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Abstract
Edge centrality measures are functions that evaluate the im-
portance of edges in a network. They can be used to assess
the role of a backlink for the popularity of a website as well
as the importance of a flight in virus spreading. Various node
centralities have been translated to apply for edges, including
Edge Betweenness, Eigenedge (edge version of Eigenvector
centrality), and Edge PageRank. With this paper, we initiate
the discussion on the axiomatic properties of edge centrality
measures. We do it by proposing an axiomatic characteriza-
tion of Edge PageRank. Our characterization is the first char-
acterization of any edge centrality measure in the literature.

Introduction
Centrality measures that evaluate the importance of nodes
and edges in a network constitute one of the fundamental
tools of network analysis (Brandes and Erlebach 2005; Jack-
son 2005). In complex networks that describe the surround-
ing world, they enable us to indicate the most significant
genes (Özgür et al. 2008), key terrorists (Krebs 2002) and
important pages in the World Wide Web (Page et al. 1999).

Historically, centrality analysis was developed in social
networks literature. Hence, the vast majority of work con-
centrates on nodes which represent people in such networks.
However, in many types of networks, edges represent en-
tities that we want to assess. In particular, edge evaluation
may indicate which backlink to our website is the most
profitable in Search Engine Optimization (Ledford 2015)
or which flight should be canceled in order to delay virus
spreading (Marcelino and Kaiser 2012). Edge centralities
have also been used to identify edges that connect different
communities in clustering algorithms (Newman 2004).

Various node centralities have been translated to apply
for edges, including Edge Betweenness (Girvan and New-
man 2002), Eigenedge (edge version of Eigenvector central-
ity) (Huang and Huang 2019), and Edge PageRank (Chapela
et al. 2015). However, other measures not related to any node
concepts have also been proposed in the literature, such as
Spanning Edge Betweenness defined as the fraction of span-
ning trees that contain a specific edge (Teixeira et al. 2013).

Multiplicity of centrality measures constitute a problem of
its own, as it is becoming harder to choose one measure for a
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specific application. In result, more than often a measure to
use is selected based on its intuitive understanding or popu-
larity rather than its suitability and desirable features. That
is why, in recent years, efforts at organizing the space of
centrality measures intensified (Schoch and Brandes 2015;
Bloch, Jackson, and Tebaldi 2016).

The axiomatic approach is one of the most convenient
methods for this goal as it highlights similarities and dif-
ferences between various concepts. In this approach, sim-
ple and desirable properties are identified that capture spe-
cific features of centrality measures. Choosing a carefully
designed set of axioms allows to create a unique character-
ization of the measure that is more intuitive and easier to
relate to the considered application.

To date, plenty of node centrality measures have been ax-
iomatized (Boldi and Vigna 2014). Notably, much research
focused on feedback centralities (Altman and Tennen-
holtz 2005; Dequiedt and Zenou 2014), although distance-
based centralities (Garg 2009) and game-theoretic central-
ities (Skibski et al. 2019) have also received considerable
attention. However, to the best of our knowledge, so far no
paper has considered edge centrality measures.

With this paper, we initiate the discussion on the ax-
iomatic properties of edge centrality measures. We do it by
proposing an axiomatic characterization of Edge PageRank.
Edge PageRank, analogically to standard PageRank, can be
defined as the unique solution to the system of recursive
equations that ties centralities of incident edges. Our charac-
terization is the first characterization of any edge centrality.

We base our work on a recent characterization of (node)
PageRank (Wąs and Skibski 2020) and ask: is it possible to
adapt such a characterization of the node centrality for the
edge centrality measure? We answer positively to this ques-
tion. Specifically, we define six axioms that correspond to
axioms proposed for PageRank and show that Edge Page-
Rank is the only measure that satisfies all of them.

The main technical challenge comes from the fact that
edge centrality measures consider pairs of nodes, which adds
a new dimension to the complexity of the problem. In result,
analyzing edge centralities cannot be reduced to the analysis
of node centralities. We discuss this on the example of line
graph approach. Moreover, this means that also the expres-
sive power of axioms can vary. For these reasons, our proof
is essentially different from the proof for (node) PageRank.
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Preliminaries
In this paper, we consider directed multigraphs with node
weights and possible self-loops. Since the emphasis of our
work is on edges, not nodes, we need a model of a multi-
graph in which every edge is a separate entity. To this end,
in our model each edge has its own label and an additional
function specifies the start and the end of this edge. See Fig-
ure 1 for an illustration. In this way, we do not assume that
all edges between the same pair of nodes are equally impor-
tant which could lead to other undesirable (or unexpected)
implications.1

Formally, we define a graph as a tuple G = (V,E, φ, b),
where V is a set of nodes,E is a set of edges, φ : E → V×V
is an incidence function mapping every edge to an ordered
pair of nodes, and b : V → R≥0 is a node weight function.

For an edge e ∈ E with φ(e) = (u, v), we denote the start
u and the end v by φ1(e) and φ2(e), respectively. This edge
is an outgoing edge for u and an incoming edge for v.

For node v, the set of all incoming (outgoing) edges is
denoted by E−v (G) (E+

v (G)). The sizes of these sets are
called in-degree and out-degree of node v, i.e., deg−v (G) =
|E−v (G)| and deg+v (G) = |E+

v (G)|. The set of all incident
edges, both incoming and outgoing, is denoted by E±v (G).

Two nodes u and v are called out-twins if there exists a bi-
jection ψ : E+

u (G) → E+
v (G) such that φ2(e) = φ2(ψ(e))

for every e ∈ E+
u (G).

A node v is a sink if it has no outgoing edges:E+
v (G) = ∅.

If it does not have incoming edges as well, i.e., E±v (G) = ∅,
then it is an isolated node. If v has no incoming, but one
outgoing edge, i.e., E±v (G) = {e}, then this edge is called a
source edge. If a source edge e is the only edge incident to
its end, i.e., φ(e) = (v, u) and E±u (G) = {e}, then we say
it is an isolated edge.

A path from u to v is a sequence of edges e1, . . . , ek such
that φ1(e1) = u, φ2(ek) = v and φ2(ei) = φ1(ei+1) for
every i ∈ {1, . . . , k − 1}. If there exists a path from u to v,
then v is called a successor of u. The set of all successors of
u is denoted by Su(G).

Consider an arbitrary function f : A → X . We will use
the following shorthand function notation. For a ∈ A and
x ∈ X we denote by f [a → x] the function obtained by
replacing the value of a with x:

f [a→ x](c) =

{
x if a = c,

f(c) otherwise.

Also, for B ⊆ A, we denote the function f restricted to B
by f |B : B → X . For a second function f ′ : A′ → X with
A ∩ A′ = ∅, we define function (f + f ′) : A ∪ A′ → X as
follows: (f + f ′)(c) = f(c) for c ∈ A and (f + f ′)(c) =
f ′(c) for c ∈ A′.

The sum of two disjoint graphsG = (V,E, φ, b) andG′ =
(V ′, E′, φ′, b′) with V ∩ V ′ = ∅ and E ∩ E′ = ∅ is defined
as G+G′ = (V ∪ V ′, E ∪ E′, φ+ φ′, b+ b′).

1To give an example, if we consider unlabeled edges and know
that changing the end of edge e5 from v2 to v1 in the graph from
Figure 1 does not affect centrality of any edge, then we get that
edges e4, e5, and e6 all have equal centralities.

v1 v2

v3v4

e1

e2

e3e4

e5 e6

e7

e8

Figure 1: An example graph G = (V,E, φ, b) with nodes
v1, . . . , v4 and edges e1, . . . , e8. The incident function, φ,
specifies the start and the end of each edge, e.g., φ(e5) =
φ(e6) = (v3, v2). We assume uniform node weights, i.e.,
b(vi) = 1 for every vi ∈ V .

When graph G = (V,E, φ, b) is known from the context,
we will simply write “e : (u, v) ∈ E” by which we under-
stand “e ∈ E s.t. φ(e) = (u, v)”. Also, to denote small
graphs we will write:
G = ({v1, . . . , vn}, {e1 : c1, . . . , em : cm}, [b1, . . . , bn])

which means G = ({v1, . . . , vn}, {e1, . . . , em}, φ, b) such
that φ(ei) = ci for every i ∈ {1, . . . ,m} and b(vj) = bj for
every j = {1, . . . , n}.

For a graph G = (V,E, φ, b) and nodes u, v ∈ V , a graph
obtained from redirecting node u into node v is denoted by
Ru→v(G) and defined as follows:

Ru→v(G) = (V \ {u}, E \ E+
u (G), φ

′, b′),

where b′ = (b[v → b(u) + b(v)])|V \{u} and φ′(e) = (w, v)
if φ(e) = (w, u) and φ′(e) = φ(e) otherwise.

Edge PageRank
An (edge) centrality measure F is a function that assesses
the importance of an edge e in a graph G; this value is de-
noted by Fe(G) and is non-negative.

Edge PageRank (Chapela et al. 2015) is defined as
a unique centrality measure that for every graph G =
(V,E, φ, b) and edge e : (u, v) ∈ E satisfies recursive equa-
tion

PRae(G) =
1

deg+u (G)

a · ∑
e′∈E−u (G)

PRae′(G) + b(u)

 ,

(1)
where constant a ∈ [0, 1) is a decay factor, i.e., a parameter
of Edge PageRank.

Equivalently, we can define Edge PageRank using ran-
dom walks on a graph. To this end, imagine a surfer that
travels throughout a graph in a schematic manner. She starts
her walk from a random node (with the probability that the
surfer starts in a node proportional to the weight of this
node). Then, in each step, she makes two choices: first, she
chooses one of the outgoing edges of a node she currently
occupies, uniformly at random, and follows it to the next
node; second, she decides whether she wants to continue the
walk (with probability a) or end it (with probability 1−a). If
the surfer ever arrives at a sink, she ends her walk automat-
ically. Now, in such a walk, PageRank of an edge is the ex-
pected number of times the surfer traversed this edge, multi-
plied by the sum of node weights in the graph. We note that
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this model is a slight variation on a standard random walk
model used for interpretation of PageRank. The only differ-
ence between our model and the model presented in (Wąs
and Skibski 2020) is the order of the decisions made by
the surfer: there, she first decides whether she continues the
walk and only if so, she chooses an outgoing edge. In result,
the expected number of traverses over an edge is multiplied
by a in comparison to our model.

Additionally, the definition of Edge PageRank can be also
based on its relation with (node) PageRank. Specifically, for
every graph, G = (V,E, φ, b), and edge, e : (u, v) ∈ E, it
holds that

PRae(G) = PRau(G)/ deg
+
u (G),

where PRau(G) is PageRank of node u in graph G. This
relation is true for multigraphs, which we consider in this
paper. If, instead, we considered graphs with edge weights,
ω : E → R>0, then the relation would be

PRae(G) =
ω(e)∑

e′∈E+
u
ω(e′)

· PRau(G).

Finally, Edge PageRank can be also defined as a (node)
PageRank of the corresponding line graph. We will discuss
this in details later in the text.

Example 1. An example application for Edge PageRank is
to create a ranking of the hyperlinks pointing toward a web-
page in the order of their importance for the Internet traffic
(Criado et al. 2018). Often, the obtained ranking does not
coincide with the PageRank ranking of the webpages they
are coming from. To see why, let us consider Edge PageRank
of incoming edges of node v4 in graphG from Figure 1. Each
of them comes from a different node: e2 from v1, e3 from v2,
and e7 from v3. Among these nodes, the greatest PageRank
has v3, followed by v1, and then v2. However, e3 is the only
outgoing edge of node v2, whereas both v3 and v1 have mul-
tiple outgoing edges. In result, Edge PageRank of edge e3 is
greater than that of e2 and e7, making it the most important
incoming edge of v4. PageRank values of nodes and edges
considered in this example for a = 0.9 are presented in the
following table:

node v PR0.9
v (G, b)

v1 7.09
v2 6.80
v3 12.89

edge e φ(e) PR0.9
e (G, b)

e2 (v1, v4) 3.55
e3 (v2, v4) 6.80
e7 (v3, v4) 3.22

Axioms
In this section, we propose our axioms that are based on the
axioms for (node) PageRank introduced in (Wąs and Skib-
ski 2020). While some of our axioms are straightforward
adaptations of the original axioms, some required significant
modifications in order to work for an edge centrality. What
is important, is that these six adapted axioms now uniquely
characterize Edge PageRank (what we prove in Theorem 1).

The axioms are as follows:
• Node Deletion: For every graph G = (V,E, φ, b) and

isolated node u ∈ V it holds that

Fe(V \ {u}, E, φ, b|V \{u}) = Fe(G)

for every e ∈ E.
• Edge Deletion: For every graph G = (V,E, φ, b) and

edge e∗ : (u, v) ∈ E it holds that

Fe(V,E \ {e∗}, φ|E\{e∗}, b) = Fe(G)

for every e : (w,w′) ∈ E such that w 6∈ Su(G) ∪ {u}.
• Edge Multiplication: For every graph G = (V,E, φ, b)

and edge e∗ : (u, v) ∈ E such that E+
u (G) ⊆ E−v (G) let

E′ = E \ E+
u (G) ∪ {e∗}. Then, it holds that

Fe(V,E
′, φ|E′ , b) =

{
deg+u (G) · Fe∗(G) if e = e∗,

Fe(G) otherwise,

for every e ∈ E′.
• Edge Swap: For every graphG = (V,E, φ, b) and edges
e1:(u1, v1), e2:(u2, v2) ∈ E such that Fe1(G) = Fe2(G)
it holds that

Fe(V,E, φ[e1 → (u1, v2), e2 → (u2, v1)], b) = Fe(G)

for every e ∈ E.
• Node Redirect: For every graph G = (V,E, φ, b) and

out-twins u,w ∈ V with the bijection ψ it holds that

Fe(Ru→w(G)) =

{
Fe(G) + Fψ(e)(G) if e ∈ E+

w (G),

Fe(G) otherwise,

for every e ∈ E \ E+
u (G).

• Baseline: For every graph G = (V,E, φ, b) and isolated
edge e : (u, v) ∈ E it holds that Fe(G) = b(u).

These six axiom uniquely characterize Edge PageRank.
Theorem 1. Edge centrality measure F satisfies Node Dele-
tion, Edge Deletion, Edge Multiplication, Edge Swap, Node
Redirect, and Baseline, if and only if, it is Edge PageRank.

Our first two axioms describe when the centrality of an
edge is not affected by a removal of an element of a graph, a
node or an edge. More in detail, Node Deletion states that re-
moving an isolated node does not affect the centrality of any
edge. In turn, Edge Deletion says that removing an edge does
not affect the centralities of edges that cannot be reached
from the start of the removed edge. Both axioms capture
the intuition that the importance of an edge should not be
affected by the parts of a network from which it is discon-
nected. They are direct adaptations of the axioms proposed
in (Wąs and Skibski 2020), only there, the axioms state that
the centralities of respective nodes are not affected.

The next axiom, Edge Multiplication, has been more sig-
nificantly modified. The original Edge Multiplication is fo-
cused on a node—it states that creating additional copies of
all outgoing edges of a node does not affect the centralities
of any node in a graph. Here, we modify the axiom so that
it focuses on an edge instead. We say that if an edge is the
only outgoing edge of a node, then creating k− 1 additional
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copies of this edge, divides its centrality by k and does not
affect the centrality of other edges. For the sake of notational
convenience, in the formulation of the axiom we consider re-
moving these additional copies of an edge, but the meaning
is equivalent. Intuitively, the axiom means that for a central-
ity measure the absolute number of edges is not important.

Our next axiom is Edge Swap. Here, again, the axiom is
quite different from the one introduced for (node) PageRank.
In its original wording, Edge Swap considers swapping the
ends of outgoing edges of two nodes with equal out-degrees
and equal centralities. Thus, this condition could not be in-
cluded in our axiom since the centrality of a node is not de-
fined. To solve this issue, we require only that the swapped
edges have equal centrality. In this way, we obtain a simpler
axiom: if two edges have equal centralities, swapping their
ends does not affect the centrality of any edge. It captures the
key property of feedback centralities: that your importance
depends only on the importance of your incoming edges.

Intuitively, our next axiom, Node Redirect, says that two
nodes that are identical (with regards to outgoing edges) can
be redirected to each other without affecting the centrali-
ties in a network. It entails the same intuition as Node Redi-
rect in (Wąs and Skibski 2020), but the construction is a
little more subtle. The original axiom considered redirecting
a node into its out-twin and stated that this operation sums
up the centralities of the out-twins and does not affect the
centralities of other nodes. Here, we say that since there is
a one-to-one correspondence between the outgoing edges of
out-twins, their redirection should sum up the centralities of
corresponding edges. Also, the centralities of other edges in
a graph should not be affected.

Finally, the original Baseline axiom stated that centrality
of an isolated node is equal to its weight. The intuition be-
hind it was that an isolated node is not influenced by the
topology of a graph, so its centrality should be equal to its
base importance that is reflected in its weight. Hence, in our
version of Baseline we consider an isolated edge and say
that its centrality is equal to the weight of its start.

We conclude this section with an example that shows
how our axiomatization can be used to decide whether Edge
PageRank should be used in a particular application.

Example 2. Consider a network of flight connections be-
tween airports, in which an edge from airport A to airport B
represents a single flight from A to B. We can think about the
importance of each connection on the global virus spread,
as considered by Marcelino and Kaiser (2012). Imagine that
there is an airport, A, from which there are flights to only one
other airport, B. In such a case, Edge Multiplication implies
that the change in the number of flights from A to B does
not affect the importance of any edge. However, additional
flights from A to B increase the chance of virus spread from
A to B, which in turn makes it more probable that flights out-
going from B would spread the virus. Therefore, Edge Mul-
tiplication is not an adequate axiom in such a setting. This
implies that since Edge PageRank satisfies Edge Multiplica-
tion, it should not be used in this application.

Proof of Uniqueness
In this section, we sketch the proof of our main result that
Edge PageRank is uniquely characterized by our axioms
(Theorem 1). The full proof can be found in the extended
version of the paper.2

We begin by noting that Edge PageRank indeed satisfies
all six axioms.
Lemma 2. Edge PageRank satisfies Node Deletion, Edge
Deletion, Edge Multiplication, Edge Swap, Node Redirect,
and Baseline.

We skip the proof of Lemma 2 and instead focus on prov-
ing that an arbitrary centrality measure F satisfying our ax-
ioms is indeed Edge PageRank. To this end, we adopt the
following structure of the proof:

• First, we prove simple properties of F (Proposition 3).
Specifically, we show that the centrality of an edge de-
pends only on its connected component (Locality), does
not depend on weights of sinks (Sink Weight), and if the
edge is a source edge, then it is equal to the weight of its
start (Source Edge).
• Then, we analyze simple graphs in which all edges are

incident to one node, v.
– We begin with graphs in which v has one incoming

edge (from u) and one outgoing edge (to w). First, we
show that there exists a constant aF such that the cen-
trality of the outgoing edge of v equals aF times b(u)
plus b(v) (Lemma 4). Then, we prove that aF ∈ [0, 1)
(Lemma 5).

– Furthermore, we consider graphs in which node v has
k outgoing and zero (Lemma 6) or one (Lemma 7) in-
coming edges.

• Finally, we prove that for arbitrary graph, F is equal to
Edge PageRank with the decay factor aF (Lemma 8).

We note that there are significant differences between our
proof and the proof of unique characterization of (node)
PageRank introduced in (Wąs and Skibski 2020). More in
detail, the main axis of the proof for (node) PageRank is the
induction on the number of cycles in a graph. Here, we fol-
low a different path and prove that centrality F satisfying
all our axioms satisfies also PageRank recursive equation
(Equation (1)). Since this equation uniquely defines Page-
Rank, this implies that F is indeed PageRank. In effect, the
proof obtained in this paper is notable simpler.

We begin with a proposition that captures simple proper-
ties of an edge centrality measure implied by our axioms.
Proposition 3. If edge centrality measure F satisfies Node
Deletion, Edge Deletion, Node Redirect, and Baseline, then
for every graph G = (V,E, φ, b) and e ∈ E it holds that

(a) (Locality) Fe(G) = Fe(G + G′) for every G′ disjoint
with G,

(b) (Sink Weight) Fe(G) = Fe(V,E, φ, b[w → 0]) for every
sink w ∈ V ,

(c) (Source Edge) Fe(G) = b(u) if e : (u, v) ∈ E is a source
edge
2https://arxiv.org/pdf/2112.04339.pdf
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u′ v′ w′

e1 e2

e′1 e′2
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u v w

v′

e1 e2

e3

Figure 2: An illustration to the proof of Lemma 4.

Proof (Sketch). Node Deletion and Edge Deletion imply (a).
(b) follows from (a) and Node Redirect. Finally, Edge Dele-
tion and Baseline yield (c).

In the following lemma, we introduce constant aF that, as
we will prove later on, is decay factor of the Edge PageRank
to which F is equal to.

Lemma 4. If edge centrality measure F satisfies Node
Deletion, Edge Deletion, Node Redirect, and Baseline, then
there exists a constant, aF ∈ R, such that for every graph
G=({u, v, w}, {e1:(u, v), e2:(v, w)}, [x, y, 0]) it holds that

Fe1(G) = x and Fe2(G) = aF · x+ y.

Proof (Sketch). First equation follows directly from Source
Edge (Proposition 3c). Thus, we will focus on proving that
Fe2(G) = aF ·x+y. First, assume y = 0 and consider graph
G′=({u′, v′, w′},{e′1:(u′, v′), e′2:(v′, w′)},[x′, 0, 0]) such that
u′, v′, w′ 6∈ {u, v, w} (see Figure 2). By Locality (Proposi-
tion 3a), we know that in G + G′ the centrality of all edges
is the same as in G or G′. In graph G+G′, we sequentially
redirect nodes w′, v′, u′ into w, v, u respectively, to obtain
graph G′′= ({u,v,w},{e1 :(u, v), e2 :(v, w)},[x + x′, 0, 0]),
which is exactly G, but with different weight of node u.
Since each time we redirected a node into its out-twin, from
Node Redirect, we get that Fe2(G

′′) = Fe2(G) + Fe′2(G
′).

From this and the arbitrariness of the choice of nodes and
edges, we conclude that there is a function, f : R≥0 → R≥0,
such that Fe2(G) = f(x) and that f is additive. Since it is
also non-negative, we get f(x) = aF · x (Cauchy 1821).

Now, if y is not necessarily 0, then we consider graph
G∗=({u,v,v′,w},{e1:(u,v), e2:(v,w), e3:(v′,w)},[x, 0, y, 0])
(see Figure 2). Node v is not a successor of v′, hence from
Edge Deletion, Node Deletion, and the first part of the proof,
we get that Fe2(G

∗) = aF · x. Also, Fe3(G
∗) = y from

Source Edge (Proposition 3c). Thus, since redirecting v′ into
v in G∗ results in G, Node Redirect yields the thesis.

Additionally, we can show the bounds for constant aF
(the proof is omitted due to space constraints).

Lemma 5. If edge centrality measure F satisfies Node Dele-
tion, Edge Deletion, Edge Swap, Node Redirect, and Base-
line, then aF ∈ [0, 1).

In Lemmas 6 and 7 we consider graphs in which v has
multiple outgoing edges. First, we assume that it does not
have any incoming edge.

Lemma 6. If edge centrality measure F satisfies Node
Deletion, Edge Deletion, Edge Multiplication, Node Redi-
rect, and Baseline, then for every k ∈ N and graph G =

G
v

w1 w2 w3

e1 e2 e3

G′

v

w1

e1 e2 e3

Gi
v

w1

ei

Figure 3: An illustration to the proof of Lemma 6 for k = 3.

({v, w1, . . . , wk},{e1:(v, w1), . . . , ek:(v, wk)},[x, 0, . . . , 0]),
it holds that

Fei(G) = x/k for every i ∈ {1, . . . , k}.

Proof. Let us fix arbitrary i ∈ {1, . . . , k}. Since nodes
w1, . . . , wk are all sinks, they are also out-twins. Hence,
from Node Redirect, we know that sequentially redirect-
ing nodes w2, . . . , wk into node w1 preserves the central-
ity of edges e1, . . . , ek. Therefore, in the obtained graph,
G′= ({v, w1},{e1:(v, w1), . . . , ek:(v, w1)},[x, 0]), we have
Fei(G) = Fei(G

′). See Figure 3 for an illustration.
Next, consider graphGi = ({v, w1},{ei : (v, w1)},[x, 0]).

Observe that Gi can be obtained from G′ by removing
all edges but ei. Thus, from Edge Multiplication, we get
Fei(G

′) = Fei(Gi)/k. On the other hand, from Baseline,
Fei(Gi) = x. Combining all equations, we obtain that
Fei(G) = Fei(G

′) = Fei(Gi)/k = x/k.

Now, we assume that v has exactly one incoming edge
and multiple outgoing edges.

Lemma 7. If edge centrality measure F satisfies Node Dele-
tion, Edge Deletion, Edge Multiplication, Node Redirect,
and Baseline, then for every k ∈ N and graph

G = ({u, v, w1, . . . wk},
{e : (u, v), e1 : (v, w1), . . . , ek : (v, wk)},
[x, y, 0, . . . , 0]),

it holds that Fe(G) = x and Fei(G) = (aF · x + y)/k for
every i ∈ {1, . . . , k}.

Proof (Sketch). The proof is analogous to the proof of
Lemma 6 with only two differences: first, in every graph
node v has one incoming edge from u; second, the final
equation for graphs Gi is of the form Fei(Gi) = aF · x+ y,
which is implied by Lemma 4.

We are now ready for the final lemma of this section.

Lemma 8. If edge centrality measure F satisfies Node Dele-
tion, Edge Deletion, Edge Multiplication, Edge Swap, Node
Redirect, and Baseline, then F is Edge PageRank.

Proof (Sketch). We will prove that F satisfies Edge Page-
Rank recursive equation (Equation (1)) with decay factor aF
for every graph G = (V,E, φ, b) and edge e : (v, w) ∈ E.
Since this equation uniquely define Edge PageRank, it will
imply that F is indeed Edge PageRank.

First assume that v does not have incoming edges. Then,
removing all edges not incident with v and nodes that
become isolated in doing so, we obtain a graph from
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Figure 4: The scheme of the proof of Lemma 8 for an example graph, G, with m = 2.

Lemma 6 except possibly non-zero weights of sinks. Hence,
from Edge Deletion, Node Deletion, Sink Weight (Proposi-
tion 3b), and Lemma 6, we get Fe(G) = b(v)/ deg+v (G),
which is Equation (1) for edge e in graph G.

Thus, let us assume that v has m > 0 incoming edges,
i.e., E−v (G) = {e1, . . . , em}. We denote their centralities
by xi = Fei(G) for every i ∈ {1, . . . ,m}. In what follows,
through several operations we transform graph G into graph
from Lemma 7 such that the centrality of e is unchanged.

To this end, for every i ∈ {1, . . . ,m}, we add to G a sim-
ple one-edge graph Gi = ({ui, vi}, {e′i : (ui, vi)}, [xi, 0])
(see Figure 4). In the obtained sum of graphs, for every
i ∈ {1, . . . ,m}, edges ei and e′i have equal centralities
(from Locality (Proposition 3a) and Baseline). Thus, if we
exchange their ends, then by Edge Swap we won’t affect the
centrality of any edge. Exchanging ends sequentially for all
such pairs, we obtain graph G′ in which incoming edges of
v, i.e., E−v (G

′) = {e′1, . . . , e′m}, are all source edges.
Now, observe that in graph G′, nodes u1, . . . , um are out-

twins (each has one outgoing edge to v). Thus, from Node
Redirect we can sequentially redirect nodes u2, . . . , um into
u1 without affecting the centrality of e. Let us denote re-
sulting graph by G′′. Observe that the weight of node u1 in
graph G′′ is equal to

∑m
i=1 xi. Also, node v has one incom-

ing edge, e′1, that is a source edge. Removing all edges not
incident with v and nodes that become isolated in doing so,
we obtain graph from Lemma 7 but with possibly non-zero
weights of sinks. Thus, from Edge Deletion, Node Deletion,
Sink Weight (Proposition 3b), and Lemma 7 we get that

Fe(G
′′) =

1

deg+v (G
′′)

(
aF ·

m∑
i=1

xi + b(v)

)
.

Since
∑m
i=1 xi =

∑
ei∈E−v (G) Fei(G), Fe(G

′′) = Fe(G),
and deg+v (G

′′) = deg+v (G), Equation (1) holds.

Comparison with Other Edge Centralities
In this section, we provide an overview of edge central-
ity measures from the literature and analyze which of our
axioms they satisfy. Some of these measures are defined
only for a specific class of graphs, e.g., strongly connected
graphs. In such case, we consider our axioms restricted to
this class, i.e., we add an additional constraint that in all
graphs considered in the axiom the centrality is well defined.

Eigenedge (Huang and Huang 2019) assumes that the cen-
trality of an edge is proportional to the sum of the central-

ities of the edges incoming to its start. Formally, it is de-
fined as a measure that for every strongly connected graph
G = (V,E, φ, b) and edge e : (u, v) ∈ E satisfies

Eige(G) =
1

λ
·

∑
e′∈E−u (G)

Eige′(G),

where λ is the largest eigenvalue of the adjacency matrix
of G. Usually, a normalization condition is added to make
the solution unique, e.g., that the sum of all centralities is
equal to 1. With this condition, Eigenedge is well defined
for all strongly connected graphs and satisfies all our axioms
restricted to this class except for Edge Multiplication.

Edge Katz centrality can be derived from (node) Katz
centrality (Katz 1953) in the same way as Eigenedge is
derived from Eigenvector centrality (Bonacich 1972), and
Edge PageRank from (node) PageRank. It works similarly
to Eigenedge, but to every edge we add a base centrality
equal to the weight of its start. Formally, for a decay fac-
tor a ∈ R≥0 it is defined as a unique measure that for
every graph G = (V,E, φ, b) with λ < 1/a and edge
e : (u, v) ∈ E satisfies

Ka
e (G) = a ·

∑
e′∈E−u (G)

Ka
e′(G) + b(u).

Katz centrality satisfies all our axioms restricted to the class
of graphs with λ < 1/a except for Edge Multiplication.

In the same way, Edge Seeley index can be derived from
(node) Seeley index (Seeley 1949) (known also as Katz
Prestige or simplified PageRank). It can be seen as a bor-
derline case of PageRank, when we increase decay factor
a to 1 (Wąs and Skibski 2021). Formally, it is defined as
the measure that for every strongly connected graph G =
(V,E, φ, b) and edge e : (u, v) ∈ E satisfies

SIe(G) =
1

deg+u (G)

∑
e′∈E−u (G)

SIe′(G).

Like for Eigenedge, to obtain uniqueness, we add a normal-
ization condition that the sum of centralities is equal to 1.
Then, Seeley index satisfies all of our axioms restricted to
the class of strongly connected graphs (since axioms are re-
stricted, this does not contradict Theorem 1).

Edge Betweenness (Girvan and Newman 2002) measures
how often an edge is on a shortest path between two nodes.
For graph G = (V,E, φ, b) and edge e ∈ E it is defined as

Be(G) =
∑

s,t∈V,s 6=t,t∈Ss(G)

δs,t(e)

δs,t
,
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where δs,t is the number of shortest paths from s to t and
δs,t(e) is the number of such paths passing through e. Edge
Betweenness satisfies only Node Deletion.

Information centrality (Fortunato, Latora, and Marchiori
2004) is defined as the relative loss in the network effi-
ciency that results from removing an edge. Formally, for ev-
ery graph G = (V,E, φ, b) and edge e ∈ E we have

Ie(G)=
(
Eff(G)−Eff(V,E \ {e}, φ|E\{e}, b)

)
/Eff(G),

where Eff(G) =
∑
v,w∈V,v 6=w 1/distv,w(G). It is well de-

fined for strongly connected graphs and satisfies Node Dele-
tion, Edge Deletion, and Baseline restricted to this class.

GTOM (Generalized Topological Overlap Matrix) (Yip
and Horvath 2007) of an edge measures how many com-
mon direct successors have its start and its end. Formally,
for G = (V,E, φ, b) and edge e : (u, v) ∈ E it is defined as

GTOMe(G) =
|{w : (u,w), (v,w)∈E}|+ 1

min
(
|{w : (u,w)∈E}|, |{w : (v,w)∈E}|

) .
It satisfies only Node Deletion.

We do not consider Spanning Edge Betweenness (Teix-
eira et al. 2013) as it is defined only on undirected graphs.

Using Line Graphs in Axiomatization
Many edge centrality measures, including Edge PageRank,
can be equivalently defined as node centralities in line
graphs. In this section, we analyze whether this fact can be
used in creating axiomatization of an edge centrality based
on the axiomatization of a node centrality.

For a graph G, the line graph L(G) is a graph that rep-
resents adjacencies between edges of G. Specifically, nodes
of the line graph are edges of G and edges of the line graph
connect nodes that represent edges incident in G. Formally,
for graph G = (V,E, φ, b), its line graph is defined as

L(G) = (E, {(ei, ej) : φ2(ei) = φ1(ej)}, b′),

with b′(e) = b(u)/ deg+u (G) for every e : (u, v) ∈ E. See
Figure 5 for an illustration.

Chapela et al. (2015) proved that Edge PageRank is
equivalent to PageRank of the corresponding line graph:
PRae(L(G)) = PRae(G) for every graph G and edge e.
This result suggests that an axiomatization can be obtained
by using node centrality axioms on line graphs. Observe that
most axioms proposed for (node) PageRank are so-called in-
variance axioms: they specify graph operations that do not
change centralities of nodes. For example, Edge Swap states
that the ends of edges from equally important nodes with
equal out-degrees can be swapped. Can we just use these
axioms to uniquely characterize (node) PageRank on line
graphs which corresponds to Edge PageRank?

As it turns out, it is not possible. The first reason is the
fact that line graphs are not closed under some of the in-
variance operations. To see that, consider graph G from Fig-
ure 5. Since graph L(G) is symmetrical, by Edge Swap, we
can swap the ends of edges (e2, e6) and (e3, e7). However,
we can prove that the graph obtained in this way is no longer
a line graph of any graph. Assume that it is the line graph of

e0

e1
e2 e3 e4

e5 e6 e7 e8

e0

e1 e2 e3 e4

e5 e6 e7 e8

Figure 5: Graph G (on the left-hand side) and its line-graph
L(G) (on the right-hand side). Dashed edges represent the
effect of the edge swap operation.

some G′ = (V ′, E′, φ′, b′). Since after edge swap, e1 and e3
have edges to e6, it means that φ′2(e1) = φ′1(e6) = φ′2(e3).
Similarly, we get that φ′2(e3) = φ′1(e8) = φ′2(e4). Thus, we
get φ′2(e1) = φ′2(e4). However, this implies that in the line
graph there are edges (e4, e6) and (e1, e8), none of which is
present in our graph—a contradiction.

Finally, we note that not every edge centrality can be de-
fined as a node centrality of a line graph. To see that, ob-
serve that merging starts of edges e1 and e4 in graph G from
Figure 5 does not affect the line graph. However, for some
edge centralities, e.g., Edge Betweenness, centrality of e4
changes after such merge. That is why analyzing edge cen-
tralities cannot be reduced to the analysis of node centralities
in line graphs.

Related Work
Axiomatic characterizations have been proposed for many
node centrality measures (Garg 2009; Skibski et al. 2019),
including both simplified PageRank (Altman and Tennen-
holtz 2005; Palacios-Huerta and Volij 2004), and PageRank
in its general form (Wąs and Skibski 2020). However, to the
best of our knowledge, there are no axiomatic characteriza-
tions of edge centrality measures in the literature to date.

Several papers studied properties of Edge PageRank.
Chapela et al. (2015) proved that PageRank of an edge is
equal to PageRank of the corresponding node in the line
graph. Kim, Son, and Jeong (2010) showed how Edge Page-
Rank (under the name LinkRank) can be used in commu-
nity detection. A similar, but different, edge metric derived
from PageRank was used by Chung and Zhao (2010) in their
graph sparsification algorithm.

Conclusions
In this paper, we proposed the first axiomatic characteriza-
tion of an edge centrality measure in the literature. Specif-
ically, we proved that Edge PageRank is a unique central-
ity measure that satisfies six axioms: Node Deletion, Edge
Deletion, Edge Multiplication, Edge Swap, Node Redirect,
and Baseline.

Our paper initiates the research on axiomatic properties of
edge centrality measures, many of which deserve their own
characterizations. An extension of our work into another di-
rection would be to axiomatically analyze node similarity
measures, e.g., SimRank.
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