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There are many
axiomatizations of the

o feedback centrality measures

proposed in the literature.

Palacios-Huerta & Volij (2004) : Seeley index,
Altman & Tennenholtz (2005) : Seeley index

Dequiedt & Zenou (2017
Was & Skibski (2018

, Katz

(2004) :
(2005) :
Kitti (2016) :
(2017):
(2018):
(2020) :

Was & Skibski (2020) : PageRank

k
However, each considers at most 2 feedback centralities,

hence it is difficult to compare properties between measures.

o

Thus, in this work we create a joint axiom system for
all four main feedback centralities.
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* Considered, but without a complete characterization
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AXIOM: BASELINE

For every node v, if v is isolated,

AXIOM: CYCLE

For every noc

ev, if Gisacycle
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Each of the four main feedback centralities is
uniquely characterized by the subset of five of our axioms.
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AXIOM: LOCALITY

For every graph G and
node v, if G’ is a connected
component of v, then

F_(v) =F(v)
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AXIOM: EDGE DELETION

For every graph G and edge (u,w), if
G’ is graph G with (u,w) removed,
then F.(v) = F,(v) for every v that is
not a successor of uin G.
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AXIOM: NODE COMBINATION

For every graph G and nodes u, w, such that deg(u)=
deg(w)=deg(s) for every successor s of uor w, if G’ is
graph G with proportionally combined u into w, then
F.(v) = F.(v) for allvd{u,wf and F (w) = F () +
F.(w).
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