and attractivity of constant solu-
tions. We start from finding such solutions to our models. Let F (x, y) =
(F1, F2)(x, y) defines the right-hand side of studied system. Then the con-
stant solutions are described by the system of equations

{

F1(x, y) = 0
F2(x, y) = 0

.

The single identity Fi(x, y) = 0, i = 1, 2, describes some curves in the plane.
These curves are called null-clines for the i-th variable. Hence, constant
solutions lie on the intersection of null-clines for different variables (we will
use this terminology in the method of phase portrait).

1. For Eqs.(13) we have
{

V (r − aP ) = 0
P (abV − s) = 0

(17)

and hence, (0, 0) and (V̄ , P̄ ) =
(

s
ab

, r
a

)

are constant solutions to the Lotka-
Volterra model.

For Eqs.(14) the first equation changes to

rV

(

1 − V

K
− a

r
P

)

= 0.

Therefore, for P = 0 we have either V = 0 or V = K. This implies that the
third constant solution appears. It is equal to (K, 0) which describes the situ-
ation in the absence of predators when preys are present in the environment.
The second solution changes to

(V̄ , P̄ ) =
( s

ab
,
r

a

(

1 − s

abK

))
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and it is interesting from our point of view only when K > s
ab

.

2. For Eqs.(15) we obtain






r1V
(

1 − V
K1

− aP
1+aV

)

= 0

r2P
(

1 − P
K2V

)

= 0
(18)

and this implies that either P = 0 or P = V K2. Therefore, either V = K1

(because V 6= 0) or V is the solution to the equation

r1

(

1 − V

K1

)

=
aV K2

1 + aV
,

i.e.,
ar1V

2 + (r1 + aK1K2 − ar1K1)V − r1K1 = 0

which has one positive solution V̄ > 0. Hence, we have two constant solutions
(K1, 0) and (V̄ , K2V̄ ).

3. Constant solutions to Eqs.(16) are described by the system of equa-
tions







r1N1

(

1 − N1

K1
− α12

N2

K2

)

= 0

r2N2

(

1 − N2

K2
− α21

N1

K1

)

= 0
.

Hence, we always have three constant solutions — the trivial one (0, 0) and
two semi-trivial (K1, 0), (0, K2) which describe the absence of one of the
considered species. For some parameter values there exists the fourth non-
trivial solution

(N̄1, N̄2) =

(

K1
1 − α12

1 − α21α12
, K2

1 − α21

1 − α21α12

)

.

This solution exists only if αij < 1, i, j = 1, 2 i 6= j, i.e. both extra-specific
competition coefficients are small, or αij > 1, i, j = 1, 2 i 6= j, i.e. both of
them are large.

The next step of our analysis is to study stability of the found solutions.
Similarly to one-dimensional case, we study the derivative of the right-hand
side to check stability. We calculate the characteristic polynomial

W (λ) =

((

∂F1

∂x
− λ

)(

∂F2

∂y
− λ

)

− ∂F1

∂y

∂F2

∂x

)

∣

∣

∣

(x̄,ȳ)
.
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Characteristic values of W determine stability of the solution (x̄, ȳ):
1) if λi for i = 1, 2 are real, then

a) if λi < 0, then the solution is stable (it is a stable node),
b) if one of them is positive, then the solution is unstable (it is a saddle,

if the second characteristic value is negative, or an unstable node, if both are
positive),
2) if λi are complex, then they are conjugate, i.e. λi = <(λi)± i=(λi), where
<(λi) is the real part of λi, =(λi) is the imaginary part; in this case

a) if <(λi) < 0, then the solution is stable (it is a stable focus)
b) if <(λi) > 0, then the solution is unstable (it is an unstable focus).

Coming back to our systems, we obtain the following results.
1.

W (λ) = det

(

r − aP − λ −aV
abP abV − s − λ

)

and therefore, the characteristic equation has the form

W (λ) = λ2 − (r − aP + abV − s)λ + (r − aP )(abV − s) + a2bV P = 0.

For the trivial solution we have

W (λ) = (r − λ)(−s − λ)

and therefore, the trivial solution is a saddle (the characteristic values are
r > 0 and −s < 0).

For the non-trivial (V̄ , P̄ ) we obtain

W (λ) = λ2 + rs.

This means that the characteristic values are purely imaginary ±√
rs and

then we are not able to tell anything about stability of (V̄ , P̄ ) using this
method.

In the case of bounded environment

W (λ) = det

(

r
(

1 − 2V
K

)

− aP − λ −aV
abP abV − s − λ

)

and therefore, the characteristic equation changes to

W (λ) = λ2 −
(

r

(

1 − 2V

K

)

− aP + abV − s

)

λ+
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+

(

r

(

1 − 2V

K

)

− aP

)

(abV − s) + a2bV P = 0.

For the trivial solution we obtain exactly the same as above — it is a saddle.
For the semi-trivial (K, 0) we have the characteristic equation of the form

W (λ) = (−r − λ)(abK − s − λ) = 0.

Therefore, if abK − s < 0, then this solution is stable (a node), while for
abK − s > 0 it is unstable. This means that stability of semi-trivial solution
to Eqs.(14) depends on the magnitude of carrying capacity K — if it is small
(i.e. K < s

ab
), then predators have not enough food and they die. If K > s

ab
,

then there exists non-trivial solution (V̄ , P̄ ) and it occurs that it is stable.
Namely

W (λ) = λ2 +
sr

abK
λ + rs

(

1 − s

abK

)

= 0.

We are looking for zeros of W under the assumption K > s
ab

(when the non-
trivial solution exists in biological sense). Therefore, the free term of W is
positive. Hence, if its zeros are real, then they have the same sign. We also
see that if the characteristic values are complex, then the real part is equal
to − sr

2abK
and it is negative that guaranties stability.

The discriminant of the equation above is equal to

∆ =
s2r2

a2b2K2
− 4rs

(

1 − s

abK

)

and it is easy to see that ∆ > 0 for small K, limK→+∞ ∆ < 0 and ∆ is an
decreasing function of K. We can check that if the characteristic values are

real, then they are negative, because λ1 = 1
2

(

− sr
abK

−
√

∆
)

< 0 and both

λ1 and λ2 have the same sign. Hence, the non-trivial solution is stable if it
exists. This means that if K > s

ab
, then predators have enough food and

both species survive.

2. For the May model, Eqs.(15) we have

W (λ) = det





r1

(

1 − 2 V
K1

)

− aP
(1+aV )2

− λ − aV
1+aV

r2P 2

K2V 2 r2

(

1 − 2 P
K2V

)

− λ



 .

For the semi-trivial solution (K1, 0) the characteristic equation is of the form

W (λ) = (−r1 − λ)(r2 − λ) = 0
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and this implies that this solution is a saddle.
For the non-trivial solution (V̄ , K2V̄ )

W (λ) = det

(

r1

(

1 − 2 V̄
K1

)

− aK2V̄
(1+aV̄ )2

− λ − aV̄
1+aV̄

r2K2 −r2 − λ

)

.

The free term of the binomial W is equal to the determinant of Jacobi matrix

ar2K2V̄

(1 + aV̄ )2
+

ar2K2V̄

1 + aV̄
− r1r2

(

1 − 2V̄

K1

)

.

Due to the identity

r1

(

1 − V̄

K1

)

=
aK2V̄

1 + aV̄

we obtain that the determinant has the form

ar2K2V̄

(1 + aV̄ )2
+ r1r2

V̄

K1

> 0.

In this case stability of (V̄ , K2V̄ ) depends on the sign of the trace of Jacobi
matrix

r1

(

1 − 2
V̄

K1

)

− aK2V̄

(1 + aV̄ )2
− r2.

If the trace is negative, then our solution is stable. Clearly, if the discriminant
of W is positive, then there are two real negative solutions, while if it is
negative, then the real part of characteristic value is negative and in both
cases the solution is stable (either node or focus). On the other hand, if
the trace is negative, then we have inverse inequalities and the solution is
unstable.

3. In the case of competing species stability depends on the magnitude
of extra-specific competition. If both the coefficients are small, i.e., αij < 1,
i, j = 1, 2, i 6= j, then there is the non-trivial solution and it is stable. If
both αij are large (greater than 1), then this solution also exists but it is a
saddle. In this case the semi-trivial solutions (K1, 0) and (0, K2) are locally
stable. Survival of the species depends on the initial conditions. If one of
this coefficients is greater than 1 and the second is smaller, then this means
that the extra-specific competition has large influence on one of the species
and small influence on the other. This leads to the extinction of the weaker
species. In this case the semi-trivial solution for the stronger species is stable.
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2.3.2 Global stability analysis

In the two-dimensional case we have the Poincare-Bendixon theorem that
tells us about the behaviour of solutions. This theorem implies that if the
solution stays in some bounded region of R2, then either it tends to some
constant solution inside or on the boundary of this region or it tends to some
closed orbit in this region (except the cases when it is a critical point or
closed orbit itself). It should be noticed that if the studied solution stays
in the bounded region and there is no critical point inside this region, then
the solution tends to some critical point on the boundary because every
closed orbit encircle some critical point. A single closed orbit is called a
limit cycle. Such a limit cycle can be stable when it attracts solutions from
its neighbourhood, or unstable when it is repulsive (it can be repulsive for
solutions outside the cycle, inside it or from both sides).

Now, we focus on the non-existence of closed orbits for the system of
ODEs with the right-hand side F (x, y) = (F1(x, y), F2(x, y)) of class C1 (i.e.
with continuous derivative). We use the Dulac-Bendixon criterion. If there
exists the function B(x, y) of class C1 in the region U ∈ R2 such that the
divergence of BF , i.e.,

Div (BF )(x, y) =
∂(BF1)

∂x
+

∂(BF2)

∂y

is not equivalent to 0 and it does not change the sign, then there is no closed
orbit in U .

Knowing this criterion and local stability of critical points we check pos-
sible existence of closed orbits for our models. Let define B(x, y) = 1

xy
for

x, y > 0.
1. For Eqs.(13) we do not know local stability of the internal critical

point (V̄ , P̄ ) but we can try to use the criterion. We obtain

Div (BF )(V, P ) =
∂

∂V

( r

P
− a
)

+
∂

∂P

(

ab − s

V

)

= 0

and one of the assumptions is not satisfied. The situation is better for
Eqs.(14). In this case

Div (BF )(V, P ) =
∂

∂V

(

r

P
− rV

KP
− a

)

+
∂

∂P

(

ab − S

v

)

= − s

KP
< 0

and this implies that there is no closed orbit in the first quarter of the plane.
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3. Exactly the same we obtain for the system of competing species,

Div (BH)(N1, N2) =
∂

∂N1

(

r1

N2
− r1N1

K1N2
− r1α12

K2

)

+

+
∂

∂N2

(

r2

N1
− r2N2

K2N1
− r2α21

K1

)

= − r1

K1N2
− r2

K2N1
< 0.

From one of the previous Subsections we know that every solution to Eqs.(16)
is bounded that implies it stays in some bounded region in (R+)2. Therefore,
it tends to one of the constant solutions. If only one constant solution is
stable, then all other solutions tend to it. If there are two stable solutions,
then the first quarter is divided into two regions that are attracted either by
one or by the second stable solution.

2. It occurs that for the May model a stable limit cycle can exist. It
depends on the model parameters. Using the Dulac-Bendixon criterion we
see that

Div (BG)(V, P ) = − r1

K1P
+

a2

(1 + aV )2
− r2

K2V 2

and independently on P the inequality Div (BG)(V, P ) < a2

(1+aV )2
− r2

K2V 2 is

satisfied. Hence, Div (BG)(V, P ) < 1
V 2 − r2

K2V 2 and if K2 < r2, then there
is no closed orbit in the first quarter. In such a case the non-trivial internal
constant solution is locally stable and the Dulac-Bendixon criterion implies
its global stability. If this solution is unstable, then our criterion implies the
existence of at least one closed orbit and other solutions are attracted by
some closed orbit. If this orbit is only one, then it is a stable limit cycle.

One of the more general methods of local and global stability analysis is
the method of Lapunov functions. Let (0, 0) be a constant solution to ODEs
with the right-hand side F of class C1 on U . The continuously differentiable
function L : Q → R, Q ⊂ U is called the Lapunov function on Q if it has
the following properties:
1) L(x, y) ≥ 0,
2) L(x, y) = 0 ⇐⇒ x = y = 0,
3) if (x(t), y(t)) is the solution to the studied equation, then L(x(t), y(t)) is
a non-increasing function of t, i.e.,

d

dt
L(x(t)) = (grad L) · F =
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=
∂L

∂x
(x, y)F1(x, y) +

∂L

∂y
(x, y)F2(x, y) ≤ 0

(i.e. the scalar product of the gradient of L and the function F is non-
positive).

The derivative above is usually called the derivative of L along the so-
lution to the studied equation. One of the more useful theorems tells that
if there exists the Lapunov function defined over the whole domain U and
L(x(t), y(t)) is strictly decreasing for (x, y) 6= (0, 0), then the constant solu-
tion (0, 0) is globally attractive, i.e. it attracts all solutions. Hence, if (grad
L) · F < 0 for (x, y) 6= (0, 0), then we obtain global stability.

As an example we study Eqs.(14) in the case when non-trivial critical
point exists, i.e. K > s

ab
. Before finding the Lapunov function we rewrite our

system in such a form that (0, 0) is a critical point. Namely, let x = V − V̄
and y = P − P̄ , where V̄ = s

ab
and P̄ = r

a

(

1 − s
abK

)

. Then

{

ẋ = r(x + V̄ )
(

1 − x+V̄
K

− a
r
(y + P̄ )

)

ẏ = (y + P̄ )
(

−s + ab(x + V̄ )
)

.

Let define

L(x, y) = A

(

x − V̄ ln
x + V̄

V̄

)

+ B

(

y − P̄ ln
y + P̄

P̄

)

(19)

with positive constants A and B in the domain {(x, y) : x > −V̄ , y > −P̄}.
It is easy to see that L(0, 0) = 0. Calculating partial derivatives of L we
obtain

∂L

∂x
= A

(

1 − V̄

x + V̄

)

= A
x

x + V̄

and similarly,
∂L

∂y
= B

y

y + P̄
.

Hence, L has a minimum at (0, 0) and therefore, L is non-negative on the
whole domain. As the last condition we check the sign

(grad L) · F (x, y) = Arx

(

1 − x + V̄

K
− a

r
(y + P̄ )

)

+ By
(

ab(x + V̄ ) − s
)

.

If A = bB, then

(grad L) · F (x, y) = −Ar

K
x2 ≤ 0.
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There appears some difficulty, because (grad L) ·F (x, y) = 0 for every (x, y)
such that x = 0. It occurs that every point (0, y0) lying on the orbit of
our equation is a point of inflection for L(x(t), y(t)) and L(x, y) is strictly
decreasing. Hence, (0, 0) is globally stable. More precisely, if t̄ > 0 is such
that (x(t), y(t)) = (0, y(t̄)), y(t̄) 6= 0, then L̈(0, y(t̄)) = 0 and

...
L(0, y(t̄)) < 0

which implies that L̈(x(t), y(t)) is decreasing at this point and it is a point
of inflection. Finally, (V̄ , P̄ ) is globally stable for Eqs.(14) when it exists.

Using the same Lapunov function we can show global stability of non-
trivial solution to Eqs.(16) in the case of local stability. Similar method can
be used in the May model.

2.3.3 Phase space portraits.

The phase space for our biological models is (R+)2. Drawing the phase
portrait we start from finding null-clines for both variables. These null-clines
divide the space into regions where each of the variables is monotonic. We
represent it in the graph using appropriately directed arrows. These arrows
suggest the dynamics of solutions. We complete our phase portraits by local
or/and global stability analysis.

1. The null-clines for Eqs.(13) are straight lines:

V = 0 and P =
r

b
for V,

P = 0 and V =
s

ab
for P.

Inside the first quarter of R2 both variables are positive. Hence,

V̇ > 0 ⇐⇒ P <
r

b
, V̇ = 0 ⇐⇒ P =

r

b
, V̇ < 0 ⇐⇒ P >

r

b
.

This means that V is decreasing above the null-cline and increasing under it.
At the null-cline we have dV

dP
= 0 and therefore, the points on the null-cline

are possible extrema for orbits treated as a function V (P ).
Similarly, P is increasing for V > s

ab
, i.e. on the right-hand side of the

null-cline and decreasing for V < s
ab

. The function P (V ) has possible extrama
on the null-cline. This suggest that solutions encircle the non-trivial solution
(V̄ , P̄ ) but we do not know stability of it. It cannot be studied using standard
methods. As we know, the trivial solution is a saddle with the stable manifold
V = 0 and unstable one P = 0.
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It occurs that the analysis of the simplest model is not so simple. It can
be shown that all orbits inside the first quarter are closed. Calculating the
equation of orbits we obtain

∫

abV − s

V
dV =

∫

r − aP

P
dP.

Hence,
abV − ln V s = ln P r − bP + C,

that implies the following implicit formula

eabV

V s
= c

P r

ebP
, c = const > 0.

Let consider two auxiliary functions x(V ) = eabV

V s , y(P ) = P r

ebP . We have
x = cy. Studying coupled graphs x(y), x(V ), y(P ) and V (P )/P (V ) we see
that in (V, P ) co-ordinates solutions form closed orbits. Hence, (V̄ , P̄ ) is a
centre and therefore, the solutions are periodic.

Knowing that solutions are periodic we can tell something more. Let T
denotes the period of our solution. Then V (0) = V (T ) and P (0) = P (T ).
From the first equation of Eqs.(13) we obtain

∫ V (T )

V (0)

dV

V
=

∫ T

0

(r − aP )dt

and hence,
∫ T

0
P (t)dt = r

a
T. Dividing by the length of the period T we obtain

that the mean value of P is equal to

1

T

∫ T

0

P (t)dt =
r

a
.

Similarly, we get
1

T

∫ T

0

V (t)dt =
s

ab
.

This means that the mean value of every positive solution to Eqs.(13) is the
same and equal to the non-trivial constant solution. It is so-called mean
values’ conservation law.
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Phase portrait and solutions to Eqs.(13).

The co-ordinates of solutions to Eqs.(13) behave similarly to sine and
cosine functions. They periodic and curves are translated in a phase.

For Eqs.(14) we have two types of the phase portrait. If the non-trivial
constant solution exists, then it is very similar to the previous case. The only
difference is the null-cline for V . It changes to the straight line P = r

a
− V

aK
.

Existence of the internal constant solution means that the null-clines for V
and P intersect inside the first quarter of R2. Positive solutions encircle
(V̄ , P̄ ) — it is a node or focus depending on parameters. As we know, all
positive solutions are attracted by this point.

If null-clines for V and P do not intersect, then the only stable solution
(K, 0) is a global attractor — from the phase portrait we see that solutions
stays in bounded region of the phase space and therefore, it tends to our
unique stable solution located on the boundary of this region.

2. For the May model the phase portrait suggests that solutions also
stay in a bounded region and if the limit cycle exists, then it is unique and
therefore, it is a stable limit cycle.

3. Similarly as in the previous cases, solutions to Eqs.(16) stay in a
bounded region and it implies global stability of constant solutions if only
one of them is stable. If (K1, 0) and (0, K2) are commonly stable, then the
phase space is divided to the regions that are attracted either by (K1, 0) or by
(0, K2). The boundary of this regions is the stable manifold of the non-trivial
solution which is a saddle in this case.
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2.3.4 Hopf bifurcation.

As we said earlier, bifurcation means the change of qualitative behaviour
of solutions. One of such bifurcations is the Hopf one. It occurs when
from a constant solution bifurcates a limit cycle which encircle this constant
solution. This bifurcation is connected with the change of some parameter
of the model. Such a type of behaviour we have for the May model. In
the most popular case we have stable constant solution at the beginning. It
looses stability for some parameter value and then a cycle appears. To have a
cycle we need that this constant solution is a focus. We know that instability
is connected with positive real part of characteristic value while negativity
of this part implies stability. Hence, we conclude that the Hopf bifurcation
can appear when the real part is equal to 0. If the characteristic values cross
the imaginary axis with non-zero speed as the parameter changes, then we
have the Hopf bifurcation, i.e. a limit cycle appears.

For the May model the complex characteristic values have real part equal
to

< =
r1

(

1 − 2 V̄
K1

)

− aK2V̄
(1+aV̄ )2

− r2

2

where the numerator of this quotient is the trace of Jacobi matrix. Changing
one of the parameters, e.g. r1 we see that for very small r1 the real part is
negative while for large values of r1 it is positive. Hence, for some r̄1 we have
< = 0 and the characteristic values cross the imaginary axis from the left to
the right-hand side. This implies the Hopf bifurcation.

2.4 Exercises.

1. Prepare phase portraits for the system of linear ODEs with at least one
characteristic value equal to 0.

2. Compare the behaviour of solutions to the linear systems with the right-
hand side in canonical and non-canonical form.

3. Prepare phase portraits for the competition, May and prey-predator with
bounded environment models.

4. Check global stability for the May and competition models.
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3 Some general remarks on discrete and con-

tinuous dynamical systems.

In general case the problem is analogous to considered above — we study
either the behaviour of some sequence defined by a recurrent formula or the
behaviour of solutions to some ODEs.

3.1 Discrete dynamical systems.

Using the term ”discrete dynamical system” we mean the iteration of some
continuous function F defined on some subset of Rk into this subset. Namely,
let F comes from U ⊂ Rk into U (F : U → U) and we study the sequence

xn+1 = F (xn).

Sometimes, the domain of F is closed, e.g. there is a very famous theory
on the iterations of the interval [0, 1]. From the biological point of view, the
interesting domain is R+ that can be understood either as to the open half-
line (0, +∞) or the left-hand closed half-line [0, +∞). In higher dimensions
we use the domain (R+)k, that is the first quarter in R2, the first octant in
R3, and so on. The domain is specified for every model separately.

The behaviour of the sequence (xn) depends not only on the function F
that defines our dynamical system but also on the first term of the sequence
x0 ∈ U . For arbitrary x0 the set

orb (x0) = {F n(x0), n ∈ N}, where F n(x) = F (F n−1(x)), F 0(x) = x,

is called the trajectory (or orbit) of the point x0. Sometimes, instead of the
trajectory of x0 we study so-called Cauchy problem

{

xn+1 = F (xn)
x0 ∈ U

.

Both formulas defines the same sequence, obviously. The difference is that
in the first case we treat this sequence as the set of points.

The name and notion of ”dynamical systems” is closely related with the
dynamics of points from the set U under the iterations of the function F ,
where n is the iteration parameter. Therefore, we can also treat the system
as a transformation n → F n(x) for arbitrary x ∈ U. Every term of our
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sequence is always defined and unique due to the recurrent formula that
defined the system. Our main interest is to study the asymptotic behaviour
of the sequence F n(x) for x ∈ U.

3.2 Continuous dynamical systems.

We do not study general class of continuous dynamical systems but only the
type of it generated by ordinary differential equations of the form

ẋ = F (x), F : U → U, U ⊂ Rk. (20)

Now, existence and uniqueness of solutions is not so obvious as in the discrete
case. We should specify some properties of F . Let start with the case k = 1,
for simplicity (definitions and theorems are similar for k > 1). If the function
F : U → U , where U ⊂ R is an open interval, is continuous, then for every
x0 ∈ U there exists the solution to the Cauchy problem

{

ẋ(t) = F (x(t))
x(0) = x0

,

which means that there exists an interval I and differentiable function x(t)
such that 0 ∈ I, x(0) = x0 and x(t) satisfies the equation above for every t ∈
I. The quantity x0 is called an initial condition or value. So, continuity of the
function F is sufficient for the existence of solutions but not for uniqueness.
To obtain a unique solution we assume that the right-hand side of equation
is a Lipschitz function.

We tell that F satisfies the Lipschitz condition if there exists some con-
stant L > 0 such that for every x, y ∈ U the inequality

|F (x) − F (y)| ≤ L|x − y|

holds. For k = 1 the symbol |x| means absolute value of x. In higher
dimensions it is the standard norm (for x = (x1, . . . , xk) we have |x| =
√

x2
1 + . . . + x2

k).
More precisely, it is enough that F is locally Lipschitz (i.e. for every

point x ∈ U there exists a neighbourhood Ux of this point where F satisfies
the Lipschitz condition). Usually, in biological models the function F has
continuous derivative and then the Lipschitz constant on every closed subset
of U is equal to the maximal value of |F ′(x)|. Clearly, if y, z ∈ [a, b] ⊂ U ⊂
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R, then by one of the theorems of mean value there exists a point ξ between
y and z such that

F (y)− F (z)

y − z
= F ′(ξ)

and the same is true for absolute values, obviously. The function |F ′(x)| is
continuous and [a, b] is a compact set. Using the theorem about continuous
functions on compact sets we conclude that |F ′(x)| achieves its upper bound
(the lower bound is 0). Therefore,

|F (y) − F (z)| ≤ |F ′(ξ)||y − z| ≤ max
[a,b]

|F ′(x)||y − z|.

Therefore, if F is continuously differentiable, then the solution exists and it
is unique.

Now, we show that continuity is not sufficient for uniqueness of solutions.
The main example of such a continuous function F for which the solution is
not unique is F (x) = x

1
3 . It is obviously continuous on R as the inverse of

x3. Consider the equation

ẋ = x
1
3 with x(0) = 0.

It is obvious that x(t) ≡ 0 is the solution to this problem. On the other
hand, for x 6= 0 we have

ẋ

x
1
3

= 1.

Let define the auxiliary function

f(t) = x
2
3 (t).

Then

ḟ =
2

3
x−

1
3 ẋ.

Hence,
ẋ

x
1
3

=
3

2
ḟ = 1,

and we obtain that f(t) has constant derivative equal to 2
3
. Finally,

f(t) =
2

3
t + c
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and therefore,

x(t) = ±
(

2

3
t + c

)
3
2

is a general solution to our equation. Using the initial value x(0) = 0 we

obtain c = 0. So, x(t) = ±
(

2
3
t
)

3
2 are another solutions to our Cauchy

problem for t ≥ 0. Moreover, if we combine x = 0 with the calculated
above general solution we obtain next solutions. How to do it? Let c be an
arbitrary negative number. Then the general solution is defined for every
t ≥ −c. Taking x(t) = 0 for t < −c and the general solution for t ≥ −c we
obtain the solution to our problem because such a function is differentiable
at t = −c (has left-hand side and right-hand side derivatives equal to 0.)
This is so called juncted function with a smooth junction at t = −c.

From now on we assume that the studied ODE has a unique solution (e.g.
F has continuous derivative). To have a dynamical system we need that this
solution is defined for all t ≥ 0. If the right-hand side of equation is linear,
then it is easily fulfilled. If not, then the solution can blow up. Consider the
equation

ẋ = x2 with x(0) = x0 6= 0.

We can solve this equation using the method of variables’ separation, i.e.,

∫

dx

x2
=

∫

dt

and therefore, − 1
x

= t + c. Hence, for the initial value x0 we obtain

x(t) =
1

1
x0

− t
.

This solution is not defined for t = 1
x0

. It has so-called blow-up at this point.
In general case, this means that the norm of solution tends to ∞ with t
tending to such a point.

On the other hand, if F has continuous derivative and the solution is
bounded for every arbitrary t̄ ≥ 0, then it has also bounded derivative and
therefore, it can be extended forward the point t̄ because it has a limit
at this point and this limit can be treated as a new initial value. More
precisely, if x̄ = limt→t̄− x(t), then (t̄, x̄) is the new initial condition for the
studied equation and the solution for this initial condition exists for some
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time interval and fulfils the condition x(t̄) = x̄. The solution is unique and
hence, it is the same solution defined other the longer interval. The last
problem is to show that this limit exists. If not, then there are two sequences
tn1 → t̄− and tn2 → t̄− such that the sequences x(tn1) and x(tn2) has different
limits limn1→∞ x(tn1) 6= limn2→∞ x(tn2). Assume that tn2 > tn1 (if not, then
we can choose proper subsequences) and use the theorem of mean value on
the interval [tn1 , tn2]. Then

x(tn2) − x(tn1)

tn2 − tn1

= ẋ(t̃n), t̃n ∈ [tn1, tn2 ] .

If n → ∞, then the right-hand side of this equality is bounded. The de-
nominator of the left-hand side tends to 0 and the numerator tend either
to some non-zero number or to infinity (if some of this sequences has limit
equal to ∞). Therefore, the whole quotient tends to ∞ which contradicts
this equality.

It is obvious that if the right-hand side F of Eq.(20) is bounded for every
x ∈ U , then the solution and its derivative are bounded. From now on
we assume that the solution to Eq.(20) is unique for every t ≥ 0. Then
we can study either the transformation from t to x(t) for arbitrary x0, i.e.
the solution to the Cauchy problem or the transformation from x0 to x(t)
understood as a set of points, i.e. the trajectory (or orbit) of the point
x0 (exactly as in the discrete case). Sometimes, the solution is written as
x(t, x0) to underline its dependence on both variables. Hence, we define orb
(x0) = {x(t, x0), t ≥ 0} ⊂ U . Similarly as in the discrete case, we are mainly
interested in the asymptotic behaviour of solutions depending on the initial
value x0. Methods of asymptotic analysis depends on the spatial dimension
k. There are also some methods that can be used independently on k. One of
them is the linearization method that concerns stability of constant solutions.

3.3 Stable constant solutions and linearization theo-

rem.

Now, we are ready to explain the concept of stability. Everybody knows
the physical meaning of stability. A ball situated in a valley is stable (small
deviation from the stable position does not lead out of this positions, the ball
comes back to it). A ball situated in a top of a mountain is unstable (every
deviation leads out of this position). There is also another — more general
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— notion of stability, so-called Lapunov stability. We can compare it with a
ball in a plain. After a small perturbation our ball is not far from the origin
but it not necessary comes back there.

Comparing this physical interpretation to the phase portraits for one-
dimensional systems — if the arrows from both sides of the constant solution
xi are directed to this point, then this point is stable. Otherwise, xi is
unstable.

Hence, we tell that the constant solution x̄ is (Lapunov) stable, if the
solution with initial value from the neighbourhood of x̄ stays near x̄. More
precisely, for every ε > 0 there exists δ > 0 such that if |x0 − x̄| < δ, then
|x(t)− x̄| < ε for every t ≥ 0, where x(t) is the solution with initial value x0.

We tell that x̄ is asymptotically stable, if the solutions starting from the
neighbourhood of x̄ tends to it with t → +∞.

Other solutions (i.e. non-constant) also can be stable. We tell that the
solution x̄(t) with initial value x̄ is stable, if for every ε > 0 there exists δ > 0
such that if |x0 − x̄| < δ, then |x(t) − x̄(t)| < ε for every t ≥ 0.

Similarly, we define stability of solutions for discrete dynamical systems
— the difference is that for discrete dynamical systems t ∈ N.

The more general concept is an attractor of dynamical system (both dis-
crete and continuous). Roughly speaking, the set V ⊂ U is an attractor of
some set W ⊂ U if for every initial value x0 ∈ W the solution is attracted by
the points from V . This means that the distance between the solution and V
tends to 0 as t → +∞, where dist (x, Y ) = infy∈Y |x− y|. It is not necessary
that attractors of dynamical systems are solutions to these systems. There
is a famous theory of so-called strange attractors connected with the theory
of fractals. One of the well-known strange attractors is the Lorenz one. We
will talk about it later.

The concept of stability and attractors is local, i.e. not every solution to
studied system must tend to stable solution or attractor. We can also tell
about global attractor and global stability. A global attractor is such a type
of attractor that attracts all points from U , i.e. every solution tends to it.
Similarly, some solution to our dynamical system is called globally stable, if
its orbit is a global attractor.

One of the main methods of (local) stability analysis is the linearization
theorem. It can be used for both discrete and continuous dynamical systems.
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At the beginning we consider one-dimensional case and study stability of the
constant solution x = 0. Let F : U → U , U ⊂ R be the right-hand side of
studied dynamical system (discrete or continuous) and F (0) = 0 (if x̄ 6= 0 is
a constant solution, then we make a substitution x 7→ x − x̄). Assume that
F can be expanded as:

F (x) = F ′(0)x + R(x),

where F ′(0)x is the linear part of F and R(x) is the non-linear one. If F has

he second derivative, then R(x) = F ′′(ξ)
2

x2, ξ ∈ (0, x) (or ξ ∈ (x, 0) if x < 0).
The main assumption of the linearization theorem concerns the derivative

F ′(0). We should assume that F ′(0) 6= 0 in the continuous case or |F ′(0)| 6= 1
in the discrete one. Why should we assume it? In the linear continuous case
the solution is exponential with the exponent F ′(0)t and therefore, if F ′(0) =
0, then every small perturbation (a non-linear term is such a perturbation)
can change the sign of F ′(0) — if this sign is positive, then the solution tends
to ∞ and it is unstable, while if the sign is negative, the solution tends to
0. Hence, small changes of the sign implies large changes of the behaviour
of solutions. Similarly, in linear discrete case the solution is an involution
function with the base F ′(0). Now, |F ′(0)| = 1 is the boundary of stability
region (−1, 1).

We should also assume that the non-linear part is small near the point of

linearization x = 0. Namely, limx→0

∣

∣

∣

R(x)
x

∣

∣

∣
= 0. Then a small perturbation

does not lead to large changes of the behaviour of solutions.
The linearization theorem tells that under the above assumptions the

constant solution x = 0 is asymptotically stable if F ′(0) < 0 for continuous
case or |F ′(0)| < 1 for discrete case and unstable otherwise. The same is true
for every constant solution x̄. This means that the linear part of the right
hand-side decides of stability or instability. Moreover, in the continuous case
we can tell something more. Namely, the shape of orbits is the same (in
topological meaning) for linear and non-linear case. Hence, the character of
critical points is the same in both cases.

Coming back to the logistic equation Eq.(4), we use this theorem to check
stability of constant solutions x = 0 and x = K. We have F ′(x) = r − 2 rx

K
.

For x = 0 we obtain F ′(0) = r, the linear part is rx and the non-linear

one R(x) = −bx2. Hence, R(x)
x

= −bx → 0 as x → 0 and F ′(0) 6= 0 and
we can use the theorem of linearization. Inequality F ′(0) = r > 0 implies
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instability of x = 0.
For x = K we have F ′(K) = r

(

1 − 2K
K

)

= −r 6= 0. Substituting z =
x−K we get F (z) = −rz − r

K
z2 so, the non-linear part R(z) = − r

K
z2 fulfils

the assumption of linearization and therefore, x = K is asymptotically stable
due to F ′(K) < 0.

3.3.1 Global stability.

The main method of global stability (of constant solutions) analysis is finding
Lapunov functions. Let (0, . . . 0) ∈ U be the constant solution to Eq.(20)
and x(t) ∈ U be a solution. Assume that the right-hand side of Eq.(20) is of
class C1 on U and U ⊂ Rk is open. The continuously differentiable function
V : Q → R, Q ⊂ U is called the Lapunov function on Q if it has the following
properties: V (x) ≥ 0 and V (x) = 0 ⇐⇒ x = 0, i.e. x1 = . . . = xk = 0,
V (x(t)) is a non-increasing function of t, i.e. d

dt
V (x(t)) = (grad V ) ·F ≤ 0. If

Eq.(20) has a Lapunov function defined on some neighbourhood of (0, . . . , 0),
then the origin (0, . . . , 0) is stable. Moreover, if the Lapunov function is
defined over the whole domain U and V (x(t)) is strictly decreasing for x 6= 0
in the whole domain, then the origin is globally stable. Hence, if (grad
V )·F < 0 for x 6= (0, . . . , 0), implies global asymptotic stability (attractivity)
of the origin

Notice, that to use the theorems above we need an open domain and a
critical point inside it. Nevertheless, if the critical point lies on the boundary
of the open domain and V (x(t)) is strictly decreasing for every solution inside
the domain and defined on the closure of this open domain, then the thesis
also holds.

Existence of a global attractor can be also shown on the background of
dissipative systems theory. We tell that the right-hand side of Eq.(20) fulfils
the dissipativity condition, it there exists a function W : U → R+ of class
C1 such that the scalar product

(grad W (x)) · F (x) =
k
∑

i=1

∂W (x)

∂xi

Fi(x) ≤ C − δW (x)

satisfies the inequality above, for some positive constants C, δ and W (x) →
+∞ as |x| → +∞. We see that for large values the function W has similar
properties as a Lapunov function. Clearly, it is a Lapunov function in more
general sense.
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We tell that the system of ODEs is dissipative, if the right-hand side is
dissipative. Notice, that in the literature there can be found more general
concept of dissipativity connected with an existence of bounded attractive
subset of the domain.

If Eq.(20) is dissipative, then all solutions are bounded. Namely,

grad W (x(t)) · F (x(t)) =
d

dt
W (x(t)) ≤ C − δW (x(t))

and hence, multiplying by eδt we get

d

dt

(

W (x(t))eδt
)

≤ Ceδt.

Integrating this inequality from 0 to t we obtain

W (x(t)) ≤ W (x(0))e−δt +
C

δ

(

1 − e−δt
)

≤ W (x(0)) +
C

δ

which implies that W (x(t)) is bounded for every t ≥ 0 and therefore, x(t) is
also bounded (if not, then W cannot be bounded).

Boundness of solutions for F of class C1 implies existence for all t ≥ 0.
Hence, we can study asymptotic behaviour and attractors of Eq.(20). Notice
that, if the system is dissipative, then the set A = {x : x ∈ Rk, W (x) ≤ 2C

δ
}

is absorbing, i.e. for every bounded set Q ⊂ U there exists tQ such that
x(t) ∈ A for t ≥ tQ, where x(t) is the solution for initial value x0 ∈ Q.

It occurs that if there exists compact absorbing set for the system with
properties mentioned above, then such a system has global attractor that is
connected. The exact structure of this attractor is not known, unfortunately.

Examples of Lapunov function we’ve given in the previous Section. Now,
we try to check dissipativness of some system. Consider Eqs.(14) with b < 1
and the function W (V, P ) = V +P for positive V, P . Both partial derivatives
of W are equal to 1. Hence,

(grad W (V (t), P (t))) ·F (V (t), P (t)) = rV

(

1 − V

K

)

− aV P + abV P − sP ≤

rV

(

1 − V

K

)

− sP

due to positivity of solutions. Let δ = s and C be a maximal value of
parabola V

(

r + s − r V
K

)

. Then

grad W (V, P ) · F (V, P ) ≤ C − δW (V, P ).

Therefore, the system is dissipative and the global attractor exists.
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3.3.2 Hopf bifurcation.

As we know the Hopf bifurcation is connected with changes of some param-
eter. Consider ODE of the form

ẋ = F (x, µ), (21)

with F of class C1 and F (0, µ) = 0 for every µ. Then x(t, µ) ≡ 0 is the
constant solution to Eq.(21). Let µ0 be the point of bifurcation, i.e. for
µ < µ0, the trivial solution is asymptotically stable and for µ > µ0, it is
unstable. If, for µ = µ0, there exists a pair of characteristic values such that

λ1 = λ̄2, <(λ1)
∣

∣

∣

µ=µ0

= 0, d
dµ
<(λ1)

∣

∣

∣

µ=µ0

> 0, and other characteristic values

have negative real parts, then for µ > µ0 there exists a limit cycle with the
period T = 2π

=λ1
. Additionally, if the trivial solution is asymptotically stable

for µ = µ0, then this limit cycle is attractive.

In general case, it is not easy to study stability at the point of bifurcation.
Attractivity of limit cycle can be suggested by numerical simulations. But
we should be very careful and aware that it is only suggestion.

The theorem presented above is not only one that concerns the Hopf
bifurcation. This bifurcation can also occur when the constant solution is
unstable and gains stability at some parameter value. It is not an usual
situation for biological ODEs and we do not study such types of bifurcation.

3.4 Exercises.

1. Check the assumption of the linearization theorem for all two-dimensional
models presented in previous Sections.

2. Check dissipativeness of the May and competition models.

4 Three or more dimensional continuos dy-

namical systems.

In this section we mainly study some examples of three dimensional systems
of ODE using general methods that we know from the previous Section.
The main difference between two and more dimensional cases is the possible
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chaotic behaviour of the system of three or more ODEs. In two-dimensional
case the behaviour is regular, due to the Poincare-Bendixon theorem. How-
ever, there are many biological models with regular behaviour also in more
dimensional case.

As usually, we start from the description of the models.
4. Food chain. We consider the environment with the main predator

(with the concentration P1(t)), the second predator (P0(t)) which is a prey
for the main predator, and the prey (V (t)) that is a food for the second
predator. The model reads as







V̇ = V (a0(1 − V ) − µ1P0)

Ṗ0 = P0 (a1(1 − P0) − µ2P1 + η1V )

Ṗ1 = P1(−1 + η2P0)

, (22)

where the equations above was scaled to reduce the number of coefficients
such that the carrying capacities for preys and second predator are equal to
1 and the death coefficient for the main predator is also 1.

5. Weather forecasting. This model was proposed by American mete-
orologist Lorenz in 1963 to study convection movement of air in atmosphere.
He tried to prepare a long-time forecasting of the weather on the basis of the
model. After many simplifications, he obtain the following system of ODEs







ẋ1(t) = σ (x2 − x1)
ẋ2(t) = rx1 − x2 − x1x3

ẋ3(t) = −bx3 + x1x2

, (23)

with σ, r describing viscosity and heat conduction of a medium, respectively,
and b reflects a size of space.

4.1 Properties of the models 4 and 5.

The right-hand sides of both Eqs.(22) and (23) are polynomials of the second
degree and hence, the local existence and uniqueness of solutions is obvious.
Moreover, due to the form of the right-hand side of Eqs.(22), the solution
is non-negative for non-negative initial data. It is not satisfied for Eqs.(23).
Nevertheless, for both systems we have solutions defined for every t ≥ 0
(for Eqs.(23) solutions are bounded, for Eqs.(22) co-ordinates V and P0 are
bounded, while the growth of P1 is at most exponential).
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We can show the following property of Eqs.(23). Multiplying the i-th
equation of the model by xi and adding the right and left-hand sides, respec-
tively, we obtain the following identity

1

2

d

dt

(

x2
1 + x2

2 + (x3 − σ − r)2
)

= −
(

σx2
1 + x2

2 + b
(

x3 −
σ

2
− r

2

)2
)

+b
(σ

2
+

r

2

)2

.

(24)
Consider the function W (x1, x2, x3) = 1

2
d
dt

(x2
1 + x2

2 + (x3 − σ − r)2) . It oc-
curs that it is a proper function to check dissipativity of the system. Let
f(x1, x2, x3) denote the right-hand side of Eqs.(23). Then

(grad W (x1, x2, x3)) · f(x1, x2, x3) =

= σx1(x2 − x1) + x2(rx1 − x2 − x1x3) + (x3 − σ − r)(−bx3 + x1x2) =

−σx2
1−x2

2−bx2
3 +b(σ+r)x3 = −σx2

1−x2
2−

b

2
(x3 − σ − r)2 +

b

2
(σ+r)2− b

2
x2

3.

Choosing C = b
2
(σ + r)2 and δ = min{σ, 1, b

2
} we obtain the inequality grad

W (x) · f(x) ≤ C − δW (x) that implies dissipativity of Eqs.(23). This means
that for every parameter values the system has a global attractor. But this
attractor can have a complicated structure. Consider the sphere R0 = {x ∈
R3 : x2

1+x2
2+(x3 − σ − r)2 ≤ c2}, for sufficiently large c. If the ellipsoid {x ∈

R3 : σx2
1 + x2

2 + b
(

x3 − σ
2
− r

2

)2
= b

(

σ
2

+ r
2

)2} lies inside the sphere above,
then the left-hand side of Eq.(24) is negative and therefore, R0 is an invariant
set for our system. Moreover, on the boundary of R0 the right-hand side of
Eq.(24) is negative. If we consider the discrete dynamical system generated
by x(n), for natural n, then R1 = x(1)(R0) is the smaller set then original
R0 and so on. Let Vn denotes the volume of Rn. Then Vn = e−n(σ+b+1)V0.
It is obvious that the volume of the limit set is equal to 0. This limit set is
called the strange Lorenz attractor.
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Lorenz attractor.

4.2 Constant solutions.

4. Let (V̄ , P̄0, P̄1) denote the critical point. The third equation implies that
P̄1 = 0 or P̄0 = 1

η2
. In the case P̄1 = 0 we obtain up to 4 critical points:

A = (0, 0, 0), B = (0, 1, 0) and C = (1, 0, 0) exist independently on the
parameters,

D =

(

a1(a0 − µ1)

a0a1 + µ1η1
,
a0(a1 + η1)

a0a1 + µ1η1
, 0

)

exists for a0 > µ1. If P̄0 = 1
η2

, then we obtain another two equilibrium states:

E =

(

0,
1

η2

,
a1(η2 − 1)

µ2η2

)

and F =

(

a0η2 − µ1

a0η2

,
1

η2

,
a0a1η2 − a0a1 + a0η1η2 − µ1η1

a0µ2η2

)

.

It is easy to check that:

• D exists if a0 > µ1. If a0 = µ1, then D = B. Hence, D bifurcates form
B.

• E exists if η2 > 1. If η2 = 1, then E = B. Hence, E also bifurcates
form B.

• F exists if a0η2 > µ1 and a0η2(a1 + η1) > a0a1 + η1µ1. Therefore, F
exists if η2 > max{µ1

a0
, a0a1+η1µ1

a0(a1+η1)
}.

Now we study the co-existence of D, E and F .

1. Let µ1 < a0. Then D exists and the inequalities

µ1

a0
<

a0a1 + η1µ1

a0(a1 + η1)
< 1

are satisfied. Therefore,

— if η2 < a0a1+η1µ1

a0(a1+η1)
, then there are no E and F ;

— if η2 = a0a1+η1µ1

a0(a1+η1)
, then there is no E and F bifurcates form D;

— if η2 ∈
(

a0a1+η1µ1

a0(a1+η1)
, 1
)

, then there is no E but F exists;

— if η2 = 1, then F exists and E bifurcates from B;

— if η2 > 1, then there are all six equilibrium states.

58



2. Let µ1 = a0. Then D = B and D bifurcates from B. In this case

F =
(

η2−1
η2

, 1
η2

, (a1+η1)(η2−1)
η2µ2

)

. Hence,

— if η2 < 1, then there are no E and F ;

— if η2 = 1, then E = F = B. This means that E and F bifurcates
form B;

— if η2 > 1, then E and F exist.

3. Let µ1 > a0. Then D does not exist. In this case the opposite inequal-
ities

1 <
a0a1 + η1µ1

a0(a1 + η1)
<

µ1

a0

are fulfilled. Hence,

— if η2 < 1, then E and F do not exist;

— if η2 = 1, then E bifurcates from B but F does not exist;

— if η2 ∈
(

1, µ1

a0

)

, then there is E and F does not exist;

— if η2 = µ1

a0
, then F bifurcates from E;

— if η2 > µ1

a0
, then we have both E and F .

The Jacobi matrix for Eqs.(22) has the following form

J(V, P0, P1) =





a0(1 − 2V ) − µ1P0 −µ1V 0
η1P0 a1(1 − 2P0) − µ2P1 + η1V −µ2P0

0 η2P1 η2P0 − 1



 .

(25)
We see that if the co-ordinate V̄ 6= 0 for the stationary solution, then

a0(1 − 2V̄ ) − µ1P̄0 = −a0V̄ .

Similarly, if P̄0 6= 0, then

a1(1 − 2P̄0) − µ2P̄1 + η1V̄ = −a1P̄0.

Taking into account the formula (25) and the above equalities we obtain the
following:

• A is unstable independently on the parameters (characteristic values
are equal to a0, a1 and −1).
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• For B the characteristic polynomial is equal to W (λ) = (a0 − µ1 −
λ)(−a1 − λ)(η2 − 1 − λ). Hence, we have stability for a0 < µ1 and
η2 < 1 that implies the absence of E, D and F .

• For C the characteristic polynomial is equal to W (λ) = (−a0 −λ)(a1 +
η1 − λ)(−1 − λ). Hence, C is always unstable.

• For E, the characteristic equation is of the form:

(

a0η2 − µ1

η2
− λ

)(

λ2 +
a1

η2
λ +

a1(η2 − 1)

η2

)

= 0.

Hence, if a0η2−µ1

η2
> 0, then E is unstable. If E exists, then η2 > 1

and this implies that there is no influence of the quadratic term on the
stability (characteristic values are either real negative or complex with
negative real part − a1

2η2
). Therefore, E is stable when F does not exist.

• For D we obtain the similar formula as in the previous case:

(

a0η2(a1 + η1)

a0a1 + µ1η1

− 1 − λ

)

(

λ2 + αλ + β
)

= 0,

where

α =
a0a1(a0 − µ1 + a1 + η1)

a0a1 + η1µ1

> 0 and β =
a0a1(a0 − µ1)(a1 + η1)

a0a1 + µ1η1

> 0

when D exists. The quadratic term have no influence on the stability,
once again. This means that D is stable when E and F does not exist.

• For F the Jacobi matrix has the following form:

J(F ) =







−a0η2−µ1

η2
−µ1(a0η2−µ1)

a0η2
0

η1

η2
−a1

η2
−µ2

η2

0 a0a1(η2−1)+η1(a0η2−µ1)
a0µ2

0






.

The matrix J(F ) has the form





−a −b 0
c −d −e
0 f 0



 ,
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where a, b, c, d, e, f > 0 are arbitrary positive constants when F
exists. The characteristic equation has the following form: λ3 + αλ2 +
βλ + γ = 0 with α = tr J(F ) = a + d > 0, β = ad + bc + ef > 0,
γ = det J(F ) = aef > 0. The Routh-Hurwitz criterion implies that
γ < αβ guaranties stability. In our case the inequality γ < αβ is easily
fulfilled. Therefore, we obtain stability.

Hence, for every parameter values there exists one stable equilibrium
state:

• if there is F , then it is stable;

• if there is no F but E exists, then E is stable;

• if there is no E and F but D exists, then D is stable;

• if there is no E, D and F , then B is stable.

Now, we focus on the global stability (in (R+)3) of critical points. At the
beginning we show that, if the inequality

η2 > max

{

µ1

a0
,
a0a1 + µ1η1

a0(a1 + η1)

}

(26)

holds, then every solution to Eqs. (22) tends to the unique non-trivial critical
point F. If Ineq. (26) is satisfied, then F exists. It is the only equilibrium
with all positive co-ordinates. Substituting x0 = V − V̄ , x1 = P0 − P̄0 and
x2 = P1 − P̄1, where F = (V̄ , P̄0, P̄1), we obtain







ẋ0 = −(x0 + V̄ )(a0x0 + µ1x1)
ẋ1 = −(x1 + P̄0) (a1x1 + µ2x2 − η1x0)
ẋ2 = (x2 + P̄1)η2x1

. (27)

We know that V (t), P0(t), P1(t) > 0 for every t ≥ 0 and therefore, x0 >
−V̄ and xi > −P̄i−1 for i = 1, 2. Consider the standard (compare Eq.(19))
Lapunov function

V (x0, x1, x2) = A0

(

x0 − V̄ ln
x0 + V̄

V̄

)

+

+

2
∑

i=1

Ai

(

xi − P̄i−1 ln
xi + P̄i−1

P̄i−1

)

,
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with A0 = η1η2

µ1
, A1 = η2 and A2 = µ2 in the domain Ω = {(x0, x1, x2) : x0 >

−V̄ , xi > −P̄i−1, i = 1, 2}.
It is easy to see that V (x0, x1, x2) ≥ 0 in Ω and V (x0, x1, x2) = 0 iff

x0 = x1 = x2 = 0. Calculating the derivative of V in the direction of a
solution to Eqs.(27) we get

V̇ (x0, x1, x2) = A0(−x0)(a0x0+µ1x1)+A1(−x1)(a1x1+µ2x2−η1x0)+A2x2x1η2

and finally,
V̇ (x0, x1, x2) = −(A0a0x

2
0 + A1a1x

2
1).

We see that V̇ ≤ 0 that implies global stability of F . To obtain global
asymptotic stability we need something more. We have V̇ (x0, x1, x2) = 0 for
every (x0, x1, x2) = (0, 0, x2). Let the point (0, 0, x2(t̄)) lies on the trajectory
of Eqs.(27) for some t̄ > 0. Then calculating the second derivative we obtain

V̈ (0, 0, x2) = 0. The next derivative
...
V (0, 0, x2) = −µ2

2

(

ȳF
1

)2
x2

2(t̄) < 0 that
shows that it is a point of inflection. Hence, V is strictly decreasing and
therefore, F is globally asymptotically stable.

If F does not exist, then other equilibrium state is globally stable. As the
next step we focus on the case when F does not exist but E exists. If µ1 > a0

and 1 < η2 < µ1

a0
, then the state E is globally stable. Let E = (0, P̄ E

0 , P̄ E
1 )

and x0 = V , x1 = P0 − P̄ E
0 , x2 = P1 − P̄ E

1 . Then Eqs.(22) take the form







ẋ0 = x0

(

a0(1 − x0) − µ1(x1 + P̄ E
0 )
)

ẋ1 = −
(

x1 + P̄ E
0

)

(a1x1 + µ2x2 − η1x0)
ẋ2 = η2x1

(

x2 + P̄ E
1

)

.

Consider the Lapunov function

V (x0, x1, x2) = B0x0 +
2
∑

i=1

Bi

(

xi − P̄ E
i−1 ln

xi + P̄ E
i−1

P̄ E
i−1

)

defined on [0,∞) × (−P̄ E
0 ,∞) × (−P̄ E

1 ,∞) and calculate the derivative V̇
(assuming x0 > 0). Then

V̇ = −B0

(

µ1P̄
E
0 − a0

)

x0 − B0a0x
2
0

−B1a1x
2
1 − B0µ1x0x1 + B1η1x0x1 − B1µ2x1x2 + B2η2x1x2.
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Hence, for B1µ2 = B2η2 and B1η1 = B0µ1 one gets V̇ < 0 for every x0 > 0
under the assumption µ1P̄

E
0 > a0. This implies that E is globally stable if it

exists and the state F does not exist.

Similarly we show global stability of the state D under the assumption
that F and E do not exist and global stability of B = (0, 1, 0) for a0 < µ1

and η2 < 1 (when F , E and D do not exist). Appropriate Lapunov functions
are

VD(x0, x1, x2) = α0

(

x0 − V̄ D ln
x0 + V̄ D

V̄ D

)

+

+α1

(

x1 − P̄ D
0 ln

x1 + P̄ D
0

P̄ D
0

)

+ α2x2

and

VB(x0, x1, x2) = β0x0 + β1

(

x1 − P̄ B
0 ln

x1 + P̄ B
0

P̄ B
0

)

+ β2x2.

5. Eqs.(23) always has the trivial critical point A = (0, 0, 0). For every
critical point the identity x1 = x2 holds and therefore, if x1 = x2 6= 0,
then x3 = r − 1 and two other critical points exists for r > 1, i.e. B =
(
√

b(r − 1),
√

b(r − 1), r − 1) and C = (−
√

b(r − 1),−
√

b(r − 1), r − 1).
The Jacobi matrix for Eqs.(23) has the form

J(x1, x2, x3) =





−σ σ 0
r − x3 −1 −x1

x2 x1 −b



 .

We see that det(J(0, 0, 0) − λ I =) = −(λ − b) ((λ + 1)(λ + σ)) . Hence,

λ2 + (σ + 1)λ + σ(1 − r) = 0.

Therefore, for r < 1 the trivial solution is asymptotically stable. For r > 1
the origin is unstable. The points B and C are stable until r reaches the value
rc = σ(σ+b+3)

σ−b−1
. For r > rc both of these points are unstable. This suggests

that for r > 1 convection movement starts with every small perturbation of
the origin (0, 0, 0). If 1 < r < rc, the characteristic values are as follows: one
of them is real negative, another two are complex with negative real part. If
r = rc we have a Hopf bifurcation. But obtained cycles are unstable. The
solution encircle the point B some times and goes to the point C. Then its
encircle the point C some times and so on.
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As a conclusion we can say that exactly the same methods as for Eqs.(22)
can be used to study n-dimensional food chain or n-dimensional competitive
system (these systems have structures like Eqs.(22) or Eqs.(16)).

4.3 Exercises.

1. Check boundness of solutions to Eqs.(22) and (23).

2. Check the identity (24).

3. Check existence and co-existence of constant solutions to Eqs.(22).

4. Use the linearization theorem to show stability or instability of constant
solutions to Eqs.(22).

5. Check global stability of constant solutions D and B to Eqs.(22).

6. Check boundness of solutions to Eqs.(22) and (23).

7. Use the linearization theorem to show stability or instability of constant
solutions to Eqs.(23).

5 Equations with one discrete delay.

In this section we focus on delay differential equations (DDE). As in the pre-
vious Sections, we start our study of equations with delay from the simplest
case — linear equation. In the first Section we’ve analysed the model of
birth and death process. For most of species we observe the following — the
death process is immediate, while the birth process is delay comparing to the
trigger of this process. Therefore, the model should have the form

Ṅ(t) = rN(t − τ) − sN(t), (28)

where N(t) denotes the density of the species, r and s are coefficients of birth
and death, respectively, and τ > 0 is the delay of birth.

Moreover, if we study both processes in cellular level, then they are both
delay in comparison to the biochemical signals that initiate them. Hence, it
is possible to consider

Ṅ(t) = rN(t − τ1) − sN(t − τ2), (29)

where τ1, τ2 are delays of birth (proliferation) and death (apoptosis). Nor-
mally, τ1 and τ2 have similar magnitude. In abnormal state, they can differ
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dramatically. As en example we can consider a growth of tumour when apop-
tosis is blocked. It is possible to describe this situation using large values of
τ2.

The last form of linear DDE, i.e.,

Ṅ(t) = rN(t) − sN(t − τ), (30)

does not have clear biological interpretation, but it can be also compared to
the process of tumour growth, where the delay of proliferation is very small
such that we neglect it, while the delay of apoptosis is large.

Equations with one delay are much simpler to analyse than those with
two or more delays. Therefore, in our study we focus on such a type of
equations.

From the mathematical point of view, the simplest form of linear delay
equation is

ẋ(t) = rx(t − τ), (31)

where x is a real variable and r = const is either positive or negative.
Let t0 = 0 and we want to find a solution to Eq.(31). At the point 0 we

have
ẋ(0) = rx(−τ)

and therefore, we should know the value x(−τ). Calculating ẋ(t) for every
t ∈ [0, τ ] we use values of x at points from the interval [−τ, 0]. Hence, the
initial value for equation with delay is not a constant x0 from the domain
of right-hand side of equation but all values of x on [−τ, 0], i.e. a function
x0 : [−τ, 0] → R. This is the first difference between ODE and DDE.

If we know the initial function x0, then we can calculate the solution on
[0, τ ]. For t ∈ [0, τ ] our equation reads as

ẋ(t) = rx0(t − τ),

i.e. it is the equation with known function describing the right-hand side.
This equation can be easily integrated. Namely, integrating both sides of it
with respect to t ∈ [0, τ ] we obtain

∫ t

0

ẋ(s)ds = r

∫ t

0

x0(s − τ)ds

and hence,

x(t) = x0(0) + r

∫ t

0

x0(s − τ)ds.
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Now, knowing values of x for t ∈ [0, τ ], we can use the same method to
calculate x(t) for t ∈ [τ, 2τ ], and so on. Generally, knowing x(t) for t ∈
[(n − 1)τ, nτ ], we calculate

x(t) = x(nτ) + r

∫ t

nτ

x(s − τ)ds,

for t ∈ [nτ, (n+1)τ ]. The procedure described above is called the step method.
If it easily seen that if x0 is integrable, then x(t) is properly defined for every
t ≥ 0.

The second difference between ODE and DDE is that two solutions with
different initial values can intersect. Consider the following example

ẋ(t) = −x
(

t − π

2

)

,

with
a) x0(t) = sin t,
b) x0(t) = 0,

for t ∈
[

−π
2
, 0
]

.
It is obvious that in Case b) the solution is identical to 0, i.e. x(t) = 0

for t ≥ 0.
In Case a) we use the step method. Let t ∈

[

0, π
2

]

. Then

ẋ(t) = − sin
(

t − π

2

)

= cos t.

Integrating from 0 to t we obtain

x(t) = x0(0) + sin t − sin 0 = sin t.

For t ∈
[

(n − 1)π
2
, nπ

2

]

we get

x(t) = x
(

n
π

2

)

+ sin t
∣

∣

∣

t

nτ
= sin t.

Hence, x(t) = sin t for every t ≥ 0.
It is obvious that both solutions intersect in every point kπ for k ∈ N.

It does not contradict uniqueness of solutions because these solutions should
be considered in another space (not in R). The proper space is suggested
by initial data. In general case we need to have continuous initial data, i.e.
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continuous function x : [−τ, 0] → R. It is a Banach space (a normed linear
space is called a Banach space if all Cauchy sequences are convergent; a
sequence (an) is a Cauchy sequence if for every ε > 0, there exists N ∈ N
such that for every n, m ≥ N the inequality |an−am| < ε is satisfied). Hence,
we should consider the solution x(t) as a function from this space. How to do
it? For every fixed t ≥ 0 we define xt : [−τ, 0] → R as xt(h) = x(t+h), where
x(t) is the solution for the initial function x0. This solution is continuous
and hence, xt is in our Banach space. All properties and theorems for delay
equations are considered in this Banach space. This means that our equation
is infinite-dimensional. This is a difficult theory and we only mention about
it.

Coming back to Eq.(31) and the step method we see that the recurrent
formula for finding solutions is not so easy. Even for the simplest constant
initial function we obtain the polynomials of the more and more high degree
on next intervals [nτ, (n + 1)τ ]. Consider Eq.(31) with the constant initial
function x0 = 1. Then for t ∈ [0, τ ] we have ẋ = r and therefore, x(t) = 1+rt.
For the second interval t ∈ [τ, 2τ ] we obtain the equation

ẋ = r(1 + r(t − τ))

with the solution

x(t) = x(τ) +

∫ t

τ

r(1 + r(s − τ))ds =

= 1 + rτ + r(t − τ) +
r2

2
(s − τ)

∣

∣

∣

t

τ
= 1 + rt +

r2

2
(t − τ)2

and so on. Hence, this formula is useful to show the existence and uniqueness
of solutions, but not for calculating it. Only in special cases it is possible
to find solutions analytically, in most cases we calculate it only numerically.
The mathematical analysis concerns mainly local and global stability and
bifurcations. As we know, changes of stability and bifurcations are connected
with the changes of some parameter of the model. In this section we focus
on delays. From the mathematical point of view, the delay can be treated as
a parameter of the model. The only difficulty appear when delay tends to 0.
In such a case we should be very careful. On the other hand, for every fixed
delay τ > 0, substituting s = t

τ
we get

d

ds
x = rτx(s − 1)
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from Eq.(31). It is the equation with parameter τ and the delay equal to 1.
The same substitution we can use for every model with delay.

This shows that we can study stability and bifurcations with respect to
the magnitude of delay.

As we know, we start stability analysis from finding constant solutions.
It is obvious that constant solutions for the system with positive delay are
the same as for the system without delay, i.e. τ = 0. Clearly, if the solution
is constant, then it does not depend on t and also on t − τ. Hence, the only
constant solution to Eq.(31) is x = 0.

The behaviour of solutions and stability or instability of the trivial so-
lution depends on the sign of r and on the magnitude of τ , for negative r.
Studying stability we are looking for exponential solutions to our equations
and generate the characteristic quasi-polynomial, i.e. if x(t) = ceλt, c, λ 6= 0
is a solution to Eq.(31), then

cλeλt = rceλ(t−τ)

and therefore,
W (λ) = λ − re−λτ = 0.

The equation above is called the characteristic or transcendental equation.
Comparing to the case without delay, this methods leads to finding the char-
acteristic polynomial. In the case with non-zero delay, zeros of W (λ) are also
called characteristic values. The difference is that there are infinitely many
characteristic values in the case with τ > 0. We cannot calculate all of them.
We need some other methods to check when real parts of characteristic values
are negative (that implies stability).

One of the useful methods of local stability analysis is so-called Mikhailov
criterion. It is the general criterion for the system of delay differential equa-
tions. We present it for the case with one delay, but it can be used for
arbitrary number of different delays and delay in integral form. Assume that
the characteristic quasi-polynomial of the system has the form

W (λ) = P (λ) + Q(λ)e−λτ ,

where P and Q are polynomials with deg Q < deg P and the characteristic
equation W (λ) = 0 has no root on the imaginary axis. We study the total
change of argument of the vector W (iω) as ω increases from 0 to +∞. If this
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change is equal to π
2

deg P , where deg P is the degree of P , then we obtain
stability. Other values imply instability.

The end of the vector W (iω) describes the curve in the complex plain.
We call this curve the Mikhailov hodograph. Stability is connected with the
shape of this curve. We cannot use the Mikhailov criterion, if the hodograph
crosses the point (0, 0). If the hodograph encircle the origin (0, 0) with posi-
tive direction of the proper angle, then we have stability. As an axample of
the usage of this criterion we study stability for the three-dimensional system
of ODEs (originally, the criterion was formulated by Mikhailov for ODEs).
Hence, the characteristic polynomial has the following form

W (λ) = λ3 + aλ2 + bλ + c

and substituting λ = iω we get

f1(ω) = <(W (iω)) = −aω2 + c and f2(ω) = =(W (iω)) = −ω3 + bω.

To study the shape of Mikhailov hodograph we need to know the behaviuor
of f1 and f2. It depends on parameters a, b and c. The argument for ω = 0
is simply 0. Hence, to obtain stability we need that the hodograph goes into
the positive direction in complex plain and makes the angle 3

2
π. If a < 0, then

f1 is increasing. Independently on the initial behaviour of f2, the hodograph
stays in the fourth quarter of R2 for large values of ω (precisely, for b ≤ 0
the function f2 is decreasing, and then the hodograph stays in this quarter

for all ω > 0, if b > 0, then f2 achievs its maximal value at ω =
√

b
c

and

next increases). Therefore, the total change of the argument is from 0 to
−pi

2
. Hence, it is equal to −π

2
6= 3π

2
. This implies instability. Similarly, if

a = 0, then f1 = c for all ω ≥ 0 and the hodograph stays on the straight line
< = c. It also stays in the fourth quarter for sufficiently large ω that proves
instability. For a > 0 the function f1 is decreasing. If b ≤ 0, then f2 is also
decreasing, the the hodograph switches from the fourth to the third quarter
of R2 for large ω. This implies that the change of argument is equal to −π

2

and we obtain instability. If b > 0, then f2 is increasing for ω <
√

b
c

and

in this case we can obtain that the hodograph encircle the origin in positive
direction. It is possible when f2(ω) = 0 for such a value of ω, for which
f1(ω) < 0. This means that −ab + c < 0. Hence, the inequality c < ab
implies stability. For c > ab the hodograph do not encircle the origin in
positive direction and this implies instability.
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Now, we use the criterion to study eq.(31).
1) Case r > 0. The characteristic equation is

λ = re−λτ .

Comparing the functions f1(λ) = λ and f1(λ) = re−λτ we see that there exists
λ̄ > 0 such that f1(λ̄) = f2(λ̄), which implies that λ̄ is the characteristic value
with positive real part (here, λ̄ is real and therefore, <(λ̄) = λ̄ > 0). Hence,
the trivial solution is unstable.

In this case we can tell something more. Assume that the initial function
is positive, x0(t) > 0 for t ∈ [−τ, 0]. Then for t ∈ [0, τ ] we obtain ẋ =
rx(t−τ) > 0 which implies that x(t) is increasing and hence, positive. Using
the step method we show that the solution is increasing and positive for every
t ≥ 0. This implies that the solution is increasing to ∞. If not, then it is
increasing and bounded. Hence, it has a finite limit. As for ODEs, the only
possible limit is a constant solution. In our case, x(t) cannot tend to 0 which
means that it is unbounded. The same result we obtain under the weaker
assumption that x0 is non-negative and positive on some interval contained
in [−τ, 0]. On the other hand, if x0 is negative, then ẋ < 0 and the solution
x(t) decreases to −∞.

2) Case r < 0. Let r = −a, with a > 0. The characteristic equation is

W (λ) = λ + ae−λτ = 0.

We study characteristic values using the Mikhailov criterion. For λ = iω, we
have

W (iω) = < + i=, < = a cos(ωτ), = = ω − a sin(ωτ).

If τ = 0, then < = a > 0 and = = 0 and hence, arg W (0) = 0. It is the case
when we have stability for the model without delay (while for the previous
Case, the trivial solution is unstable for τ = 0).

If arg W (iω) increases to π
2
, then the Mikhailov criterion implies stability.

It is obvious that < oscillate round 0 as a cosine function. If = is increasing,
then the total increase of arg W (iω) is equal to π

2
. The same total change we

have until = > 0 for every ω > 0 such that < = 0. Identity < = 0 implies
ωτ = π

2
+ kπ. Therefore, for fixed τ we obtain sequences ωk = 1

τ

(

π
2

+ kπ
)

and =k = ωk ± a. The sequence ωk is increasing. Therefore, =k > 0 for every
k ∈ N only if =0 > 0, i.e. ω0 > a. The last inequality is equivalent to

aτ <
π

2
.
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At aτ = π
2

there appear a pair of purely imaginary conjugate characteristic
values. It can be show that these characteristic values crosses the imaginary
axis from the left to the right-hand side and therefore, the trivial solution
looses stability. It is due to the positivity of derivative of the real part of
these characteristic values. If τ increases, then the next pair appear. The
derivative is also positive and hence, the solution cannot stay stable.
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Examples of Mikhailov hodographs for stable and unstable cases.

In Case r > 0 we were able to show positivity of solutions with positive
initial function. In this case it is not so obvious. Moreover, for every a > 0
we can find an initial function such that x(τ) < 0 for large values of delay.
Assume that x0(t) = C > 0 for t ∈ [−τ, 0]. Then ẋ(t) = −aC for t ∈ [0, τ ].
Hence, x(τ) = C − aCτ and if τ > 1

a
, then x(τ) < 0. Therefore, if r is

negative, then positivity of solutions is not conserved.

It should be noticed, that we have the same result concerning stability
for every model with one discrete delay. If for τ = 0 we have stability, then
the solution is also stable for small delays. If the solution looses stability
for some value of the delay parameter, then it is unstable for every greater
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delays. If for τ = 0 we have instability, then the solution is unstable for
small delays. It is due to continuous dependence of solutions on parameters
(on the delay in our case). The dynamics of characteristic values is always
such that they cross imaginary axis from the left to the right. Therefore,
instability preserves for every positive values of delay.

In the case of one DDE with two or more delays or the system of at least
two DDEs so-called stability switches can occur. In such a case, if purely
imaginary characteristic values appear, then the dynamics in the complex
plane is not necessary in the right-hand side direction. Therefore, the studied
solution can loose stability at some τ 1

c but get it back at τ 2
c > τ 1

c and so on.

Another problem is the Hopf bifurcation arising when the solution looses
stability. We study this bifurcation with the delay as a parameter of bifur-
cation. It occurs that we only need to check the derivative dx

dτ
(τc), where x

denotes a real part of the characteristic value and τc = π
2a

is the threshold
value of delay. Let λ(τ) = x(τ) + iy(τ) denotes a characteristic value. Then,

{

x = −ae−xτ cos yτ
y = ae−xτ sin yτ.

(32)

Using the theorem of implicit function one calculates

dx

dτ
(τc) =

a2

π2

4
+ 1

,

which is positive. Then, the Hopf bifurcation occurs for τc and the nontrivial
stationary solution looses stability at this point.

Similarly, we can study the more general linear equation of the form

ẋ(t) = ax(t) + bx(t − τ), (33)

for different non-zero values of a and b. Eqs.(28) and (30) are the examples
of Eq.(33) with a and b of different signs.

To show existence and uniqueness of solutions to Eq.(33) we use the step
method. Let x0 : [−τ, 0] → R be a continuous function. For t ∈ [0, τ ] we get

ẋ(t) = ax(t) + bx0(t − τ)

which is the linear non-homogenous equation. This type of equation can
be solved using the variation of constant method. In this method we solve
homogenous equation

ẋ = ax
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and obtain the general solution of the form x(t) = Ceat. Next, we are looking
for a special solution to non-homogenous equation of the same form with
C = C(t), i.e. we assume that C is a function of t. Hence,

Ċeat + Caeat = aCeat + bx0(t − τ)

which implies C(t) = b
∫

e−atx0(t−τ). The general solution to non-homogenous
equation is the sum of general solution to homogenous one and this special
solution found above. Using an initial value we obtain

x(t) = x0(0)eat + beat

∫ t

0

e−asx0(s − τ)ds,

for t ∈ [0, τ ]. This formula guaranties existence and uniqueness of solution
on [0, τ ]. The step method implies that the solution exists and it is unique
for every t ≥ 0.

Now we focus on stability of unique constant solution x = 0. As we know,
the most important for stability in the case of positive delay is stability for
non-zero delay. Hence, if a + b > 0, then the trivial solution is unstable for
τ = 0 and it stays unstable for τ > 0. Therefore, we study Eq.(33) only for
a + b < 0. We have three cases.

1) For a, b < 0 we rewrite Eq.(33) in the form ẋ(t) = −αx(t) − βx(t − τ)
with positive α and β. The characteristic equation is λ + α + βe−λτ = 0 and

W (iω) = iω + α + β cos(ωτ) − iβ sin(ωτ).

The imaginary part is the same as for Eq.(31) and the real part is translated
on α. Hence, if we compare Mikhailov hodographs, we obtain the same
curve translated on α in the real direction in complex plane. This implies
that if α > β, then the hodograph for Eq.(33) stays in the right-hand side
of the complex plane and does not encircle the origin that implies stability
independently on the magnitude of delay. If α < β, then there exists τ
for which Eq.(33) looses stability. For this delay we have < = = = 0 and
therefore,

cos(ωτ) = −α

β
and ω = βsin(ωτ).

Finally,

τ =
arccos

(

−α
β

)

√

α2 + β2
.
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This implies that the trivial solution looses stability later than in the case
r < 0 for Eq.(31).

2) For a > 0 and b < 0 we rewrite Eq.(33) in the following form ẋ =
ax(t) − βx(t − τ), with β > 0. In this case we have

W (iω) = iω − a + β cos(ωτ) − iβ sin(ωτ)

and the change of stability occurs when cos(ωτ) = a
β
. Hence, τ =

arccos( a
β )√

a2+β2
,

that is earlier than for Eq.(31).
3) For a < 0 and b > 0, we have the real part of characteristic value

equal to −a − b cos(ωτ) and due to the assumption a + b < 0 the Mikhailov
hodograph stays in the right-hand side of the complex plane. Therefore, the
trivial solution is stable independently on the delay.

Finally, we focus on global stability. Generally, finding Lapunov fuctionals
for DDEs is difficult (”functional” means a real-valued function with the
domain contained in some space of functions). To obtain global stability of
the solution using Lapunov functionals we need something more than in the
case without delay. One of the theorems about Lapunov functionals implies
that if V is a Lapunov functional for DDE on some set G and M is the
maximal invariant set for which the derivative of V along the solution is
equal to 0, then every bounded solution with initial function x0 ∈ G tends
to M as t → +∞.

Consider DDE of the form ẋ(t) = −ax(t) + bx(t − τ) with a > |b| and
Lapunov functional

V (x(t)) =
1

2

(

x2(t) + |b|
∫ t

t−τ

x2(s)ds

)

. (34)

It is easily seen that V (x) is non-negative and V (x) = 0 only if x(t) ≡ 0.
We can show that every solution to our equation is bounded. Clearly, if
|x0| ≤ K, then

|x(t)| ≤ Ke−at + |b|e−at

∫ t

0

Keasds,

for t ∈ [0, τ ]. Thus, |x(t)| ≤ Ke−at + K|b|e−at eat−1
a

≤ K. Using the step
method we show that |x(t)| ≤ K for every t ≥ 0. Next, we calculate the
derivative along a solution. The second term of the right-hand side of V is
a function of upper (and lower) limits of the integral. Let f(t) =

∫ t

0
g(s)ds
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be a function of upper limit for continuous function g. Then f is integrable
and ḟ(t) = g(t). Hence, calculating the derivative of V along the solution to
our equation we obtain

V̇ (x(t)) = x(t)ẋ(t) +
|b|
2

(

x2(t) − x2(t − τ)
)

=

= −ax2(t) + bx(t)x(t − τ) +
|b|
2

(

x2(t) − x2(t − τ)
)

.

Next, using the identity (x(t)± x(t− τ))2 = x2(t)± 2x(t)x(t− τ) + x2(t− τ)
we get

V̇ (x(t)) = −|b|
2

(x(t) ± x(t − τ))2 − (a − |b|)x2(t) ≤ 0.

The maximal invariant set such that V̇ (x(t)) = 0 is the trivial solution that
implies global stability of the trivial solution.

5.1 Non-linear models with delay — delay logistic equa-

tion.

In this section we study more general case — non-linear equation with one
discrete delay of the form

ẋ(t) = F (x(t), x(t − τ)) (35)

with continuous initial function x0 : [−τ, 0] → R. As we know from the previ-
ous Section, we should study this equation in the Banach space of continuous
function defined on [−τ, 0] but it is possible to analyse main properties using
simpler real space and standard analytical methods. We do not treat the
function F as defined on this Banach space but simply on R2 where x(t) and
x(t − τ) are two variables, i.e. (x(t), x(t − τ)) ∈ R2. Hence, F is continuous
if it is continuous as the function of these two variables. Differentiability of
F should be studied in the sense of Frechet in Banach space but it can be
reduced to differentiability in R2 and so on.

Theorems about existence and uniqueness of solutions are exactly the
same as in the case of ODE. If F is a Lipschitz function (with respect to two-
dimensional variable (x(t), x(t − τ)) ∈ R2), then for every continuous initial
function x0 there exists unique solution to Eq.(35). Similarly, continuous
derivative guarantees that Lipschitz conditions is locally satisfied. Hence, if
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F has continuous partial derivatives with respect to x(t) and x(t − τ), then
there exists unique solution to Eqs.(35).

We can also use theorems of linearization, Hopf bifurcation and Lapunov
functionals, as in ODE case.

5.1.1 Logistic equation.

As an example of non-linear delay equation we study the delay logistic equa-
tion. The classical form of this equation reads as

Ṅ(t) = rN(t)

(

1 − N(t − τ)

K

)

, (36)

with the same notation as for Eq.(4). Eq.(36) has the following biological
interpretation. In the equation without delay we assume that the influence of
competition on the dynamics of the described species is immediate. It is not
necessary true. Consider a herbivorous species and its net reproduction per
one individual. If in the previous season large number of individuals have
eaten much food, then it may lead to reduction of this herbivore present
season and individuals cannot spend much energy for reproduction. There-
fore, the net reproduction per one individual does not depend on the present
density (N(t)) but on the density in the previous season (N(t − τ)).

The following form of the delay logistic equation was proposed to describe
EAT (a kind of tumour in mice )

Ṅ(t) = rN(t − τ)

(

1 − N(t − τ)

K

)

, (37)

where N(t) denotes the concentration of tumour cells in a target organism, r
is the net reproduction rate of tumour (which means the difference between
proliferation and apoptosis) and K is the carrying capacity. Delay τ reflects
the length of cell cycle.

For both models, Eqs.(36) and (37), we define an initial non-negative
continuous function N0 : [−τ, 0] → R+. Using the step method we show
that the solution to Eqs.(36) and (37) is defined for every t ≥ 0. Namely, for
Eq.(36) we obtain the recurrent formula

N(t) = N(nτ)er
R t−τ

(n−1)τ r(1−N(s)
K )ds,
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while for Eq.(37),

N(t) = N(nτ) + r

∫ t−τ

(n−1)τ

N(s)

(

1 − N(s)

K

)

ds,

for t ∈ [nτ, (n + 1)τ ] and n ∈ N. The form of recurrent formula for Eq.(36)
implies that the solution with non-negative initial function is non-negative.
Moreover, if N(0) > 0, then the solution is positive. It is not true for Eq.(37).
It occurs that the solution for non-negative N0 may be negative. It can be
shown that if N0(t) ∈ [0, K] for t ∈ [−τ, 0], then

1. if rτ > p1, where p1 is the greatest root of the polynomial W1(x) =
− 1

48
x3− 1

8
x2 + 1

4
x+1, then there exists an initial function N0 such that

the corresponding solution to Eq.(37) has negative values;

2. if rτ < p2, where p2 is the greatest root of the polynomial W2(x) =
− 1

16
x3 − 1

4
x2 +1, then the corresponding solution to Eq.(37) is nonneg-

ative.

This property of non-negativity or possible negativity of appropriate solu-
tions is the main difference between Eq.(36) and Eq.(37). It is easy to see
that if the solution to Eq.(37) is negative on some interval of the length equal
to τ , then it tends to −∞ as t → +∞. If this solution is non-negative, then
it has similar properties as in the case of Eq.(36).

It is also possible to show that solutions to both equations are bounded
above.

Now, we focus on critical points and their stability. Eqs.(36) and (37)
have two stationary solutions — the trivial one and the nontrivial carrying
capacity K.

We study stability using the standard linearization theorem. For the
trivial solution, we assume that the solution N(t) has a very small norm
|N(t)| < ε and therefore, we neglect terms of the higher order. Hence, for
Eq.(36) the linearized equation is simply ẋ = rx(t), i.e. it is an equation
without delay. The characteristic value is equal to r > 0. As we remember
from the theory of ODE, the non-linear part should be small to use the
linearization method. Here, the non-linear part is equal to f(x(t), x(t−τ)) =
− r

K
x(t)x(t − τ). If we treat the function f as a function of two variables

x1 = x(t) and x2 = x(t − τ), then we need to show that

lim
(x1,x2)→(0,0)

∣

∣

∣

∣

∣

f(x1, x2)
√

x2
1 + x2

2

∣

∣

∣

∣

∣

= 0.
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We have
∣

∣

∣

∣

∣

f(x1, x2)
√

x2
1 + x2

2

∣

∣

∣

∣

∣

=
r

K

∣

∣

∣

∣

∣

x1x2
√

x2
1 + x2

2

∣

∣

∣

∣

∣

and due to inequality ±x1x2 ≤ 1
2
(x2

1 + x2
2), we obtain

∣

∣

∣

∣

∣

f(x1, x2)
√

x2
1 + x2

2

∣

∣

∣

∣

∣

≤ r

2K

x2
1 + x2

2
√

x2
1 + x2

2

=
r

2K

√

x2
1 + x2

2

that tend to 0 as (x1, x2) → (0, 0). Hence, the linearization theorem implies
instability of the trivial solution.

For Eq.(37) the linearized equation is of the form

ẋ = rx(t − τ). (38)

To use the linearization theorem for non-trivial solution we substitute
x(t) = N(t) − K and obtain the same linearized equation for both models,
i.e.,

ẋ = −rx(t − τ). (39)

The characteristic quasi-polynomial for both Eqs.(38) and (39) has the same
form

W (λ) = λ + be−λτ = 0, (40)

where b = −r for the trivial solution to Eq.(37) and b = r for the non-trivial
solution to both models. We apply the analysis for linear equations from the
previous Subsection. Hence, the trivial solution is unstable independently on
the delay. The non-trivial solution looses stability for rτ = π

2
. We also know

that the Hopf bifurcation occurs at τ = π
2r

.

5.1.2 Lapunov functionals for non-linear equations.

At the beginning of this Section we’ve mentioned that finding Lapunov func-
tionals for DDEs is not easy. Now, we give an example where Lapunov
functional is a combination of Eq.(19) for ODE and Eq.(34). Consider the
following form of non-linear DDE

ẋ(t) = x(t) (a − bx(t) − cx(t − τ)) , (41)

with a, b, c > 0 and b > c and non-negative initial function such that x0(0) >
0. The form of Eq.(41) implies that the solution is positive for such initial
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function (as in the case of classic logistic equation, Eq.(36)). Therefore,
we can estimate ẋ(t) ≤ x(t)(a − bx(t)) that implies boundness of solutions
for positive initial functions. It is obvious that Eq.(41) has one non-trivial
critical point x∗ = a

b+c
and therefore, the equation can be rewritten as

ẋ(t) = −x(t) (b(x(t) − x∗) + c(x(t − τ) − x∗)) .

Let define the following Lapunov functional

V (x(t)) = x(t) − x∗ − x∗ ln
x(t)

x∗
+

c

2

∫ t

t−τ

(x(s) − x∗)2ds

for positive x(t). Hence, V (x) is properly defined and V (x(t)) ≥ 0 and
V (x(t)) = 0 ⇐⇒ x(t) = x∗.

Calculating the derivative along the solution we obtain

V̇ (x(t)) = ẋ(t) − x∗

x(t)
ẋ(t) +

c

2

(

(x(t) − x∗)2 − (x(t − τ) − x∗)2
)

=

= −x(t)
x(t) − x∗

x(t)
(b(x(t) − x∗) + c(x(t − τ) − x∗))

+
c

2

(

(x(t) − x∗)2 − (x(t − τ) − x∗)2
)

=

= − c

2
((x(t) − x∗) − (x(t − τ) − x∗))2 − (b − c)(x(t) − x∗)2 ≤ 0.

The invariant set for which the derivative above is equal to 0 is the constant
solution x∗. This implies global (in R+) stability of the non-trivial solution
x∗.
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Similarities and differences between solutions to Eqs.(36) and (37).
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6 Appendix. Matlab files for creating figures

presented above.

1. Discrete birth process.
function [n] = birth(n)
x=[1:n]
for
i=1:n, y(i) = any(i);
end
plot(x,y,’o k’)
axis([0 11 -10 600]);
function f=any(n)
r=2;
a=1;
if n¿1
f=r*any(n-1);
else
f=a;
end

2. Continuous birth process.
function birthcon
t=sym(’t’);
a=0.2;
c=2;
tk=10;
y=c*exp(a*t)
ezplot(t,y,[0,tk])
axis([0 10 1.9 15]);

3. Solutions to continuous logistic equation.
function logisticcon
t=sym(’t’);
K=1;
a=2; b=0.1; c=0.7; r=3; tk=3.5;
y1=a*K/(a+(K-a)*exp(-r*t));
ezplot(t,y1,[0,tk]); drawnow; hold on;
y2=b*K/(b+(K-b)*exp(-r*t));
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ezplot(t,y2,[0,tk]); drawnow;
y3=c*K/(c+(K-c)*exp(-r*t));
ezplot(t,y3,[0,tk]); drawnow; hold off;
axis([0 3.5 0 2.2]);

4. Phase portrait for logistic continuous equation.
function logisticfaz
t=sym(’t’);
K=1; r=2.8; tk=1.3;
y1=r*t*(K-t)/K;
ezplot(t,y1,[-0.3,tk]);
axis([-0.3 1.3 -1.1 0.8]);

5. Phase portraits for discrete logistic equation.
function logisticfaz1
t=sym(’t’);
K=1; r=2.8; tk=1.1;
y1=r*t*(K-t)/K;
ezplot(t,y1,[0,tk]); drawnow; hold on;
y2=t;
ezplot(t,y2,[0,tk]); hold off;
axis([0 1 0 0.8]);

6. Solutions to discrete logistic equation.
function [n] = logisticdis1(n)
x=[1:n];
r = 4; a = 0.3; y(1) = a;
for i=2:n,
y(i) = r*y(i-1)*(1-y(i-1));
end
plot(x,y,’o r’);

7. Phase portrait for discrete logistic equation in the case of
periodic solution with period 2.

function logisticfaz2
t=sym(’t’);
r=3.5; tk=1.1;
y1=r*r*t*(1-t)*(1-r*t+r*t*t);
ezplot(t,y1,[0,tk]); drawnow; hold on;
y2=t;
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ezplot(t,y2,[0,tk]); hold off;
axis([0.5 1 0.3 1]);

8. Fingenbaum tree.
function tree
END=500
hold on
for i=1:END,
r = 1 + i*(3/END); a = 0.5;
for j=1:100,
a = r*a*(1-a);
end
for j=1:100,
a = r*a*(1-a);
plot(r,a);
end;
end;
hold off

9. Phase portrait for linear systems of two ODEs.
function linear1
tspan=[0,5];
options=odeset(’OutputFcn’,@odephas2);
sol=ode23(@f,tspan,[0.5,1],options);
axis([-1 1 -1 1]);
hold on;
sol=ode23(@f,tspan,[2 1],options);
hold on;
sol=ode23(@f,tspan,[-0.5 -1],options);
hold on;
sol=ode23(@f,tspan,[0 1],options);
hold on;
sol=ode23(@f,tspan,[-2 0],options);
hold on;
sol=ode23(@f,tspan,[0 -1],options);
hold on;
sol=ode23(@f,tspan,[2 0],options);
hold on;
sol=ode23(@f,tspan,[-0.5 1],options);
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hold on;
sol=ode23(@f,tspan,[0.5 -1],options);
hold on;
sol=ode23(@f,tspan,[-2,1],options);
hold on;
sol=ode23(@f,tspan,[-2,-1],options);
hold on;
sol=ode23(@f,tspan,[2,-1],options);
hold off;
function yp=f(t,y)
a=1; b=3; c=0.1; d=0.1;
yp=zeros(2,1);
yp(1)=-a*y(1);
yp(2)=-b*y(2);

10. Lotka-Volterra model.
function LV
tspan=[0,60];
options=odeset(’AbsTol’,1e-10,’RelTol’,1e-7);
sol=ode23(@f,tspan,[2 0.3],options);
plot(sol.x,sol.y);
axis([0 60 -0.5 4]);
hold on;
sol=ode23(@f,tspan,[2 0.1],options);
plot(sol.x,sol.y);
hold off;
function yp=f(t,y)
a=2; b=0.3; r=0.1; s=1;
yp=zeros(2,1);
yp(1)=r*y(1)-a*y(1)*y(2);
yp(2)=-s*y(2)+a*b*y(1)*y(2);

11. Lorenz attractor.
function Lorenz
tspan=[0,20];
options=odeset(’OutputFcn’,@odephas3);
sol=ode23(@f,tspan,[0 8 27],options);
function yp=f(t,y)
s=10; r=28; b=8/3;
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yp=zeros(3,1);
yp(1)=s*(y(2)-y(1));
yp(2)=r*y(1)-y(2)-y(1)*y(3);
yp(3)=-b*y(3)+y(1)*y(2);

12. Mikhailov hodographs.
function mikhailow
t=sym(’t’);
a=3; tau=5; tk=10;
x=a*cos(tau*t);
y=t-a*sin(tau*t);
ezplot(x,y,[0,tk])
axis([-10 10 -5 tk]);
13. Solutions to delay logistic equation.
function log1
tau=0.7;
tk=10;
tspan=[0,tk];
options=ddeset(’AbsTol’,1e-12,’RelTol’,1e-7);
sol=dde23(@f,tau,@history,tspan,options);
t=linspace(0,tk,10*tk);
y=ddeval(sol,t);
plot(t,y)
function yp=f(t,y,ytau)
r=4; K=2;
yp=r*ytau*(1-ytau/K);
function y=history(t)
y=1.2;
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