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ABSTRACT
Centrality measures are among the most fundamental tools for

social network analysis. Since network data is often incomplete,

erroneous, or otherwise manipulated, increasing attention has re-

cently been paid to studying the sensitivity of centrality measures

to such distortions. However, thus far no universal method of quan-

tifying the manipulability of centrality measures has been proposed.

To bridge this gap in the literature, we take an axiomatic approach.

In particular, we introduce a set of intuitive axioms that character-

ize such a measure, and prove that there exists only one solution

that satisfies them. Next, building upon this measure, we quantify

the manipulability of the most fundamental centrality measures.
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1 INTRODUCTION
Centrality measures—methods for evaluating the nodes’ relative po-

sitions and roles in the network—are among the most fundamental

tools in social network analysis [25]. One of the issues that attracted

attention in the literature is the sensitivity of centrality measures

[8, 13]. This interest is driven by the fact that real-life data about

the links in a network are often incomplete, erroneous, or other-

wise distorted [17]. There are various reasons behind this, many of

which are unintentional, such as the under-reporting of network re-

lationships [28] (e.g., there are many real-life relationships that are

not declared on Facebook) or the errors made by informants while

asked about their ties [15]. The studies that evaluate the effects

of such random distortions typically assume that only a certain
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percentage of the (randomly selected) links are known [6, 16, 19, 21]

or there is a noise affecting the weights of the edges [26], and the

analysis focuses on how the centrality-based ranking in such an

incomplete or noisy network differs from the true one.

However, the sensitivity analysis based on random distortions is

inadequate in situations where changes to the network do not occur

by chance but rather as a a result of informed, rational decisions,

i.e., due to manipulation. Since a straightforward modus operandi is
to create fake accounts and/or add fake connections to boost the im-

portance of certain network members and/or diminish others, vari-

ous forms and magnitudes of manipulation are common in social

networks [7, 12]. As a result, the interest in understanding how cen-

trality measures can be manipulated has been recently growing in

the literature. In particular, Crescenzi et al. [9] studied the problem

of maximising Closeness centrality of a node by creating a limited

amount of new edges incident to it. Analogous problems were also

considered for Betweenness centrality [4], eccentricity [10, 23], and

page-rank centralities [1, 22]. Also, Waniek et al. [30, 31] studied
how an “evader” node could rewire a given number of edges in

order to decrease her centrality.

Since in most cases considered in the above literature obtaining

an optimal solution turned out to be intractable, a typical approach

was to develop a heuristic as opposed to an exact algorithm. The

manipulability of a given centrality was then studied by compar-

ing the ranking of nodes before and after applying the heuristic.

Hence, manipulability was assessed in the context of a particular

heuristic and a particular centrality measure, which often precluded

comparison of the manipulability of different measures.

In this paper, we take a more general approach, where we pose

the question about the theoretical underpinnings behind quantifying
the manipulability of centrality measures. To answer this question,

we take an axiomatic approach and formulate the problem charac-

terized by a network, an evader node, a centrality measure and a

set of allowed actions. We then introduce seven axioms that we

believe are reasonable requirements for a measure of manipulability.

We then prove that there exists only a single measure that satis-

fies all of them. We call it the Average Minimal Actions Required

(AMAR) measure as it is equal to the inverse of the minimum num-

ber of actions that must be taken to manipulate the position of the
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evader node in the ranking averaged over all networks. We then use

AMAR to experimentally quantify the manipulability of the four

most popular centrality measures—Degree, Closeness, Betweenness

and Eigenvector.

2 PRELIMINARIES
Graphs:We consider simple, undirected graphs. Every such a graph

is a pair, G = (V , E), where V is the set of nodes and E (or E[G]) is
the set of edges, i.e.: E ⊆ {e ⊆ V : |e | = 2}. By GV we denote the

set of all possible graphs with nodes V . The set of neighbours of a
node, v ∈ V , consists of all nodes connected to v via an edge, i.e.,

NG (v) =
{
u : {u,v} ∈ E[G]

}
.

A path is defined as a sequence of pairwise distinct nodes, p =
(v1, . . . ,vk ), such that each pair of consecutive nodes is connected

by an edge, i.e., {vi ,vi+1} ∈ E[G] for every i ∈ {1, . . . ,k − 1}. The

length of a path is the number of nodes that form it minus 1. For two

nodes, u,v ∈ V , the distance between them, distG (u,v) is defined
as the minimal length of a path that starts in one of them and end

in the other, or infinity if there is no such path. By ΠG (u,v) we
denote the set of all shortest paths between nodes u and v .

Centrality measures: Centrality measure, F : GV → RV
≥0
, is

a function that for a given graph returns real nonnegative values

reflecting the importance of the graph’s nodes. In this paper, we

consider four fundamental centrality measures:

• Degree centrality [27] counts the number of the node’s neigh-

bours: Dv (G) = |NG (v)|,
• Closeness centrality [3] is the inverse of the sum of distances

to all of the other nodes:

Cv (G) =
1∑

u ∈V \{v } distG (u,v)
,

• Betweenness centrality [14] measures the fraction of the short-

est paths that traverse a node:

Bv (G) =
∑

u ,w ∈V \{v }

|{p ∈ ΠG (u,w) : v ∈ p}|

|ΠG (u,w)|
,

• Eigeinvector centrality [5] relies on the assumption that the

centrality of a node is proportional to the sum of the central-

itites of its neighbours, i.e., it is a solution to the recursive

formula: Ev (G) =
1

λ
∑
u ∈NG (v) Eu (G).

For a centrality measure, F , we consider a ranking of a node,

v ∈ V , that results from F and denote it by r Fv (G).
Network models: To better understand the properties of net-

works, number of probabilistic models of networks have been pro-

posed in the literature [2, 11, 32]. Such a network model can be

understood as a discrete probability distribution, G, over a space

of all possible graphs GV . Hence, in the remainder of the paper, by

G we will usually denote a random variable that is a graph drawn

from G. Specific graphs, e.g., realisations of this random variable,

will be denoted by G with lower indices, e.g., G0.

For two graph distributions G and G′
and two constants x,y ≥ 0

such that x +y = 1 we can take a convex combination of two graph

distributions xG + yG′
, such that for every G0 ∈ GV we have

PxG+yG′(G = G0) = xPG(G = G0) + yPG′(G = G0).

3 PROBLEM OF MANIPULABILITY
We study the difficulty with which a node—the evader—can affect

its centrality in the network by manipulating the network structure.

The goal of the evader can be either hiding, i.e., decreasing its

centrality ranking, or exposing—increasing its ranking. For the

clarity of the presentation throughout the paper we will focus on

the case of hiding, however all of our results can be easily extended

to the case of exposing.

To study the problem of manipulability, we need additional ter-

minology: action, impact set and measure of manipulability. By an

action we will understand a possible change to a graph. Such an

action can be either adding a new edge to a graph or removing an

existing one. In both cases, for a graph G = (V , E) we will denote
an action as a 2-element subset of V (just like we denote an edge).

We will denote by a(G) the result of performing action a, i.e.,

a(V , E) =

{(
V , E \ a

)
if a ∈ E,(

V , E ∪ a
)

if a < E.

Since performing actions is commutative, for a set of actions S =
{a1, . . . ,ak } we will denote by S(G) the result of performing all of

the actions in S , i.e., S(G) = a1(. . . (ak (G)) . . . ).
In the literature different sets of possible actions are studied, e.g.,

Crescenzi et al. [9] considered adding new edges to a specific node

and Waniek et al. [31] studied removing edges of a node and adding

edges between its neighbours. In this paper, we do not constrain

ourselves to one particular set of possible actions. Instead, we allow

for any arbitrary rule that characterise which actions are permitted

in which graph. This approach makes our findings relevant to wider

range of applications and allows for numerical comparison between

evaders with different possibilities.

To this end, we define an action function,A : GV→2
{a⊆V : |a |=2},

that for a given graph returns the set of possible actions that the

evader can use. Here are a few examples of such action functions:

• A0(G) = {a ⊆ V : |a | = 2} indicates that each edge can be

removed or added in every graph;

• A1(G) = {a ∈ E[G] : v ∈ a} indicates that in each graph

existing edges of the evader can be removed;

• A2(G) = {a ⊆ Nv (G) : |a | = 2 ∧ a < E[G]} indicates that
edges can be added between the neighbours of node v .

For an arbitrary action function A and action a, by A − a we will

denote the action function given by A − a(G) = A(G) \ {a}.
Now, for a specified network G0 ∈ GV , evader v ∈ V , centrality

measure F : GV → RV+ , and set of actions A, we will be interested
in sets of actions that hide the evader, i.e., actions that decrease

the ranking of v according to F .1 We formalize this problem in the

following definition.

Definition 3.1. (Impact Set) For a given graph G0, its node v ,
centrality measure F and set of actions A, the impact set is the
collection of all subsets of A that result in a decrease in the ranking

of v when performed. Formally,

I FG0,v (A) = {S ⊆ A : r Fv (G0) > r Fv (S(G0))}.

1
Similarly, we could also consider exposing oneself in the network instead of hiding,

i.e., the sets of action that increase the ranking of v . Another possibility is to consider

decreasing (or increasing) the ranking of v by some fixed threshold.
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Figure 1: World Trade Center 9/11 terrorist network [18].
Node 3 (which represents the terrorist Nawaf Alhazmi) has
to remove two of its edges (e.g., {3, 14} and {3, 19}) to de-
crease its ranking according to Degree centrality. On the
other hand, by removing just one edge (e.g., {3, 6}) it can de-
crease its ranking according to Closeness centrality.

Example 3.2. Let us consider the World Trade Center 9/11 terror-

ist network [18], which is illustrated in Figure 1, and let us denote

it by GT . Here, Degree centrality of node 3 (which represents the

terrorist Nawaf Alhazmi) is equal to 7 and its Closeness centrality

is equal to 1/35. Therefore, it is ranked as first according to both

centrality measures. Let us consider the set of possible actions that

allows for removing edges of node 3, i.e., A1 = {a ∈ E[GT ] : 3 ∈ a}.
For Degree centrality, node 3must remove at least 2 of its edges in

order to decrease its centrality below Degree centrality of the next

node in the ranking—node 11 (which representsMarwanAl-Shehhi).

Hence, the impact set for graph GT , node 3, Degree centrality, and
set of actions A1 will be equal to the collection of all sets of at least

two edges incident with node 3 or, in other words, subsets of A1

with at least two elements, i.e., IDGT ,3
(A1) = {S ⊆ A1 : |S | ≥ 2}.

For Closeness centrality, it turns out that removing only one

edge from {3, 4}, {3, 5}, {3, 6}, and {3, 14} is enough to decrease

the ranking of node 3, however after removing edges {3, 14} and

{3, 19} it is still ranked as first. Hence, the impact set consists

of all possible subsets of allowed actions except for empty set,

single edge {3, 14}, edge {3, 19}, and both edges combined, i.e.,

ICGT ,3
(A1) =

{
S ⊆ A1

}
\
{
∅, {{3, 14}}, {{3, 19}}, {{3, 14}, {3, 19}}

}
.

Finally, to assess the easiness with which the evader can hide

herself, we introduce the concept of a measure of manipulability.

Definition 3.3. A measure of manipulability is a function,M , that

for a every graph distributionG on spaceGV , nodev ∈ V , centrality

measure F , and action function A returns a real value from the

interval [0, 1].

The value returned by such a measure represents the manipula-

bility of the centrality measure given a network model with one

node designated as an evader and an action function. The greater

the value, the easier it is for the evader to hide herself in this net-

work.

4 AXIOMS FOR A MEASURE OF
MANIPULABILITY

Definition 3.3 of a measure of manipulability is very broad. To

focus on more desirable measures of manipulability, we propose

properties, i.e., axioms, that a measure of manipulability should

satisfy.

The first such an axiom, Unmanipulability, states that if it is
certain that no combination of actions will hide an evader, then the

manipulability is zero.

Unmanipulability: For every graph distribution G

on space GV , node v ∈ V , centrality measure F , and
action function A, if P

(
I FG ,v (A(G)) = ∅

)
= 1, then

M(G,v, F ,A) = 0.

Conversely, the second axiom, Full Manipulability, states that in
the case, when it is sure to hide by any nonempty set of possible

actions, the manipulability is equal to 1.

Full Manipulability: For every graph distribution G

on space GV , node v ∈ V , centrality measure F , and
action function A, if

P
(
I FG ,v (A) = {S ⊆ A(G) : S , ∅}

)
= 1,

thenM(G,v, F ,A) = 1.

Now, consider a scenario in which one centrality measure and

action function are dominated by the other, i.e., whenever certain

set of actions hides the evader under one measure it hides the

evader also under the other measure. Our next axiom, Weak Domi-
nance, states that in such a case the manipulability of the ‘dominant’

centrality measure and action function is greater or equal to the

manipulability of the ‘dominated’ ones.

Weak Dominance: For every graph distribution G on
space GV , node v ∈ V , centrality measures F and F ′,
and action functions A and A ′, if

P
(
I FG ,v (A) ⊆ I F

′

G ,v (A
′)
)
= 1,

thenM(G,v, F ,A) ≤ M(G,v, F ′,A ′).

Our next axiom, Neutrality, states that a measure of manipula-

bility should not unreasonably prefer one graph, node or centrality

measure over the other. Hence, if we exchange graph or node or

centrality measure, but the sets of action that hides the evader are

still exactly the same, the manipulability is the same as well.

Neutrality: For every node v ∈ V , bijections f : V →

V and д : GV → GV centrality measures F and F ′,
and action function A if

I FG ,v (A) = I F
′

д(G),f (v)(A) for every G ∈ GV

then M(G,v, F ,A) = M(G′, f (v), F ′,A), for every
graph distributions G and G′ on space GV such that
PG(G = д(G0)) = PG′(G = G0) for every G0 ∈ GV .

The next axiom considers an action, e.g., a, that is redundant for
hiding an evader, i.e., whenever some set of actions that includes

a hides an evader, the same set without a or with another action

instead of a still hides the evader. This property can be formalised

in the following definition.

Definition 4.1. For graph G0 ∈ GV , node v ∈ V , centrality mea-

sure F and set of actionsA, we say that action a ∈ A is redundant, if
for every subset of actions S ⊆ A that hides nodev , i.e., S ∈ I FG ,v (A),

the fact that a ∈ S implies that either S \ {a} ∈ I FG ,v (A) or there

exist another action a′ ∈ A \ S such that S \ {a} ∪ {a′} ∈ I FG ,v (A).
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Now, the axiom Redundant Action states that if a particular action
is always redundant, then excluding it from action function does

not affect the manipulability. This property is important if we think

about strategic manipulation: For the evader that can purposefully

choose its hiding strategy redundant actions are irrelevant.

Redundant Action: For every graph distribution G

on space GV , node v ∈ V , centrality measures F , and
action function A, if there exist an action such that
P(a ∈ A(G)) = 1 and P

(
a is redundant

)
= 1, then

M(G,v, F ,A) = M(G,v, F ,A − a).

Our next axiom, Linearity, states that manipulability over the

combination of two network models is a combination of manipula-

bilities over these network models.

Linearity: For every two graph distributions G and
G′ on space GV , node v ∈ V , centrality measure F ,
action functionA, and two constants x,y > 0 such that
x + y = 1 it holds that

M(xG + yG′,v, F ,A) = xM(G,v, F ,A) + yM(G′,v, F ,A).

Our first six axioms, i.e., Unmanipulability, Full Manipulability,

Weak Dominance, Neutrality, Redundant Action, and Linearity

characterise a family of measures of manipulability that depend

solely on minimal number of actions required to hide the evader

(see Theorem 5.4). Adding our last axiom, Normalisation, uniquely
characterise Average Minimal Action Required (AMAR) measure

of manipulability (see Theorem 5.7).

Normalisation: For every constantk ∈ {1, . . . , (|V |2−

|V |)/2}, there exist graph distribution G on space GV ,
node v ∈ V , centrality measure F , and action function
A such that |A(G0)| ≥ k for every G0 ∈ GV ,

P(I FG ,v (A(G)) = {S ⊆ A(G) : |S | = k}) = 1

andM(GV ,v, F ,A) = 1/k .

5 THE AMAR MEASURE OF
MANIPULABILITY

In this section we introduce a measure of manipulability that sat-

isfies all of our axioms. We will call it Average Minimal Actions
Required (AMAR) and define it as the average inverse of the min-

imal number of actions required to hide the evader. The cases in

which it is impossible to hide the evader are counted as 0.

To formally define Average Minimal Actions Required let us be-

gin with the definition of Minimal Actions Required (MAR), which

for each graph, a node, a centrality measure and a set of actions

returns a value between 0 and 1 that represent the easiness of

manipulation in this particular setting.

Definition 5.1. Let Minimal Actions Required (MAR) be defined
by the formula:

MAR(G,v, F ,A) =


0 if I FG ,v (A) = ∅,

1

minS∈I FG ,v (A |S | otherwise.
(1)

Example 5.2. Recall example 3.2 with 9/11 terrorist network,GT ,
depicted on Figure 1 and set of possible actions that allowed for

removing edges incident with node 3, i.e.,A1 = {a ∈ E[GT ] : v ∈ a}.

In order to hide itself, node 3 must remove at least 2 of its edges,

to decrease its ranking according to Degree centrality, i.e., IDGT ,3
=

{S ⊆ A1 : |S | ≥ 2}. Hence, the MAR measure of manipulability is

equal toMAR(GT , 3,D,A1) = 1/2.

For Closeness centrality, it is possible that node 3 hides itself by

removing just one edge, e.g., {3, 6}. Hence,MAR(GT , 3,C,A1) = 1.

Building uponMinimal Actions Required function, we can define

Average Minimal Actions Required (AMAR) measure of mainpula-

bility.

Definition 5.3. Let Average Minimal Actions Required (AMAR) be
a measure of manipulability defined by the formula:

AMAR(G,v, F ,A) = EG
(
MAR(G,v, F ,A(G))

)
. (2)

In Theorem 5.7 we will prove that AMAR measrue of manipula-

bility is the unique measure of manipulability that satisfies all of

our axioms. However, we begin with the analysis of our first six ax-

ioms, i.e., Unmanipulability, Full Manipulability, Weak Dominance,

Neutrality, Redundant Action, and Linearity, and prove that the

measure of manipulability that satisfies them depends solely on the

minimal number of required actions in each graph, i.e., MAR.

Theorem 5.4. Ameasure of manipulability,M , satisfies Unmanip-
ulability, Full Manipulability, Weak Dominance, Neutrality, Redun-
dant Action, and Linearity if and only if there exists a nondecreasing
function, f : [0, 1] → [0, 1], such that f (0) = 0, f (1) = 1, and

M(G,v, F ,A) = EG
(
f
(
MAR(G,v, F ,A(G))

) )
(3)

for every graph distribution G on space GV , node v ∈ V , centrality
measure F and action set A.

Proof. It is easy to check that the measure of manipulabil-

ity defined by the equation (3) for a nondecreasing function, f :

[0, 1] → [0, 1], such that f (0) = 0, f (1) = 1 satisfies Unmanip-

ulability, Full Manipulability, Weak Dominance, Neutrality, Re-

dundant Action, and Linearity. Therefore, in the proof we will

focus on showing that the measure of manipulability that satis-

fies these axioms imply that there exists a nondecreasing func-

tion, f : [0, 1] → [0, 1], such that f (0) = 0, f (1) = 1 such that

M(G,v, F ,A) = EG
(
f
(
MAR(G,v, F ,A(G))

) )
.

To this end, we will need additional notation: For every graph

G0 ∈ GV , a single graph distribution, denoted by δG0
, is a graph

distribution fixed at graph G0, i.e., such that PδG
0

(G = G0) = 1.

Let us focus on single graph distributions in the following lemma

in which we also assume that all sets with at least k actions hides

the evader.

Lemma 5.5. If a measure of manipulability, M , satisfies Weak
Dominance, Neutrality, and Redundant Action, then there exist a
function f : N→ [0, 1] such that

M(δG0
,v, F ,A) = f (k)

for every graph G0 ∈ GV , node v ∈ V , centrality measure F and
action function A such that

I FG0,v (A(G0)) = {S ⊆ A(G0) : |S | ≥ k} , ∅. (4)

Proof. Fix k ∈ N. We will prove this lemma by showing that

there exists one specificG∗
0
∈ GV , v∗ ∈ V , F ∗ and A∗

such that for
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each G0 ∈ GV , v ∈ V , F and A that satisfies condition (4) it holds

that

M(δG0
,v, F ,A) = M(δG∗

0

,v∗, F ∗,A∗). (5)

But first, for every graph G0 ∈ GV , node v ∈ V and k ∈ N let us

construct an auxiliary centrality measure FG0,v ,k
that is constant

for every node except v for which it changes if there are more than

k changes made to graph G0. Formally, for every graph G ∈ GV

and node u ∈ V let

FG0,v ,k
u (G) =

{
1 if u = v and

��E[G] ⊖ E[G0]
�� ≥ k,

2 otherwise,

where ⊖ is a symmetric difference between sets. In this way, for an

arbitrary set of actions S ⊆ {a ⊆ V : |a | = 2}

r F
G
0
,v ,k

v (S(G0)) =

{
1 if |S | < k,

n if |S | ≥ k .

As a result, every subset of k or more actions (and nothing more)

hides v in G0 according to FG0,v ,k
, i.e., for every set of actions A,

impact set I F
G
0
,v ,k

G0,v
(A) consists of all at least k element subsets of A.

Now, let us denote an action function of all possible actions as

A∗ = {a ⊆ V : |a | = 2}. We will prove that for every F and A

that satisfies condition (4) the manipulability of v inG0 is equal the

manipulability of v in G0 for F
G0,v ,k

and A∗
, i.e.,

M(δG0
,v, F ,A) = M(δG0

,v, FG0,v ,k ,A∗). (6)

To this end, we show thatM(δG0
,v, F ,A) = M(δG0

,v, FG0,v ,k ,A)

and then thatM(δG0
,v, FG0,v ,k ,A) = M(δG0

,v, FG0,v ,k ,A∗).

As stated, for every set of actions A, impact set I F
G
0
,v ,k

G0,v
(A)

consists of all at least k element subsets of A. Therefore, for ac-

tion set A(G0) we have I F
G
0
,v ,k

G0,v
A(G0) = {S ⊆ A(G0) : |S | ≥

k}. Hence, from the fact that F and A satisfy condition 4 we

get I F
G
0
,v ,k

G0,v
A(G0) = I FG0,v

A(G0). Thus, PδG
0

(I F
G
0
,v ,k

G0,v
A(G0) ⊆

I FG0,v
A(G0)) as well as PδG

0

(I F
G
0
,v ,k

G0,v
A(G0) ⊇ I FG0,v

A(G0)). There-

fore, from Weak Dominance we get

M(δG0
,v, F ,A) = M(δG0

,v, FG0,v ,k ,A). (7)

Now, let us prove that the manipulability is still the same if we

exchange A for the action function of all possible actions A∗
, i.e.,

M(δG0
,v, FG0,v ,k ,A) = M(δG0

,v, FG0,v ,k ,A∗). (8)

We will prove this equation by induction on the difference between

number of actions inA∗(G0) andA(G0). If |A
∗(G0)|− |A(G0)| = 0,

then A(G0) must contain all possible actions as well, i.e., A(G0) =

{a ⊆ V : |a | = 2} = A∗(G0). Hence, equation (8) holds.

Now, assume that for somem ∈ N equation (8) holds for all action

functionsA such that |A∗(G0)| − |A(G0)| =m. Let us take an arbi-

trary action functionA such that |A∗(G0)| − |A(G0)| =m+1. Con-
sider an action a that belongs to setA∗(G0), but does not belong to

A(G0), i.e., a ∈ A∗(G0) \A(G0). Also, let us denote action function

A ′
as a functionA with actiona added, i.e.,A ′(G) = A(G)∪{a} for

everyG ∈ GV . With this additional action |A∗(G0)|−|A
′(G0)| =m,

hence from our inductive assumption

M(δG0
,v, FG0,v ,k ,A ′) = M(δG0

,v, FG0,v ,k ,A∗). (9)

On the other hand, consider a set of actions that hides node v ,
i.e., S ∈ I FG0,v

(A ′(G0)), such that a ∈ S . If |S | > k , then from

condition (4) the same set without action a still hides node v , i.e.,
S \ {a} ∈ I FG0,v

(A ′(G0)). If |S | = k , then S does not contain all of

the actions in A ′(G0). Hence, there exists an action a′ ∈ A ′(G0),

a′ < S and from condition (4) set of actions S \ {a} ∪ {a′} hides
node v as well, i.e., S \ {a} ∪ {a′} ∈ I FG0,v

(A ′(G0)). Hence, ac-

tion a is redundant. Since it is sure that G = G0 it holds that

PδG
0

(a is redundant) = 1. Therefore, from Redundant Action

M(δG0
,v, FG0,v ,k ,A) = M(δG0

,v, FG0,v ,k ,A ′). (10)

By combining equations (9) and (10) we obtain equation (8) and

from induction we get that it holds for allA such that |A(G0)| ≥ k .
Finally, from equation (7) and equation (8) we get

M(δG0
,v, F ,A) = M(δG0

,v, FG0,v ,k ,A∗)

for every centrality measure F and action function A such that

I FG0,v
(A(G0)) = {S ⊆ A(G0) : |S | ≥ k} , ∅.

Now, it remains to prove that for some one specific G∗
, v∗ and

F ∗ it holds that M(δG0
,v, FG0,v ,k ,A∗) = M(δG∗ ,v∗, F ∗,A∗). Let

G∗ = (V , ∅),v∗ be a specific node inV and F ∗ = FG∗,v∗,k
. Consider

bijection д : GV → GV such that

д(V , E) = (V , E ⊖ E[G0])

where ⊖ is a symmetric difference. Observe that д(G0) = G
∗
and

E[д(G)] ⊖ E[G0] = E[G] ⊖ E[G0] ⊖ E[G0] = E[G] ⊖ E[G∗] (11)

Moreover, let us consider some bijection h : V → V such that

h(v) = v∗. Then, from equation (11) we obtain that FG0,v ,k
u (д(G)) =

FG
∗,v∗,k

f (u) (G) for every G ∈ GV and u ∈ V . Hence, for any action

function A we get that I F
G
0
,v ,k

G ,v (A(G)) = I F
G∗ ,h(v ),k

G ,h(v) (A(G)) for

every G ∈ GV . Thus, the thesis follows from Neutrality. □

In Lemma 5.5 we focused on single graph distributions and as-

sumed that all sets of k or more actions hide the evader. In the

following lemma we relax the latter assumption.

Lemma 5.6. If a measure of manipulability, M , satisfies Unmanip-
ulability, Full Manipulability, Weak Dominance, Neutrality, and Re-
dundant Action, then there exists nondecreasing function f : [0, 1] →

[0, 1] such that f (0) = 0, f (1) = 1 and

M(δG0
,v, F ,A) = f (MAR(G0,v, F ,A(G0))) (12)

for every G0 ∈ GV , v ∈ V , centrality F and action function A.

Proof. Let us assume that measure of manipulabilityM satisfies

Unmanipulability, Full Manipulability, Weak Dominance, Neutral-

ity and Redundant Action. Fix G0 ∈ GV , node v ∈ V , centrality
measure F and action function A. From Lemma 5.5 we know that

there exists a function, f : [0, 1] → [0, 1], such that for every single

graph distribution, if all sets of k or more action hide the evader,

then the manipulability is equal to f (1/k). Now, we will prove that
for the same function f we have

M(δG0
,v, F ,A) =


0 if I FG0,v

(A(G0)) = ∅,

f
©­« min

S ∈I FG
0
,v (A(G0))

|S |
ª®¬ otherwise.
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If I FG0,v
(A(G0))=∅, from UnmanipulabilityM(δG0

,v, F ,A)=0.

Hence, let us focus on a case in which I FG0,v
(A(G0)) , ∅. By k let

us denote the size of minimal set of actions that hides the evader, i.e.,

let k = minS ∈I FG
0
,v (A(G0))

|S |. Also, by T let us denote one of these

minimal sets, i.e., let T ∈ I FG0,v
(A(G0)) such that |T | = k . Let us

denote also the action function T that for every graph returns setT .
Observe that from Weak Dominance we get thatM(δG0

,v, F ,A) ≥

M(δG0
,v, F ,T). Furthermore, since I FG0,v

(T (G0)) = {T } and |T | =

k , from Lemma 5.5 we get that

M(δG0
,v, F ,A) ≥ f (k). (13)

On the other hand, let us consider once again centrality measure

FG0,v ,k
and action function A∗

from the proof of Lemma 5.5. Let

A∗
be an action function of all possible actions, i.e., A∗(G) = {a ⊆

V : |a | = 2}, and let FG0,v ,k
be a centrality measure depending on

number of changes to graph G0, i.e.,

FG0,v ,k
u (G) =

{
1 if u = v and

��E[G] ⊖ E[G0]
�� ≥ k,

2 otherwise.

In such a case sets of actions hiding v in G0 under F
G0,v ,k

are the

sets of actions that consists of k or more elements. This means

that I F
G
0
,v ,k

G0,v
(A∗(G0)) = {S ⊆ A∗(G0) : |S | ≥ k}. Hence, from

Lemma 5.5 we get that

M(δG0
,v, FG0,v ,k ,A∗) = f (k). (14)

Now, observe that A(G0) ⊆ A∗(G0). Furthermore, for every S ∈

I FG0,v
(A(G0)) we know that |S | ≥ k , hence S ∈ I F

G
0
,v ,k

G0,v
(A∗(G0)).

Thus, I FG0,v
(A(G0)) ⊆ I F

G
0
,v ,k

G0,v
(A∗(G0)) and from Weak Domi-

nance we getM(δG0
,v, F ,A) ≤ M(δG0

,v, FG0,v ,k ,A∗).With equa-

tion (14) this yields

M(δG0
,v, F ,A) ≤ f (k). (15)

Finally, combining inequalities (13) and (15) we get

M(δG0
,v, F ,A) = f (k).

It remains to prove that f (1) = 1 and f is a nondecreasing

function. To see why f (1) = 1, observe that if k = 1 then from

equation (14) we haveM(δG0
,v, FG0,v ,1,A∗) = f (1). On the other

hand, for FG0,v ,1
andA∗

every nonempty set of actions hides node

v , hence from Full Manipulability f (1) = 1.

To see why f is nondecreasing consider centrality measures

FG0,v ,k
and FG0,v ,k+1

and action function A∗
. Observe that

I F
G
0
,v ,k+1

G0,v (A∗(G0)) = {S ⊆ A∗(G0) : |S | ≥ k + 1} ⊂

{S ⊆ A∗(G0) : |S | ≥ k} = I F
G
0
,v ,k

G0,v (A∗(G0)).

Hence, from Weak Dominance it holds that

M(δG0
,v, FG0,v ,k+1,A∗) ≤ M(δG0

,v, FG0,v ,k ,A∗).

Combining it with equation (14) yields f (k+1) ≤ f (k) for arbitrary
k ∈ N. Therefore, f is nonincreasing. □

In Lemmas 5.5 and 5.6 we focused on single graph distributions.

In the remainder of the proof, we will generalise these results to

arbitrary distributions. To this end, we use induction on the number

of different graphs that have non-zero probability of being picked.

Let us consider arbitrary graph distribution G on space GV ,
node v ∈ V , centrality measure F and action function A. If there

exist only one graph G1 ∈ GV such that PG(G ∈ {G1}) = 1, then

G = δG1
and the thesis follows from Lemma 5.6.

Now, let us assume that for somek ∈ N, the thesis holds for every
graph distribution G for which there exist k graphs G1, . . . ,Gk ∈

GV such that PG(G ∈ {G1, . . . ,Gk }) = 1. Let us consider such

graph distribution G for which there exist k+1 graphsG0, . . . ,Gk ∈

GV such that PG(G ∈ {G0, . . . ,Gk }) = 1.We denote the probability

that graph G0 is drawn from distribution G by p0 = PG(G = G0).

Next, consider graph distribution G′
which is distribution G with-

out graph G0. Formally, for every i ∈ {1, . . . ,k} it holds that

PG′(G = Gi ) =
PG(G = Gi )

1 − p0
.

Observe that G is a convex combination of G′
and δG0

, i.e., G =

(1 − p0)G
′ + p0δG0

. Hence, from Linearity

M(G,v, F ,A) = (1 − p0)M(G′,v, F ,A) + p0M(δG0
,v, F ,A). (16)

Observe that PG′(G ∈ {G1, . . . ,Gk }) = 1. Hence, from inductive

assumption we obtain

M(G′,v, F ,A) = EG′ (f (MAR(G,v, F ,A(G)))) . (17)

On the other hand, from Lemma 5.6 we get

M(δG0
,v, F ,A) = EδG

0

(f (MAR(G,v, F ,A(G)))) . (18)

Combining equations (16), (17) and (18) yields M(G,v, F ,A) =

EG (f (MAR(G,v, F ,A))) . Thus, the thesis follows from induction

and the fact that for each set of nodes V space GV is finite. □

Theorem 5.7. If a measure of manipulability, M , satisfies Un-
manipulability, Full Manipulability, Weak Dominance, Neutrality,
Redundant Action, Linearity and Normalisation, then for every graph
distribution G on space GV , node v ∈ V , centrality measure F and
action function A it holds thatM(G,v, F ,A) = AMAR(G,v, F ,A).

Proof. It is easy to check that AMAR satisfies Normalisation

and it satisfies the remaining axioms from Theorem 5.4.

From Normalisation we know that for every k ∈ {1, . . . , (|V |2 −

|V |)/2} there exist graph distribution G on space GV , node v ∈ V ,

centrality measure F and action function A such that |A(G0)| ≥ k
for every G0 ∈ GV , P(I FG ,v (A(G)) = {S ⊆ A(G) : |S | = k}) = 1

andM(G,v, F ,A) = 1/k . From Theorem 5.4 we know that

M(G,v, F ,A) = E(f (MAR(G,v, F ,A))) = f (1/k).

Hence, for all k ∈ {1, . . . , (|V |2−|V |)/2} we have that f (1/k) = 1/k .
Since these are all possible positive values of MAR, this concludes

the thesis. □

We note again that all of the technical results hold also if we

consider the problem of exposing oneself in the network instead of

hiding for identically defined AMAR measure.

6 EMPIRICAL ANALYSIS
Having developed a measure of manipulability, we will now use

it to quantify the manipulability of various centrality measures

and network models. In our experiments, we consider networks

generated using six network models:
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• Random graphs, generated using the Erdős-Rényi model [11].

In our experiments we set the expected average degree in a

network to be 4.

• Small-world networks, generated using the Watts-Strogatz

model [32]. In our experiments we set the expected average

degree to be 4 and the rewiring probability to be
1

4
.

• Preferential attachment networks, generated using the Ba-

rabási-Albert model [2]. In our experiments we add 2 edges

with each new node, and we set the size of the initial clique

to 2.

• Random trees generated using Prüfer sequences [24]. In our

experiments we use sequences where each element is chosen

uniformly at random from set 1, . . . ,n.
• Scale-free networks generated using the configuration model

[20]. In our experiments we assume the minimal degree to be

2, the maximal degree to be 6, and the configuration model

parameter to be 3.

• Cellular networks are meant to reflect the structure of the

covert organizations [29]. In our experiments we set the

mean cell size to 6, cell density to 0.9, the density of con-

nections between the leaders to 0.2, and the triad closure

probability to 0.18.

For a given network, the evader is chosen as the node with the

highest average ranking according to all four considered centrality

measures. We then consider one of the following sets of action

available to the evader:

• A1:All changes—the evader is allowed to perform any change

in the network, i.e., A1(G) = {a ⊆ V : |a | = 2};

• A2: Remove neighbors—the evader v is only allowed to re-

move edges between herself and her neighbors, i.e.,A2(G) =
{a ∈ E[G] : v ∈ a};

• A3: Add between neighbors—the evader v is only allowed

to add edges between her neighbors, i.e., A3(G) = {a ⊆

NG (v) : |a | = 2 ∧ a < E[G]};
• A4: Local changes—the evader v is allowed to remove edges

between herself and her neighbors, as well as to add and

remove edges between her neighbors, i.e., A4(G) = {a ∈

E[G] : v ∈ a} ∪ {a ⊆ NG (v) : |a | = 2}.

In our experiments, we generate networks where the number

of nodes is between 8 and 50 for the Remove neighbors actions
function, and between 8 and 20 for all other action functions (These

functions typically result in much larger sets, thus it is much more

computationally demanding to process the many subsets of those

actions. This is also the reason why it is not feasible to calculate

AMAR for larger networks). For a given network, evader, and set of

actions, we compute the value of the MAR measure as follows. First,

we consider all possible actions and check whether performing any

of them decreases the ranking of the evader according to any of the

centrality measures. Now, if there is at least one centrality measure

for which we did not manage to decrease the ranking of the evader,

then we consider all subsets consisting of two actions; if these also

do not decrease the evader’s ranking according to that centrality

measure, then we consider all subsets consisting of three actions,

and so on and so forth. We continue this process until eventually,

for each centrality measure, we find a set of actions that decrease

the ranking of the evader, or until we exhaust all subsets of five

actions (due to implementation issues, if there exists no subset

of five actions that decreases the evader’s ranking according to a

particular centrality measure, then MAR is assumed to return a

value of zero for that centrality measure). We repeat the experiment

400 times for each combination of: network size, network model,

and set of actions.

The results of our experiments are presented in Figure 2. In the

majority of the scenarios, Degree centrality is significantly harder

to manipulate than other centrality measures. The possible reason

behind this phenomenon is that for Degree centrality, in order to

change the position in the ranking between two nodes, one has to

add/remove the number of edges equal to the difference in the de-

grees of these nodes. For other centrality measures it often suffices

to add/remove only the most impactful edges (see Example 3.2).

In case of the action function that allows only for adding edges

between the neighbours, A3, in some scenarios, Eigeinvector cen-

trality turns out to be the hardest to manipulate. In these scenarios,

in order to hide itself the evader usually has to increase the cen-

trality of one of its neighbours, so that it becomes greater then the

centrality of the evader. This is especially hard in case of Eigeinvec-

tor centrality, since centrality of a node depends on the centrality

of its neighbours.

As can be seen, for the networks generated using the Erdős-

Rényi, Watts-Strogatz and configuration models, as well as Prüfer

trees and cellular networks, the value of manipulability remains

at about the same level for all investigated network sizes. Further-

more, in most cases this value is between 0.8 and 1, indicating that

centrality measures in these types of networks can be manipulated

relatively easily (in fact, in the majority of our experiments, it takes

only a single action to change the evader’s ranking). In contrast, for

the networks generated using the Barabási-Albert model, the value

of the manipulability measure decreases with the number of nodes,

indicating that it is more challenging for hubs to hide in larger scale

free networks. Moreover, on average the value of manipulability in

the Barabási-Albert networks of a given size is in most cases lower

than in networks of the same size generated using the other five

models, suggesting that the centrality measures are more difficult

to manipulate in networks with scale-free properties.

7 CONCLUSIONS
Centrality measures are among the most widely-used tools for

social network analysis. A growing body of work focuses on un-

derstanding the susceptibility of such measures to manipulation

by individuals who strategically rewire the network to their advan-

tage, in the hope of misleading the centrality analysis. In this paper,

we formalized the problem of quantifying the manipulability of

centrality measures. We proposed a set of intuitive and seemingly-

desirable axioms for such a measure. Based on this, we defined a

measure that is uniquely characterized by our axioms. Finally, using

our measure, we evaluated the manipulability of various centrality

measures under different network models.

Ideas for future work include developing axiomatization of the

manipulability of other kinds of social network analysis tools,
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Figure 2: Results of our experiments with the AMAR measure of manipulability in randomly generated networks. Each row
contains results for different network generationmodel, while each column contains results for different set of actions. Values
represent AMAR manipulability measure estimated using 400 networks. Colored areas represent 95% confidence intervals.

e.g., link prediction algorithms and community detection algo-

rithms. Another potential venue for extending our work is to inves-

tigate more sophisticated types of centrality measures (e.g., game-

theoretic centrality measures) to determine whether they are less

prone to manipulation than the four centrality measures considered

in this paper.
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