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Abstract
We consider the notions of agreement, diversity,
and polarization in ordinal elections (that is, in elec-
tions where voters rank the candidates). While
(computational) social choice offers good measures
of agreement between the voters, such measures
for the other two notions are lacking. We attempt
to rectify this issue by designing appropriate mea-
sures, providing means of their (approximate) com-
putation, and arguing that they, indeed, capture di-
versity and polarization well. In particular, we
present “maps of preference orders” that highlight
relations between the votes in a given election and
which help in making arguments about their nature.

1 Introduction
The notions of agreement, diversity, and polarization of a so-
ciety with respect to some issue are intuitively quite clear. In
case of agreement, most members of the society have very
similar views regarding the issue, in case of diversity there
is a whole spectrum of opinions, and in case of polarization
there are two opposing camps with conflicting views and with
few people taking middle-ground positions (more generally,
if there are several camps, with clearly separated views, then
we speak of fragmentation; see, for example, the collection
of Dynes and Tierney [1994]). We study these three notions
for the case of ordinal elections—that is, for elections where
each voter has a preference order (his or her vote) ranking
the candidates from the most to the least appealing one—and
analyze ways of quantifying them.1

Interestingly, even though agreement, diversity, and polar-
ization seem rather fundamental concepts for understanding
the state of a given society (see, for example, the papers in
a special issue edited by Levin et al. [2021]), so far (com-
putational) social choice mostly focused on the agreement-
disagreement spectrum. Let us consider the following notion:

Given an election, the voters’ agreement index for can-
didates a and b is the absolute value of the difference

1More extensive analysis as well as all proofs are available
in the full version of our paper [Faliszewski et al., 2023] and
the code of our experiments is available at https://github.com/
Project-PRAGMA/diversity-agreement-polarization-IJCAI23.

between the fraction of the voters who prefer a to b and
the fraction of those with the opposite view. Hence, if
all voters rank a over b (or, all voters rank b over a) then
the agreement index for these candidates is equal to 1.
On the other hand, if half of the voters report a ≻ b and
half of them report b ≻ a, then the index is equal to 0.
The agreement index of the whole election is the average
over the agreement indices of all the candidate pairs.

For an election E, we denote its agreement index as A(E).
Alcalde-Unzu and Vorsatz [2013] viewed this index as mea-
suring voter cohesiveness—which is simply a different term
for voter agreement—and provided its axiomatic characteri-
zation. Hashemi and Endriss [2014] focused on measuring di-
versity and provided axiomatic and experimental analyses of
a number of election indices, including 1−A(E). 1−A(E)
was also characterized axiomatically by Can et al. [2015],
who saw it as measuring polarization; their point of view was
that for each pair of candidates one can measure polarization
independently. (In Section 2 we briefly discuss other elec-
tion indices from the literature; generally, they are strongly
interrelated with the agreement one).

Our view is that 1−A(E) is neither a measure of diversity
nor of polarization, but of disagreement. Indeed, it has the
same, highest possible, value on both the antagonism election
(AN), where half of the voters report one preference order
and the other half reports the opposite one, and on the uni-
formity election (UN), where each possible preference order
occurs the same number of times. Indeed, both these elec-
tions arguably represent extreme cases of disagreement. Yet,
the nature of this disagreement is very different. In the for-
mer, we see strong polarization, with the voters split into two
opposing groups, and in the latter we see perfect diversity of
opinion. The fundamental difference between these notions
becomes clear in the text of Levin et al. [2021] which high-
lights “the loss of diversity that extreme polarization creates”
as a central theme of the related special issue. Our main goal
is to design election indices that distinguish these notions.

Our new indices are based on what we call the k-KEMENY
problem. In the classic KEMENY RANKING problem (equiv-
alent to 1-KEMENY), given an election we ask for a rank-
ing whose sum of swap distances to the votes is the small-
est (a swap distance between two rankings is the number of
swaps of adjacent candidates needed to transform one rank-
ing into the other). The k-KEMENY problem is defined anal-
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ogously, but we ask for k rankings that minimize the sum
of each vote’s distance to the closest one (readers familiar
with multiwinner elections [Faliszewski et al., 2017] may
think of it as the Chamberlin–Courant rule [Chamberlin and
Courant, 1983] for committees of rankings rather than candi-
dates). We refer to this value as the k-Kemeny distance. Un-
fortunately, the k-KEMENY problem is intractable—just like
KEMENY RANKING [Bartholdi et al., 1989; Hemaspaandra
et al., 2005]—so we develop multiple ways (such as fast ap-
proximation algorithms) to circumvent this issue.

Our polarization index is a normalized difference between
the 1-Kemeny and 2-Kemeny distances of an election, and our
diversity index is a weighted sum of the k-Kemeny distances
for k = 1, 2, 3, . . .. The intuition for the former is that if a
society is completely polarized (that is, partitioned into two
equal-sized groups with opposing preference orders), then 1-
Kemeny distance is the largest possible, but 2-Kemeny dis-
tance is zero. The intuition for the latter is that if a society
is fully diverse (consists of all possible votes) then each k-
Kemeny distance is non-negligible (we use weights for tech-
nical reasons). Since our agreement index can also be seen as
a variant of the KEMENY RANKING problem, where we mea-
sure the distance to the majority relation, all these indices are
based on similar principles.

To evaluate our indices, we use the “map of elections”
framework of Szufa et al. [2020], Boehmer et al. [2021],
and Boehmer et al. [2022], applied to a dataset of randomly
generated elections. In particular, we find that our indices are
correlated with the distances from several characteristic elec-
tionsand, hence, provide the map with a semantic meaning.
Additionally, we develop a new form of a map that visual-
izes the relations between the votes of a single election (the
original maps visualized relations between several elections
from a given dataset). We use this approach to get an insight
regarding the statistical cultures used to generate our dataset
and to validate intuitions regarding the agreement, diversity,
and polarization of its elections. In our experiments, we fo-
cused on elections with a relatively small number of candi-
dates (8 candidates and 96 voters). While we believe that our
main conclusions extend to all sizes of elections, it would be
valuable to check this (however, this would require quite ex-
tensive computation that, currently, is beyond our reach).

2 Preliminaries
For every number k ∈ N, by [k] we understand the set
{1, . . . , k}. For two sets A and B such that |A| = |B|, by
Π(A,B) we mean the set of all bijections from A to B.

2.1 Elections
An election E = (C, V ) is a pair, where C is a set of can-
didates and V is a collection of voters whose preferences
(or, votes) are represented as linear orders over C (we use
the terms vote and voter interchangeably, depending on the
context). For a vote v, we write a ≻v b (or, equivalently,
v : a ≻ b) to indicate that v prefers candidate a over candi-
date b. We also extend this notation to more candidates. For
example, for candidate set C = {a, b, c} by v : a ≻ b ≻ c
we mean that v ranks a first, b second, and c third. For two

candidates a and b from election E, by pE(a, b) we denote
the fraction of voters in E that prefer a over b.

We will often speak of the following three characteristic
elections, introduced by Boehmer et al. [2021] as “compass
elections” (we assume candidate set C = {c1, . . . , cm} here;
Boehmer et al. [2021] also considered the fourth election, i.e.,
stratification, but it will not play an important role for us):

Identity (ID). In an identity election all votes are identical.
We view this election as being in perfect agreement.

Antagonism (AN). In an antagonism election, exactly half
of the voters have one preference order (for example,
c1 ≻ c2 ≻ · · · ≻ cm) and the other half has the reversed
one (cm ≻ cm−1 ≻ · · · ≻ c1). We view this election as
being perfectly polarized.

Uniformity (UN). A uniformity election contains the same
number of copies of every possible preference order. We
view this election as being perfectly diverse.

2.2 Kemeny Rankings and Swap Distance
For two votes u and v over a candidate set C, by swap(u, v)
we mean their swap distance, that is, the minimal number
of swaps of consecutive candidates required to transform u
into v. This value is also known as Kendall’s τ distance
and is equal to the number of candidate pairs a, b ∈ C such
that a ≻u b but b ≻v a. A Kemeny ranking of an elec-
tion E = (C, V ) is a linear order over C that minimizes
the sum of its swap distances to the votes from V [Kemeny,
1959]. It is well known that computing a Kemeny ranking
is NP-hard [Bartholdi et al., 1989] and, more precisely, Θp

2-
complete [Hemaspaandra et al., 2005].

For two elections, E = (C, V ) and F = (D,U), such that
|C| = |D|, V = (v1, . . . , vn), and U = (u1, . . . , un), by
dswap(E,F ) we denote their isomorphic swap distance [Fal-
iszewski et al., 2019], that is, the (minimal) sum of swap dis-
tances between the votes in both elections, given by optimal
correspondences between their candidates and their voters.
Formally:

dswap(E,F )= min
σ∈Π([n],[n])

min
π∈Π(C,D)

∑n
i=1 swap(π(vi), uσ(i)),

where by π(vi) we denote vote vi with every candidate c ∈ C
replaced by candidate π(c).

2.3 Maps of Elections
A map of elections is a collection of elections represented on
a 2D plane as points, so that the Euclidean distances between
the points reflect the similarity between the elections (the
closer two points are, the more similar should their elections
be). Maps of elections were introduced by Szufa et al. [2020]
(together with an open-source Python library mapel, which
we use and build on) and Boehmer et al. [2021], who used
the distance based on position matrices of elections as a mea-
sure of similarity. We use the isomorphic swap distance in-
stead. Indeed, Szufa et al. [2020] and Boehmer et al. [2021]
admitted that isomorphic swap distance would be more ac-
curate but avoided it because it is hard to compute (Boehmer
et al. [2022] analyzed the consequences of using various dis-
tances). We are able to use the swap distance because we
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focus on small candidate sets. To present a set of elections as
a map, we compute the distance between each two elections
and then run the multidimensional scaling algorithm (MDS)
to find an embedding of points on a plane that reflects the
computed distances. For an example of a map, see Fig. 2 at
the end of the paper; we describe its elections in Section 5.

2.4 Agreement and Other Election Indices
Election index is a function that given an election outputs a
real number. The next index is among the most studied ones
and captures voter agreement.

Definition 1. The agreement index of an election E=(C, V )

is: A(E) =
(∑

{a,b}⊆C |pE(a, b)− pE(b, a)|
)/(|C|

2

)
.

The agreement index takes values between 0 and 1, where 0
means perfect disagreement and 1 means perfect agreement.
Indeed, we have A(ID) = 1 and A(UN) = A(AN) = 0.

There is also a number of other election indices in the liter-
ature. Somewhat disappointingly, they mostly fall into one or
more of the following categories: (1) They are generalizations
of the agreement index (or its linear transformation) [Alcalde-
Unzu and Vorsatz, 2016; Can et al., 2017]; (2) They are
highly correlated with the agreement index (at least on our
datasets) [Hashemi and Endriss, 2014; Karpov, 2017; Alcan-
tud et al., 2013]; (3) Their values come from a small set,
limiting their expressiveness and robustness [Bosch, 2006;
Hashemi and Endriss, 2014].

3 Diversity and Polarization Indices
In this section, we introduce our two new election indices,
designed to measure the levels of diversity and polarization
in elections. Both of them are defined on top of a gener-
alization of the KEMENY RANKING problem (note that this
generalization is quite different from that studied by Arrighi
et al. [2021] under a related name).

Definition 2. k-Kemeny rankings of election E = (C, V )
are the elements of a set Λ = {λ1, . . . , λk} of k linear orders
over C that minimize

∑
v∈V mini∈[k] swap(v, λi).

The k-Kemeny distance, κk(E), is equal to this minimum.

We can think of finding k-Kemeny rankings as finding an
optimal split of votes into k groups and minimizing the sum
of each group’s distance to its Kemeny ranking. Hence, 1-
Kemeny distance is simply the distance of the voters from the
(standard) Kemeny ranking. We will later argue that κ1(E)
is closely related to the agreement index.

We want our diversity index to be high for UN, but small
for AN and ID. For identity, 1-Kemeny distance is equal to
zero, but for both UN and AN, 1-Kemeny distance is equal to
|V | ·

(|C|
2

)
/2, which is the maximal possible value (as shown,

for example, by Boehmer et al. [2022]). However, for k ≥ 2
we observe a sharp difference between k-Kemeny distances
in these two elections. For AN, we get distance zero (it suf-
fices to use the two opposing votes as the k-Kemeny rank-
ings), and for UN we get non-negligible positive distances (as
long as k is smaller than the number of possible votes). Mo-
tivated by this, we define the diversity index as a normalized
sum of all k-Kemeny distances.

Definition 3. The diversity index of an election E = (C, V )

is: D(E) =
(∑

k∈[|V |] κk(E)/k
)/(

|V | ·
(|C|

2

))
.

The sum in the definition is divided by the number of voters
and the maximal possible distance

(|C|
2

)
between two votes.

As a result, the values of the index are more consistent across
elections with different number of voters and candidates (for
example, diversity of AN is always equal to 1/2). Apart from
that, in the sum, each k-Kemeny distance is divided by k.
This way, the values for large k have lesser impact on the to-
tal value, and it also improves scalability. However, we note
that even with this division, diversity of UN seems to grow
slightly faster than linearly with the growing number of can-
didates and there is a significant gap between the value for UN
with all m! possible votes and even the most diverse election
with significantly smaller number of voters. The currently
defined diversity index works well on our datasets (see Sec-
tion 6), but finding a more robust normalization is desirable
(the obvious idea of dividing by the highest possible value of
the sum is challenging to implement and does not prevent the
vulnerability to changes in the voters count).

To construct the polarization index, we look at AN and
take advantage of the sudden drop from the maximal possi-
ble value of the 1-Kemeny distance to zero for the 2-Kemeny
distance. We view this drop as characteristic for polarized
elections because they include two opposing, but coherent,
factions. Consequently, we have the following definition (we
divide by |V |·

(
C
2

)
/2 for normalization; the index takes values

between 0, for the lowest polarization, and 1, for the highest).

Definition 4. The polarization index of an election E=(C,V )

is: P (E) = 2
(
κ1(E)− κ2(E)

)/(
|V | ·

(|C|
2

))
.

For AN polarization is one, while for ID it is zero. For UN
with 8 candidates, it is 0.232. This is intuitive as in UN every
vote also has its reverse. However, we have experimentally
checked that with a growing number of candidates the polar-
ization of UN seems to approach zero (e.g., it is 0.13, 0.054,
and 0.024 for, respectively, 20, 100, and 500 candidates).

We note that there is extensive literature on polarization
measures in different settings, such us regarding distributions
over continuous intervals [Esteban and Ray, 1994] or regard-
ing opinions on networks [Musco et al., 2018; Huremović and
Ozkes, 2022; Tu and Neumann, 2022; Zhu and Zhang, 2022]
(we only mention a few example references). On the techni-
cal level, this literature is quite different from our setting, but
finding meta connections could be very inspiring.

Concluding our discussion of the election indices, we note
a connection between the agreement index and the 1-Kemeny
distance. Let µ be the majority relation of an election E =
(C, V ), that is, a relation such that for candidates a, b ∈ C,
a ⪰µ b if and only if pE(a, b) ≥ pE(b, a). If E does not
have a Condorcet cycle, that is, there is no cycle within µ,
then µ is identical to the Kemeny ranking. As noted by Can
et al. [2015], the agreement index can be expressed as a lin-
ear transformation of the sum of the swap distances from all
the votes to µ. Hence, if there is no Condorcet cycle, the
agreement index is strictly linked to κ1(E) and all three of
our indices are related.
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4 Computation of k-Kemeny Distance
We define an optimization problem k-KEMENY in which the
goal is to find the k-Kemeny distance of a given election (see
Definition 2). In a decision variant of k-KEMENY, we check
if the k-Kemeny distance is at most a given value. We note
that k-KEMENY is NP-hard [Bartholdi et al., 1989], even for
k = 1 and n = 4 [Dwork et al., 2001]. Hence, we seek
polynomial-time approximation algorithms.

4.1 Approximation Algorithms
While there is a PTAS for 1-KEMENY [Kenyon-Mathieu and
Schudy, 2007], it is not obvious how to approximate even
2-KEMENY. Yet, we observe that k-KEMENY is related to
the classic facility location problem k-MEDIAN [Williamson
and Shmoys, 2011]. In this problem we are given a set of
clients X , a set of potential facility locations F , a natural
number k, and a metric d defined over X ∪ F . The goal
is to find a subset W = {f1, f2, . . . , fk} of facilities which
minimizes the total connection cost of the clients, that is,∑

x∈X minf∈W d(x, f). We see that k-KEMENY is equiv-
alent to k-MEDIAN in which the clients are the votes from
the input election, the set of facilities is the set of all possi-
ble votes, and the metric is the swap distance. Hence, to ap-
proximate k-KEMENY we can use approximation algorithms
designed for k-MEDIAN. The issue is that there are m! possi-
ble Kemeny rankings and the algorithms for k-MEDIAN run
in polynomial time with respect to the number of facilities so
they would need exponential time.

We tackle the above issue by reducing the search space
from all possible rankings to those appearing in the input. We
call this problem k-KEMENY AMONG VOTES and provide
the following result.2

Theorem 1. An α-approximate solution for k-KEMENY
AMONG VOTES is a 2α-approximate solution for k-
KEMENY.

This allows us to use the rich literature on approximation
algorithms for k-MEDIAN [Williamson and Shmoys, 2011].
For example, using the (currently best) 2.7-approximation al-
gorithms for k-MEDIAN [Byrka et al., 2017; Cohen-Addad
et al., 2023; Gowda et al., 2023] we get the following.

Corollary 1. There is a polynomial-time 5.4-approximation
algorithm for k-KEMENY.

The algorithms of Byrka et al. [2017], Cohen-Addad et
al. [2023] and Gowda et al. [2023] are based on a complex
procedure for rounding a solution of a linear program, which
is difficult to implement. Moreover, there are large constants
hidden in the running time. Fortunately, there is a simple local
search algorithm for k-MEDIAN which achieves (3 + 2/p)-
approximation in time |F |p · poly(|F |, |X|), where p is the
swap size (as a basic building block, the algorithm uses a
swap operation which replaces p centers with p other ones,
to locally minimize the connection cost) [Arya et al., 2001].

Corollary 2. There is a local search (6+ 4/p)-approximation
algorithm for k-KEMENY, where p is the swap size.

2We note that the special case of Theorem 1 for k = 1 and α = 1
was proved by Endriss and Grandi [2014].

We implemented the local search algorithm for p = 1 and
used it in our experiments (see Section 6). We note that there
is a recent result [Cohen-Addad et al., 2022] which shows
that the same local search algorithm actually has an approx-
imation ratio 2.83 + ϵ, but at the cost of an enormous swap
size (hence also the running time)—for example, for approxi-
mation ratio below 3 one needs swap size larger than 1010000.

In our experiments in Section 6, we also use a greedy algo-
rithm, which solves k-KEMENY AMONG VOTES iteratively:
Starting from an empty set of rankings, in each iteration, it
adds a ranking (from those appearing among the votes) that
decreases the k-Kemeny distance most. It is an open question
if this algorithm achieves a bounded approximation ratio.

We also point out that using the PTAS for 1-KEMENY,
we can obtain an approximation scheme in parameterized
time for k-KEMENY (parameterized by the number of vot-
ers; note that an exact parameterized algorithm is unlikely as
1-KEMENY is already NP-hard for four voters [Dwork et al.,
2001]). The idea is to guess the partition of the voters and
solve 1-KEMENY for each group.
Theorem 2. For every ϵ > 0, there is a (1+ϵ)-approximation
algorithm for k-KEMENY which runs in time FPT w.r.t. n.

All algorithms in this section, besides solving the decision
problem, also output the sought k-Kemeny rankings.

4.2 Hardness of k-Kemeny Among Votes
The reader may wonder why we use k-MEDIAN algorithms
instead of solving k-KEMENY AMONG VOTES directly. Un-
fortunately, even this restricted variant is intractable.
Theorem 3. k-KEMENY AMONG VOTES is NP-complete
and W[2]-hard when parameterized by k.

Proof (sketch). We give a reduction from the MAX K-
COVER problem (which is equivalent to the well-known
Approval Chamberlin-Courant voting rule [Procaccia et al.,
2008]). In MAX K-COVER we are given a set of elements
X = {x1, x2, . . . , xN}, a family S = {S1, S2, . . . , SM}
of nonempty, distinct subsets of X , and positive integers
K ≤ M and T . The goal is to find K subsets from S which
together cover at least T elements from X .

We take an instance (X,S,K, T ) of MAX K-COVER and
construct an instance of k-KEMENY AMONG VOTES as fol-
lows. We create three pivot-candidates p1, p2, and p3. For
every set S ∈ S , we create two set-candidates cS and dS ob-
taining, in total, m = 2M + 3 candidates. Next, we create
the votes, each with the following vote structure:

{p1, p2, p3}≻ {cS1
, dS1

}≻ {cS2
, dS2

}≻ . . .≻{cSM
, dSM

},
where {c, d} means that the order of candidates c and d is not
specified. Hence, when defining a vote we will only specify
the voter’s preference on the unspecified pairs of candidates.

For every set Sj ∈ S , we create L = N(M + 4) set-
voters vj (we do not need to distinguish between these copies,
hence we call any of them vj) with the following specification
over the vote structure:

p1 ≻vj p2 ≻vj p3; dSj ≻vj cSj ; cS ≻vj dS , for S ̸= Sj .

For each two set-voters u and v, swap(u, v) ∈ {0, 2} and it
equals 0 if and only if u and v come from the same set.
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For every element xi ∈ X , we create an element-voter ei
with the following specification over the vote structure:

p3 ≻ei p2 ≻ei p1; dS ≻ei cS , for ei ∈ S;

cS ≻ei dS , for ei /∈ S.

Note that for each element-voter ei and set voter vj ,
swap(ei, vj) ≥ 3. In total we have n = N(M2 + 4M +
1) voters. We define k = K and we ask if the k-Kemeny
distance in k-KEMENY AMONG VOTES is at most D =
2L(M −K) +

∑
j∈[M ] |Sj |+ 4N − 2T .

One direction follows by taking k set-voters corresponding
to a solution for MAX K-COVER. The other one follows by
observing that a solution to k-KEMENY AMONG VOTES may
contain only set-voters (because there are N(M + 4) copies
of each) and, hence, we can derive a corresponding solution
for MAX K-COVER.

In order to achieve the theorem statement we notice that
MAX K-COVER is W[2]-hard w.r.t. K [Cygan et al., 2015],3
k = K, and the reduction runs in polynomial time.

In the full version of the paper, we show that using the same
reduction as in the proof of Theorem 3, we can provide more
fine-grained hardness results.

5 Statistical Cultures of Our Dataset
Before we move on to our main experiments, we describe
and analyze our dataset. It consists of 292 elections with 8
candidates and 96 voters each, generated from several statis-
tical cultures, that is, models of generating random elections.
For example, under impartial culture (IC) each vote is drawn
uniformly at random from all possible votes (thus, it closely
resembles UN). We present our dataset as a map of elections
in Fig. 2. In the full version of the paper we consider two
additional datasets.

Below, we discuss each statistical culture used in our
dataset and build an intuition on how our indices should eval-
uate elections generated from them. To this end, we form a
new type of a map, which we call a map of preferences, where
we look at relations between votes within a single election. In
other words, a map of elections gives a bird’s eye view of the
space of elections, and a map of preferences is a microscope
view of a single election.

5.1 Maps of Preferences
To generate a map of preferences for a given election, we first
compute the (standard) swap distance between each pair of
its votes. Then, based on these distances, we create a map
in the same way as for maps of elections (that is, we use the
multidimensional scaling algorithm). We obtain a collection
of points in 2D, where each point corresponds to a vote in the
election, and Euclidean distances between the points resem-
ble the swap distances between the votes they represent.

For each model, we generated a single election and created
its map of preferences. The results are shown in Fig. 1. The
elections have 1000 voters instead of 96, so that the pictures
look similar each time we draw an election from the model.

3Actually, the result comes from W[2]-hardness of the SET
COVER problem and a folklore reduction to MAX K-COVER by
setting T = N .

Figure 1: Maps of Preferences (8 candidates, 1000 voters). If there
are more than 10 copies of the same vote, we add a purple disc with
a radius proportional to the number of voters.

5.2 Model Definitions and Analysis
ID, AN, and IC
We first consider ID, AN, and IC elections (which, for the
time being, covers for UN). ID and AN are shown as the first
entries of the first two rows in Fig. 1. The former, with 1000
copies of the same vote, presented as a single point with a
large purple disc, embodies perfect agreement. The latter,
with 500 votes of one type and 500 its reverses, represents
a very polarized society, which is well captured by the two
faraway points with large discs on its map. Under IC, whose
map is the last one in the first row, we see no clear structure
except that, of course, there are many pairs of votes at high
swap distance (they form the higher-density rim). Yet, for
each such pair there are also many votes in between. Hence,
it is close to being perfectly diverse.

We do not present UN in our maps because it requires at
least m! votes. Indeed, from now on, we will consider an
approximate variant of UN, i.e., UN∗, generated by sampling
votes from the scaled position matrix of UN.

Mallows Model
The Mallows model is parameterized by the central vote u
and the dispersion parameter ϕ ∈ [0, 1]. Votes are generated
independently and the probability of generating a vote v is
proportional to ϕswap(u,v). Instead of using the parameter ϕ
directly, we follow Boehmer et al. [2021] and use its normal-
ized variant, norm-ϕ ∈ [0, 1], which is internally converted
to ϕ (see their work for details; with 8 candidates the conver-
sion is nearly linear). For norm-ϕ = 1, the Mallows model
is equivalent to IC, for norm-ϕ = 0 it is equivalent to ID,
and for values in between we get a smooth transition between
these extremes (or, between agreement and diversity, to use
our high-level notions). We see this in the first row of Fig. 1.

Urn Model
In the Pólya-Eggenberger urn model [Berg, 1985; McCabe-
Dansted and Slinko, 2006], we have a parameter of contagion
α ∈ [0,∞). We start with an urn containing one copy of each
possible vote and we repeat the following process n times:
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Irish + Sushi + Grenoble

AN

UN*

Impartial 
Culture

Sphere

Circle

Square

SP Conitzer

SP Walsh

Mallows

Interval

ID

Cube

Figure 2: A map of elections in our dataset obtained using isomor-
phic swap distance and MDS.

We draw a vote from the urn, its copy is included in the elec-
tion, and the vote, together with α ·m! copies, is returned to
the urn. For α = 0 the model is equivalent to IC. The larger is
the α value, the stronger is the correlation between the votes.

In Fig. 1, urn elections (shown in the middle of the sec-
ond row) consist of very few distinct votes. For example, for
α = 1 we only have seven votes, thus this election’s map
looks similarly to that for AN—few points with discs. Such
elections, with several popular views but without a spectrum
of opinions in between, are known as fragmented [Dynes and
Tierney, 1994]. Hence, we expect their diversity to be small.
As α decreases, urn elections become less fragmented.

We upper-bound the expected number of different votes
in an urn election with m candidates, n voters (where
n is significantly smaller than m!), and parameter α by∑n

i=1
1/(1+(i−1)α) (the first vote is always unique, the second

one is drawn from the original m! votes from the urn with
probability 1/(1+α), and so on; if we draw one of the original
votes from the urn it still might be the same as one of the pre-
vious ones, but this happens with a small probability when n
is significantly smaller than m!). For example, for n = 1000
and α equal to 1, our formula gives 7.48. In the literature, au-
thors often use α = 1 [Erdélyi et al., 2015; Keller et al., 2019;
Walsh, 2011], sometimes explicitly noting the strong correla-
tions and modifying the model [Erdélyi et al., 2015]. How-
ever, smaller values of α are also used [Skowron et al., 2015;
McCabe-Dansted and Slinko, 2006]. Since α = 1 gives very
particular elections, it should be used consciously.

Single-Peaked Elections
Single-peaked elections [Black, 1958] capture scenarios
where voters have a spectrum of opinions between two ex-
tremes (like choosing a preferred temperature in a room).

Definition 5 (Black [1958]). Let C be a set of candidates and
let ▷ be an order over C, called the societal axis. A vote is
single-peaked with respect to ▷ if for each t ∈ [|C|], its top
t candidates form an interval w.r.t. ▷. An election is single-
peaked (w.r.t. ▷) if its votes are.

We use the Walsh [Walsh, 2015] and the Conitzer (random
peak) models [Conitzer, 2009] of generating single-peaked

Polarization

Nonpolarization

AN

ID
UN*

Mallows

SP Walsh

Urn
Urn

Circle

Cube

Mallows

Square

5/10-Cube

Figure 3: An affine transformation of a plot where x/y coordinates
of the elections are their agreement/diversity indices.

elections. In the former, we fix the societal axis and choose
votes single-peaked with respect to it uniformly at random
(so we can look at it as IC over the single-peaked domain).
In the Conitzer model we also first fix the axis, and then gen-
erate each vote as follows: We choose the top-ranked candi-
date uniformly at random and fill-in the following positions
by choosing either the candidate directly to the left or directly
to the right of the already selected ones on the axis, with prob-
ability 1/2 (at some point we run out of the candidates on one
side and then only use the other one).

In Fig. 1, Conitzer and Walsh elections are similar, but the
former one has more votes at large swap distance. Indeed, un-
der the Conitzer model, we generate a vote equal to the axis
(or its reverse) with probability 2/m, which for m = 8 is 25%.
Under the Walsh model, this happens with probability 1.5%
(it is known there are 2m−1 different single-peaked votes and
Walsh model chooses each of them with equal probability).
Hence, our Conitzer elections are more polarized (see the
purple discs at the farthest points) than the Walsh ones, and
Walsh ones appear to be more in agreement (in other words,
the map for the Conitzer election is more similar to that for
AN, and the map for Walsh election is more similar to ID).

Euclidean Models
In d-dimensional Euclidean elections every candidate and ev-
ery voter is a point in Rd, and a voter prefers candidate a to
candidate b if his or her point is closer to that of a than to
that of b. To generate such elections, we sample the candi-
date and voter points as follows: (a) In the d-Cube model, we
sample the points uniformly at random from a d-dimensional
hypercube [0, 1]d, and (b) in the Circle and Sphere models we
sample them uniformly at random from a circle (embedded in
2D space) and a sphere (embedded in 3D space). We refer to
the 1-Cube, 2-Cube, and 3-Cube models as, respectively, the
Interval, Square, and Cube models. In Fig. 1, we see that
as the dimension increases, the elections become more sim-
ilar to the IC one. The Interval election is very similar to
those of Conitzer and Walsh, because 1-Euclidean elections
are single-peaked. It is also worth noting that the Circle elec-
tion is quite polarized (we see an increased density of votes
on two opposite sides of its map).
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Irish and Other Elections Based on Real-Life Data
We also consider elections generated based on real-life data
from a 2002 political election in Dublin [Mattei and Walsh,
2013]. We treat the full Irish data as a distribution and sample
votes from it as from a statistical culture. The Irish election
in Fig. 1 is, in some sense, between the Cube and Mallows
ones for norm-ϕ = 0.5. Intuitively, we would say that it
is quite diverse. In the dataset, we also include Sushi and
Grenoble elections, similarly generated using different real-
life data [Mattei and Walsh, 2013].

6 Final Experiments and Conclusion
In this section we present the results of computing the agree-
ment, diversity, and polarization indices on our dataset.

6.1 Computing the Indices in Practice
First, we compared three ways of computing k-Kemeny dis-
tances: the greedy approach, the local search with swap size
equal to 1, and a combined heuristic where we first calculate
the greedy solution and then try to improve it using the lo-
cal search. We ran all three algorithms for all k ∈ [96] and
for every election in our dataset. The conclusion is that the
local search and the combined heuristic gave very similar out-
comes and both outperformed the greedy approach. Hence, in
further computations, we used the former two algorithm and
took the smaller of their outputs.

6.2 Understanding the Map via Agreement,
Diversity, and Polarization

Using the κk(E) values computed in the preceding experi-
ment, we calculated diversity and polarization indices of all
the elections from our dataset, along with their agreement in-
dices (which are straightforward to compute). We illustrate
the results in several ways.

First, we consider Fig. 4. In the left plot, each election
from our dataset is represented as a dot whose x/y coordi-
nates are the values of the diversity index and the distance
from UN∗, and whose color corresponds to the statistical cul-
ture from which it comes (it is the same as in Fig. 2). The
plot on the right is analogous, except that it regards polariza-
tion and distance from AN. An analogous plot for agreement
and distance from ID is almost perfectly linear. The Pearson
correlation coefficient between each of the three indices and
the distance from the respective compass election is below
−0.9, which means that the correlation is very strong. This is
our first indication that the locations on the map of elections,
in particular, the one from Fig. 2, can be understood in terms
of agreement, diversity, and polarization.

Next, for all three pairs of our indices we plotted our
dataset in such a way that each election’s x/y coordinates are
the values of the respective indices (these plots can be found
in the full version of the paper). We observed that each of
these plots resembles the original map from Fig. 2. Hence,
for the sake of clearer comparison, we took the plot for agree-
ment and diversity indices and, by an affine transformation,
converted it to a roughly equilateral triangle spanned between
ID, AN, and UN∗. Fig. 3 presents the result of this operation.

Figure 4: Correlation between our indices and the distance from the
respective compass election.

The similarity between Figs. 2 and 3 is striking as most
elections can be found in analogous locations. Even the posi-
tions of the outliers in the groups areapproximately preserved.
Yet, there are also differences. For example, in Fig. 3 elec-
tions from most of the statistical cultures are closer to each
other than in Fig. 2. Nonetheless, the similarity between these
two figures is our second argument for understanding the map
in terms of agreement, diversity, and polarization. Specifi-
cally, the closer an election is to ID, AN, or UN∗, the more
agreement, polarization, or diversity it exhibits.

6.3 Validation Against Intuition
Finally, let us check our intuitions from Section 5 against the
actually computed values of the indices, as presented on the
plot from Fig. 3. We make the following observations:

1. We see that Mallows elections indeed progress from ID
(for which we use norm-ϕ = 0) to IC (for which we use
norm-ϕ = 1), with intermediate values of norm-ϕ in
between. The model indeed generates elections on the
agreement-diversity spectrum.

2. Elections generated using the urn model with large value
of α appear on the agreement-polarization line. Indeed,
for very large values of α nearly all the votes are iden-
tical, but for smaller values we see polarization effects.
Finally, as the values of α go toward 0, the votes become
more and more diverse.

3. Walsh elections are closer to agreement (ID) and
Conitzer elections are closer to polarization (AN).

4. High-dimensional Cube elections have fairly high diver-
sity. Circle and Sphere elections are between diversity
and polarization.

5. Irish elections are between Mallows and high-
dimensional Cube elections.

All in all, this confirms our intuitions and expectations.

7 Summary
The starting point of our work was an observation that some
of the measures of diversity and polarization used in com-
putational social choice literature should, rather, be seen as
measures of disagreement. We have proposed two new mea-
sures and we have argued that they do capture diversity and
polarization. On the negative side, our measures are compu-
tationally intractable. Hence, finding a measure that would be
easy to compute but that would maintain the intuitive appeal
of our ones is an interesting research topic.
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