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Abstract
Motivated by putting empirical work based on (syn-
thetic) election data on a more solid mathematical
basis, we analyze six distances among elections, in-
cluding, e.g., the challenging-to-compute but very
precise swap distance and the distance used to form
the so-called map of elections. Among the six, the
latter seems to strike the best balance between its
computational complexity and expressiveness.

1 Introduction
We study the properties of several distances (metrics) among
elections.1 We focus on the ordinal model, where each voter
ranks the candidates from the most to the least appealing one,
and on metrics that are independent of renaming the can-
didates and voters. Such metrics were introduced by Fal-
iszewski et al. [2019], who argued about their usefulness to
compare two elections generated from some statistical mod-
els, or to evaluate which statistical model is most likely to
generate elections similar to given real-life ones. Indeed,
in such applications the names of the candidates and vot-
ers do not carry any information and should be disregarded.
Unfortunately, while the metrics studied by Faliszewski et
al. [2019] are naturally motivated—for example, one of them
extends the widely accepted swap distance—many of them
are not only NP-hard to compute (even approximately), but
also difficult to compute in practice.

Yet, many of the motivating ideas of Faliszewski et
al. [2019] were soon implemented in the maps of elections,
introduced by Szufa et al. [2020] and extended by Boehmer
et al. [2021b]. Briefly put, such a map is a collection of elec-
tion instances, typically generated from some statistical mod-
els (but Boehmer et al. [2021b] also used real-life ones from
PrefLib [Mattei and Walsh, 2013]), together with their dis-
tances. The elections are represented graphically as points
in the plane, whose Euclidean distances are as similar to the
distances between the respective elections as possible. Since
maps of elections typically contain hundreds of elections, in-
stead of using the appealing-but-hard-to-compute extension

1Generally, we use the word distance when we refer to a value of
a metric, but occasionally, reflecting the literature, we break this rule
(e.g., to speak of the earth mover’s distance or the swap distance).

of the swap distance, Szufa et al. [2020] introduced and used
a much simpler metric. Yet, the maps proved to be quite use-
ful. For example, Szufa et al. [2020] used their map to find
hard instances for some multiwinner voting rule, Boehmer et
al. [2021b] and Boehmer and Schaar [2022] obtained insights
about different types of real-life elections, and Boehmer et
al. [2021a] used the maps to study the robustness of elections.

In this work, we take a step back and analyze the properties
of several metrics, including those of Faliszewski et al. [2019]
and Szufa et al. [2020]. Our goal is to help putting empirical
work with election data on a more solid mathematical basis
and, in particular, to understand if basing the election maps
on the simpler metric was a good decision, what was its price,
and if one should have used other metrics. We view the swap
distance as a yardstick against which we measure the other
ones. In particular, we consider the following issues:

1. As a basic test, we compare the metrics’ ability to dis-
tinguish nonisomorphic elections. Since some metrics
act on aggregate representations of elections, they may
sometimes fail at this task. We also study the complexity
of computing an election with a given representation.

2. We analyze distances between four “compass” elections,
which capture four types of (dis)agreement among the
voters [Boehmer et al., 2021b]. We find that two of them
are the most distant elections under each of our metrics.

3. We compute the correlation between the values provided
by the swap distance and the other metrics; we also com-
pare the maps that they produce.

4. We note that the swap distance can be understood in
terms of the shortest paths on a certain graph and we
analyze to what extent this applies to the other metrics.

Some proofs and arguments are deferred to our full version
[Boehmer et al., 2022].

2 Preliminaries
For an integer n, let [n] := {1, . . . , n}. Let C be set of candi-
dates. By L(C) we denote the set of all total orders over C,
referred to either as preference orders or votes, depending on
the context.
Elections. An election E = (C, V ) consists of a candi-
date set C = {c1, . . . , cm} and a preference profile V =
(v1, . . . , vn), where each vi is a preference order from L(C).
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For example, a preference order vi : a � b � c indicates that
the i-th voter ranks candidate a highest, followed by candi-
dates b and c. Given a vote v and a candidate c, we write
posv(c) to denote the position of c in v (the top-ranked can-
didate has position 1, the next one has position 2, and so on).
Example 1. Consider elections E = (C, V ) and E′ =
(C ′, V ′), where C = {a, b, c}, C ′ = {x, y, z}, V =
(v1, v2, v3), V ′ = (v′1, v

′
2, v
′
3), and the votes are:

v1 : a � b � c, v2 : b � c � a, v3 : b � a � c,
v′1 : x � y � z, v′2 : x � y � z, v′3 : y � x � z.

Aggregate Representations. Let E = (C, V ) be an elec-
tion. We use the following aggregate representations of E:

1. For each two candidates c, d ∈ C,ME(c, d) is the num-
ber of voters that prefer c to d in election E. We call
it the weighted majority relation and represent it as an
m × m matrix where rows and columns correspond to
the candidates (the diagonal is undefined). A relative
weighted majority relation is a weighted majority rela-
tion from whose entries we subtract n/2 (let n be even
here).

2. For a candidate c ∈ C and a position i ∈ [m], PE(c, i)
is the number of voters from E that rank c on position i;
PE(c) = (PE(c, 1), . . . ,PE(c,m)) is a (column) posi-
tion vector of c. We view PE as a matrix with columns
PE(c1), . . . ,PE(cm) and call it a position matrix.

3. For a candidate c ∈ C, BE(c) :=
∑n
i=1

(
m− posvi(c)

)
is the Borda score of c inE. Then, BE is the Borda score
vector, whose entries correspond to the candidates.

Example 2. Below we provide ME , PE , and BE , respec-
tively, for election E from Example 1:


a b c

a − 1 2
b 2 − 3
c 1 0 −

,


a b c

1 1 2 0
2 1 1 1
3 1 0 2

, [ a b c

3 5 1
]
.

(Pseudo)Metrics. Given a set X , a function d : X ×X →
R is a pseudometric overX if for each three elements a, b, c ∈
X it holds that (i) d(a, b) = d(b, a) ≥ 0, (ii) d(a, a) = 0, and
(iii) d(a, c) ≤ d(a, b) + d(b, c). For brevity, we will refer
to our pseudometrics as metrics (formally, a metric should
assume value 0 only if both its arguments are identical).
Metrics Among Vectors. Let x = (x1, . . . , xn) and y =
(y1, . . . , yn) be two real-valued vectors. Then, `1(x, y) :=
|x1− y1|+ · · ·+ |xn− yn| is the `1-metric between x and y.
Given a real-valued vector z = (z1, . . . , zn), we write ẑ to
denote its prefix-sum variant, i.e., an n-dimensional vector
such that for each i ∈ [n], its i-th entry is ẑi = z1 + z2 +
· · · + zi. If the entries of x and y sum up to the same value
and contain only nonnegative entries, then their earth mover’s
distance is defined as [Rubner et al., 2000]:

emd(x, y) := `1(x̂, ŷ).

Alternatively, emd(x, y) is defined as the minimum total cost
of a sequence of operations that transform vector x into vec-
tor y, where each operation is of the form “subtract value α
from some xi (where, at the time of performing the operation,
we have xi ≥ α) and add α to xj” and has cost α · |j − i|.
Both definitions are equivalent [Rubner et al., 2000].

Bijections. Given two equal-sized sets X and Y , let
Π(X,Y ) denote the set of all one-to-one mappings from X
to Y . For a positive integer n, let Sn be the set of all per-
mutations of [n] (i.e., Sn = Π([n], [n])). Given two equal-
sized candidate sets C and D, a preference order v ∈ L(C),
and a function σ ∈ Π(C,D), we write σ(v) to denote the
preference order obtained from v by replacing each candidate
c ∈ C with the candidate σ(c) ∈ D. Given a preference
profile V = (v1, . . . , vn) ∈ (L(C))n, by σ(V ) we mean
(σ(v1), . . . , σ(vn)). We use analogous notation for other ob-
jects defined over candidate sets. For example, for an election
E = (C, V ), we write σ(ME) to denote the weighted major-
ity relation of the election (σ(C), σ(V )) = (D,σ(V )).

3 Metrics Among Elections
In this section, we define the six metrics among elections that
we study. All but the last one already appeared in the litera-
ture. We only consider distances between elections with the
same numbers of candidates and the same numbers of voters.

Swap and Discrete Isomorphic Metrics
Let C be a candidate set and let u, v ∈ L(C) be two votes.
Their discrete distance, ddisc(u, v), is 0 if they are identical
and it is 1 otherwise. Their swap distance, dswap(u, v), is
the number of inversions between u and v, i.e., the number
of pairs of candidates c, d ∈ C such that u and v rank these
candidates in opposite order.

Let d be either ddisc or dswap. For two elections,
E = (C, V ) and E′ = (C ′, V ′), where |C| = |C ′|,
V = (v1, . . . , vn), and V ′ = (v′1, . . . , v

′
n), Faliszewski et

al. [2019] extended d to elections as follows:

d(E,E′) := minσ∈Π(C,C′) minρ∈Sn

∑n
i=1 d

(
σ(vi), v

′
ρ(i)

)
.

In other words, under the extended distance we match the
candidates and the votes of the two input elections so that the
sum of the distances between the matched votes is minimal.

Example 3. The discrete distance between elections E
and E′ from Example 1 is one, as witnessed by the candi-
date matching σ(a) = x, σ(b) = y, and σ(c) = z. For the
same matching, the swap distance between E and E′ is two.

We refer to the extensions of ddisc and dswap as the discrete
and swap isomorphic metrics. This stems from the fact that
two elections are isomorphic (i.e., can be made identical by
renaming candidates and reordering the votes) if and only if
their discrete distance (equivalently, swap distance) is zero.

Faliszewski et al. [2019] have shown that while comput-
ing the discrete isomorphic distance can be done in polyno-
mial time, the same task for the swap distance is NP-hard
(in essence, this follows from the hardness proofs for the Ke-
meny voting rule [Bartholdi et al., 1989; Dwork et al., 2001]).

Positionwise and Pairwise Metrics
To circumvent the hardness of computing the isomorphic
swap distance, Szufa et al. [2020] introduced two other met-
rics, based on analyzing aggregate representations of elec-
tions.

Let E = (C, V ) and E′ = (C ′, V ′) be two elections such
that |C| = |C ′| and |V | = |V ′|. The EMD-positionwise
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distance between E and E′ is:

demd
pos (E,E′) := min

σ∈Π(C,C′)

∑
c∈C

emd
(
PE(c),PE′(σ(c)

)
.

Note that we view each candidate as her or his position vector
and we seek a candidate matching that minimizes the earth
mover’s distances between the vectors of matched candidates.

Example 4. Consider the same elections and the same match-
ing σ as in Example 3. We have that PE(a) = (1, 1, 1),
whereas PE′(σ(a)) = (2, 1, 0) and their earth mover’s dis-
tance is 2. Altogether, demd

pos (E,E′) = 2 + 1 + 1 = 4.

Szufa et al. [2020] based their metric on EMD because they
felt it was intuitively appropriate. We aim to verify this intu-
ition and, thus, we also consider the `1-positionwise metric,
which uses the `1 distance instead of EMD.

Szufa et al. [2020] also introduced the pairwise metric,
which works on top of the weighted majority relation:

dpair(E,E
′) := min

σ∈Π(C,C′)

∑
a,b∈C
a 6=b

|ME(a, b)−ME′(σ(a), σ(b))|.

Example 5. Take the elections from Example 1 and matching
σ′(a) = y, σ′(b) = x, and σ′(c) = z;ME and σ′(ME′) are:


a b c

a − 1 2
b 2 − 3
c 1 0 −

,


σ′(a) σ′(b) σ′(c)

σ′(a) − 1 3
σ′(b) 2 − 3
σ′(c) 0 0 −


and we see that the pairwise distance of our elections (for this
matching) is 0 + 1 + 0 + 0 + 1 + 0 = 2.

The positionwise distances can be computed in polynomial
time [Szufa et al., 2020], whereas the pairwise distance is
NP-hard to compute [Grohe et al., 2018; Szufa et al., 2020]).

Bordawise Metric
We introduce one new metric, similar in spirit to the position-
wise and pairwise ones, but defined on top of the election’s
Borda score vectors. Given two equal-sized elections E and
E′, their Bordawise distance is defined as:

dBorda(E,E′) := emd(sort(BE), sort(BE′)),
where for a vector x, sort(x) means a vector obtained from x
by sorting it in nonincreasing order. The Bordawise metric
is defined to be as simple as possible, while trying to still
be meaningful. For example, sorting the score vectors en-
sures that two isomorphic elections are at distance zero and
removes the use of an explicit matching between the candi-
dates.
Example 6. The distance between the elections from Exam-
ple 1 is emd

(
(5, 3, 1), (5, 4, 0)

)
= 1.

4 Aggregate Representations
First, we discuss how the aggregate representations that un-
derlie our metrics affect their ability to distinguish noniso-
morphic elections. Then, we study the complexity of decid-
ing if a given representation indeed corresponds to some elec-
tion.

|C| × |V | ANECs Positionwise Pairwise Bordawise

3× 3 10 10 8 8
3× 4 24 23 17 13
3× 5 42 40 25 18

4× 3 111 93 50 37
4× 4 762 465 200 76
4× 5 4095 1746 513 131

Table 1: Number of equivalence classes under our metrics.

Given a metric, two elections are in the same equivalence
class if their distance is zero. An anonymous, neutral equiva-
lence class (ANEC) consists of all isomorphic elections with
a given number of candidates and voters [Eğecioğlu and Gir-
itligil, 2013]. While ANECs are the equivalence classes of the
swap and discrete metrics, the other metrics are less precise
and their equivalence classes are unions of some ANECs.

To get a feeling as to how much precision is lost due to
various aggregate representations, in Table 1 we compare the
number of ANECs and the numbers of equivalence classes of
the positionwise, pairwise, and Bordawise metrics, for small
elections; we computed the table using exhaustive search2

(note that EMD- and `1-positionwise metrics have the same
equivalence classes). Among these metrics, positionwise
ones perform best and Bordawise performs worst. Next, we
provide a partial theoretical explanation for this observation.

We say that a metric d is at least as fine as a metric d′ if
for each two elections A and B, d(A,B) = 0 implies that
d′(A,B) = 0 (i.e., each equivalence class of d is a subset of
some equivalence class of d′). Metric d is finer than d′ if it is
at least as fine as d′ but d′ is not at least as fine as d.
Proposition 1. Swap and discrete isomorphic metrics are
finer than EMD/`1-positionwise and pairwise, which both are
finer than Bordawise. Neither EMD/`1-positionwise is finer
than pairwise nor the other way round.

Nonetheless, having many equivalence classes does not au-
tomatically make a metric desirable. For example, the dis-
crete isomorphic metric is as fine as the swap one, but has
many unappealing properties.

Let us now move to the problem of deciding if a given ma-
trix/vector indeed represents some election. For position ma-
trices, Boehmer et al. [2021b] have shown this to be easy: If
a matrix M has nonnegative entries and its rows and columns
sum up to the same value, then there is a polynomial-time
computable election E with M = PE . Hence, one can work
directly on the matrices and recover elections when needed.
Unfortunately, for Borda score vectors and weighted majority
relations analogous problems are NP-complete. Thus, by op-
erating on them directly, we may leave the space of elections.
Theorem 1. Given a vector x of nonnegative integers, it is
NP-complete to decide if there is an electionE with BE = x.

The hardness of deciding whether there is an election
with a given Borda score vector is not too surprising be-
cause it is closely related to strategic voting under the Borda
rule, which is also NP-complete [Betzler et al., 2011]. The
case of weighted majority relation is more intriguing because

2There are exact formulas for some columns in Table 1, but not
for all. See, e.g., the work of Eğecioğlu and Giritligil [2013].
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the classic McGarvey’s theorem [McGarvey, 1953] gives a
polynomial-time algorithm for recovering an election with
a given relative weighted majority relation (but see also the
work of Bachmeier et al. [2019]).
Theorem 2. Given an m ×m matrix M , it is NP-complete
to decide if there is an election E withME = M .

Proof (First Part). We reduce from the NP-complete RE-
STRICTED X3C problem (RX3C) [Gonzalez, 1985]. Its in-
stances consist of a universe X = {x1, . . . , x3t} and a family
S = {S1, . . . , S3t} of size-3 subsets of X , where each xi ap-
pears in exactly three sets from S . We ask if there is a family
S ′ ⊆ S of t sets such that

⋃
Si∈S′ Si = X (i.e., we ask if

there is an exact cover of X). Let (X,S) be an instance of
RX3C. We form a candidate set:

C = {d} ∪X ∪ {s1. . . . , s3t} ∪ {b1, b2, b3} ∪A ∪ F,
where A = {a1, . . . , a3t} and F = {f1, . . . , f3t} are sets of
“location” candidates. The candidates s1, . . . , s3t correspond
to the sets from S , b1, b2, b3 will delineate blocks in the votes,
and d will be used to encode the exact cover (if one exists).
For each i ∈ [3t], by A(i) and F (i) we mean the orderings:

A(i) : a1 � · · · � ai � si � ai+1 � · · · � a3t,

F (i) : f1 � s1 � f2 � s2 � · · · � fi−1 � si−1

� fi � fi+1 � si+1 � . . . f3t � s3t.

For a subset C ′ ⊆ C of candidates, [C ′] denotes an arbitrary,
fixed ordering of the candidates from C ′. For every Si =
{xj , xk, x`} ∈ S , let vi denote the following vote:

b1 � xj � xk � x` � b2 � A(i) � [X \ Si] � b3 � F (i).

Let E′ = (C \ {d}, (v1, . . . , v3t)) be an election. We form a
weighted majority relation M by takingME′ and extending
it to include d as follows: We require that d is placed behind
b1 in exactly t votes, d is placed behind each candidate from
X in exactly one vote, and d is never placed behind any other
candidate. We claim that there is an electionE such thatM =
ME if and only if S contains an exact cover of X .

First, let S ′ ⊆ S be an exact cover of X . To construct E,
for each Si ∈ S ′, we include vote vi with d inserted right in
front of b2, and for each Si ∈ S \ S ′, we include vi with d
inserted before b1. As S ′ is an exact cover, M =ME .

The other direction is available in our full version.

5 Diameter and Compass Elections
In this section, we analyze the distances between four “com-
pass” elections of Boehmer et al. [2021b]. These elections
capture four different types of (dis)agreement among the vot-
ers and, thus, we expect good metrics to put them far apart.
Since the smallest nonzero distances under all our metrics are
either 1, 2, or 4, the larger are the distances between the com-
pass elections, the more space there is between them for other
elections. For technical reasons, we fix the number m of can-
didates to be even, and the number of voters to be n = t ·m!,
where t is some positive integer (we will see ways to relax this
assumption). The compass elections are defined as follows:

1. In the identity elections, denoted ID, all voters have the
same, fixed preference order.

2. In the antagonism elections, denoted AN, half of the vot-
ers rank the candidates in one way and half of the voters
rank them in the opposite way.

3. In the uniformity elections, denoted UN, each possible
vote appears the same number of times.

4. In the stratification elections, denoted ST, the candidates
are partitioned into two equal-sized sets A and B. Each
possible preference order where all members of A are
ranked ahead of B appears the same number of times.

The next proposition gives asymptotic distances between the
compass elections.

Proposition 2. Let X and Y be two distinct com-
pass elections. Then, dBorda(X,Y ) = Θ(nm3),
dswap(X,Y ) = demd

pos (X,Y ) = dpair(X,Y ) = Θ(nm2),
d`1pos(X,Y ) = Θ(nm), and ddisc(X,Y ) = Θ(n), except that
dpair(AN,UN) = dBorda(AN,UN) = 0.

The distances between the compass elections are the largest
under the swap and EMD-positionwise metrics, followed by
those under `1-positionwise and discrete isomorphic metrics.
Pairwise and Bordawise metrics perform particularly badly
because they cannot distinguish between UN and AN. Yet,
except for this, the compass elections are asymptotically as
distant under each of our metrics as possible. Indeed, ID and
UN even form diameters of our election spaces (this also con-
firms a conjecture of Boehmer et al. [2021b]).

Theorem 3. Let d be one of our six metrics. For each two
electionsX and Y (with sizes as specified at the beginning of
this section) it holds that d(X,Y ) ≤ d(ID,UN).

Proof (EMD-positionwise). The EMD-positionwise metric
can be seen as working over matrices whose entries are non-
negative and whose rows and columns sum up to the same
value. Let A and B be two such matrices, whose rows and
columns sum up to some value n′. Let A/n′ and B/n′ be
the same matrices, but with their entries divided by n′. Note
that demd

pos (A,B) = n′ ·demd
pos (A/n′, B/n′). From now on, we

focus on matrices whose entries are nonnegative and whose
rows and columns sum up to 1 (they are called bistochastic).

Boehmer et al. [2021b] have shown that demd
pos (ID,UN) =

n(m2−1)/3. We claim that for each two m × m bistochastic
matrices X and Y it holds that demd

pos (X,Y ) ≤ (m2 − 1)/3.
For the sake of contradiction, assume that the opposite holds.
Let x1, . . . , xm be the columns of X and y1, . . . , ym be the
columns of Y . Without loss of generality, we assume that
demd

pos (X,Y ) =
∑
i∈[m] emd(xi, yi); otherwise we could re-

order the columns of one of the matrices. By definition
of the EMD metric, we have that

∑
i∈[m] emd(xi, yi) =∑

i∈[m] `1(x̂i, ŷi). For each i ∈ [m], we write x̂i,1, . . . , x̂i,m
to denote the entries of the cumulative vector x̂i; we use anal-
ogous notation for ŷi. Note that in the matrices with columns
x̂1, . . . , x̂m and ŷ1, . . . , ŷm, for each j ∈ [m], the j-th row
sums up to j (we refer to this as the cumulative rows prop-
erty). Using these observations, we note that:∑
i∈[m]emd(xi, yi) =

∑
i∈[m] `1(x̂i, ŷi)

=
∑
i,j∈[m] |x̂i,j − ŷi,j |
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=
∑
i,j∈[m]

(
max(x̂i,j , ŷi,j)−min(x̂i,j , ŷi,j)

)
=
∑
i,j∈[m](x̂i,j + ŷi,j)− 2

∑
i,j∈[m] min(x̂i,j , ŷi,j)

= 2
(∑

j∈[m] j
)
− 2

∑
i,j∈[m] min(x̂i,j , ŷi,j)

= m(m+ 1)− 2
∑
i,j∈[m] min(x̂i,j , ŷi,j).

Thus, if demd
pos (X,Y ) > (m2 − 1)/3, then it must hold that:∑

i,j∈[m] min(x̂i,j , ŷi,j) <
1
2

(
m(m+ 1)− m2−1

3

)
= (2m2 + 3m+ 1)/6 = (2m+ 1)(m+ 1)/6.

In the following, for each i, k ∈ [m] with i + k > m,
if i + k is used as a column index, then we take it to be
i + k − m (i.e., column indices “cycle”). For each k ∈
[m], we have demd

pos (X,Y ) ≤
∑
i∈[m] emd(xi, yi+k); if this

were not the case, then our assumption that demd
pos (X,Y ) =∑

i∈[m] emd(xi, yi) would have been false. Consequently,
for every k ∈ [m], repeating the above reasoning, we get:∑

i,j∈[m] min(x̂i,j , ŷi+k,j) < (2m+ 1)(m+ 1)/6,

If a, b ∈ [0, 1] then a · b ≤ min(a, b). As for each i, j ∈ [m]
we have x̂i,j , ŷi,j ∈ [0, 1], for each k ∈ [m] we have:∑

i,j∈[m] x̂i,j · ŷi+k,j < (2m+ 1)(m+ 1)/6.

By summing this inequality sidewise for all k ∈ [m], we get:∑
i,j∈[m] x̂i,j ·

∑
k∈[m] ŷk,j < m(2m+ 1)(m+ 1)/6.

By applying the cumulative rows property, we obtain:∑m
j=1 j

2 < m(2m+ 1)(m+ 1)/6.

Since we know that
∑m
j=1 j

2 = m(2m+ 1)(m+ 1)/6, this
is a contradiction. Hence, for all m × m bistochastic ma-
trices X , Y we have demd

pos (X,Y ) ≤ (m2 − 1)/3. Thus,
for all elections with m candidates and n voters, their EMD-
positionwise distance is at most n(m2 − 1)/3.

In the above proof we do not work directly with elec-
tions, but, rather, with normalized position matrices. Viewed
this way, ID is a unit diagonal matrix and UN is a matrix
whose entries are all equal. Indeed, this is how Boehmer et
al. [2021b] defined them. In this way, the proof works for any
number of voters (this also applies to `1-positionwise and, us-
ing normalized weighted majority relations, to pairwise).

For Bordawise, the proof of Theorem 3 shows that for each
election the sum of its distances from ID and UN is the same.
That is, under this metric every election lays on the diameter.

6 Maps and Correlations
While in the previous section we studied distances be-
tween hand-crafted elections, now we analyze automatically-
generated ones. We test how our metrics correlate with the
swap one, and we compare their maps of elections.

We use two datasets. The first one consists of all small
elections, as in Section 4. The second one resembles those
used in the maps of Szufa et al. [2020] and Boehmer et

|C| × |V | EMD-Pos. `1-Pos. `1-Pair. Bordawise Discrete

3× 3 0.942 0.748 0.860 0.587 0.614
3× 4 0.900 0.697 0.860 0.659 0.636
3× 5 0.920 0.759 0.843 0.606 0.680

4× 3 0.850 0.577 0.735 0.442 0.402
4× 4 0.782 0.561 0.689 0.415 0.434
4× 5 0.772 0.567 0.672 0.439 0.432

10×50
(340 elections) 0.745 0.563 0.708 0.430 0.342

Table 2: Pearson correlation coefficients between swap distances
and the other ones computed for our datasets.

al. [2021b], but consists of elections with 10 candidates and
50 voters,3 generated according to the following statistical
models (see the just-cited papers for more details):
IC, Urn, and Mallows. We generated 20 elections using the
impartial culture model (IC), where each vote is selected uni-
formly at random, and 60 elections for each of the classic urn
and Mallows models (we used the same sampling protocol as
Boehmer et al. [2021b]).
SP, SC, and SPOC. We generated 20 single-peaked elec-
tions (SP elections) uniformly at random (this is known as
the SP Walsh model [Walsh, 2015]), 20 such elections using
the Conitzer model [Conitzer, 2009], and 20 single-peaked on
a circle elections (SPOC elections), uniformly at random [Pe-
ters and Lackner, 2020]. We also generated 20 single-
crossing elections (SC elections) using the sampling protocol
of Szufa et al. [2020].
Euclidean. In these elections, each candidate and voter is a
point from some Euclidean space and the voters rank the can-
didates with respect to their increasing distances from them.
We have generated the points uniformly at random from (i) a
1D interval, (ii) a 2D sphere, (iii) a 2D disc, and (iv) a 3D
cube; in each case we generated 20 elections.
Group-Separable. Group-separable elections were intro-
duced by Inada [1964; 1969]. We use a definition based on
trees (see, e.g., the works of Karpov [2019] and Faliszewski
et al. [2022] for a discussion and motivation). Consider an
ordered, rooted tree where each leaf is a unique candidate.
To obtain a vote, for each of the nodes we can choose to re-
verse the order of its children and, then, rank the candidates
by reading them off from left to right. Given such a tree, we
sample a vote by reversing the order of each node’s children
with probability 1/2. We generated 20 elections using com-
plete binary trees, and 20 elections using binary caterpillar
trees (a binary caterpillar tree is defined recursively to either
be a leaf, or a root whose one child is a leaf and whose other
child is a root of a binary caterpillar tree.)

For each dataset we have computed the Pearson Correla-
tion Coefficient (PCC) between the swap distances and those
provided by the other metrics. PCC is a classic measure of
correlation that takes values between −1 and 1; its absolute
value gives the strength of the correlation and the sign in-
dicates its positive or negative nature. Szufa et al. [2020]

3This is the largest size for which we could compute swap dis-
tances within a few weeks. Szufa et al. [2020] used 100 × 100
elections, and Boehmer et al. [2021b] used 10× 100 ones.
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(a) Isomorphic swap (b) EMD-positionwise (c) `1-positionwise

(d) Pairwise (e) Bordawise

Figure 1: Maps of elections prepared using each of our metrics.

presented a similar experiment, but on a much smaller scale,
and on a limited set of metrics. We present our results in Ta-
ble 2. We see that EMD-positionwise is most strongly corre-
lated with the swap metric, with a large advantage over all the
metrics, except for pairwise (where the advantage is smaller).

Next, we used the techniques of Szufa et al. [2020] to draw
the maps of elections from the 10×50 dataset. We show these
maps in Figure 1 (we omit the discrete metric as its visualiza-
tion is nearly meaningless); each dot is an election, its color
corresponds to the statistical model it comes from, and the
points are placed so that their Euclidean distances resemble
those according to a given metric as much as possible (follow-
ing Szufa et al. [2020], we used the algorithm of Fruchterman
and Reingold [1991] to place the points). We also included
the compass elections on the maps (for the swap metric, their
location is approximate).

The maps provided by the isomorphic swap distance
and both positionwise metrics are remarkably similar, but,
nonetheless, there are some differences. For example, un-
der the swap metric group-separable caterpillar elections are
closer to the IC ones than the group-separable balanced elec-
tions (both on the map and in terms of actual distances),
whereas according to the positionwise metrics this relation is
reversed. Also, `1-positionwise clearly distinguishes between
2D-Sphere and group-separable balanced elections (like the
swap metric), but EMD-positionwise does not. Generally, the
area between UN and AN is quite challenging for our met-
rics (fortunately, according to Boehmer et al. [2021b], only
few real-life elections land there). The maps for the pairwise
and Bordawise metrics illustrate their flaws identified in the
previous sections (e.g., Bordawise and pairwise conflate UN
and AN, and the former also puts all the elections on the di-
ameter, which explains its elongated shape; the curvature is

an artifact of the drawing algorithm).
All in all, the positionwise metrics seem to perform best in

this section, with the PCC values pointing to the EMD one.

7 Metrics as Graphs
We conclude by discussing the intrinsicness of our met-
rics (see, e.g., the textbook of Khamsi and Kirk [2001] for
more details on this notion). Consider a graph whose vertices
are equivalence classes of a given metric and where the edges
connect those classes that are at minimum nonzero distance
from each other. Under the swap distance, each edge cor-
responds to a swap of adjacent candidates and each shortest
path corresponds to the distance between its endpoints. This
means that the swap distance is intrinsic.
Definition 1. Let α ≥ 1 be a number. A metric d is α-
intrinsic if for each pair of elections X and Y (with the same
number of candidates and the same number of voters), there
are elections X = E0, E1, E2, . . . , Ek−1, Ek = Y such that∑k
i=1 d(Ei−1, Ei) ≤ α · d(X,Y ), and for each i ∈ [k],

d(Ei−1, Ei) is the smallest nonzero distance between elec-
tions under d. If α = 1, then d is intrinsic.
An intrinsic metric can be viewed as performing a series of
simple, unit operations. Among our metrics only swap and
discrete are intrinsic, but the positionwise ones are 2-intrinsic
(this is, perhaps, the most technically involved of our results).
Theorem 4. The swap and discrete metrics are intrinsic, but
neither of the EMD/`1-positionwise, pairwise, and Bordawise
metric is intrinsic, but the EMD- and `1-positionwise metrics
are 2-intrinsic yet not α-intrinsic for any α < 2.
We conjecture that pairwise is not α-intrinsic for any α ≥ 1.

8 Summary
We found that the EMD- and `1-positionwise metrics are
quite similar to the swap one (which, computational issues
aside, we view as ideal), but the EMD variant seems better.
This justifies the choice of the EMD-positionwise metric for
the maps of Szufa et al. [2020] and Boehmer et al. [2021b].
Yet, we ask for a metric that would perform even better, es-
pecially on elections between the uniform and antagonism
ones. With our study of intrinsicness, we have initiated an
axiomatic analysis of our metrics; it would be interesting to
extend this analysis to better understand their properties.
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