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Abstract 

This study explores asymmetric volunteers’ dilemma (VOD) games where costs for 

volunteering is different among players. Diekmann (1993) conjectures that an 

equilibrium, in which a player with less costs contributes, is more likely to be played if 

it is risk dominant. We re-examined this hypothesis theoretically and experimentally to 

find that even though such equilibrium is risk dominant, it does not necessarily hold. 

Conducting an econometric comparison among several behavioral models, we find that 

the quantal response equilibrium (QRE) model fits the data best.   
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1. Introduction 

Natural disasters often devastate a country and ravage the lives of many. Still fresh in 

our memories are the huge earthquake and the resulting tsunami that hit the North-

eastern part of Japan in 2011, as well as the ensuing tragic accident of the Fukushima 

Daiichi Nuclear Power Plant. The associated social and economic losses were huge, 

and the recovery from them has taken a long time. Such incidences make us acutely 

aware of the importance of volunteers, as we hear many stories about people who help 

others even at the risk of their own lives. However, the question of what kind of people 

volunteer and what their motivations are still remain unanswered. 

  Given that, by definition, no monetary rewards are given to volunteers, pecuniary 

incentives do not explain why they are so engaged. Sympathy or empathy is a strong 

candidate to serve as an explanation. If someone was hurt, we would feel, more or less, 

uneasy; we will be urged to take some actions and gain relief if the victim is, ultimately, 

saved. However, this explanation is also not conclusive. Since volunteering is a costly 

action, even empathetic people might think of free-riding on others, anticipating that 

someone else may do the job.  

  A famous parable in the New Testament best illustrates this complicated situation 

(The Parable of the Good Samaritan, Luke 10:25-37). Aware of an injured fellow 

citizen who fell on the street, a priest and a Levite passed him by. Then a Samaritan, 

who is, of course, a stranger, took action and saved him. The priest and the Levite, while 

feeling uncomfortable, ultimately, free-rode on the Samaritan’s helping behavior. This 

story is even impressive given that the Israelites and the Samaritans were in an 

adversarial relationship in those days. This meant that helping an Israelite was costlier 

for the Samaritan not only in monetary terms but also politically and psychologically. 
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Even today, we see that many people help victims from very distant areas rather than 

nearby ones, and it is often the case that they themselves were once victims in other 

disasters. How can we understand such a phenomenon?  

  This study attempts to address this issue in terms of game theory as well as behavioral 

game theory1. The situations cited above are well captured by a game called Volunteer’s 

Dilemma (VOD) game, which was firstly formulated by Diekmann (1985) to elucidate 

“social dilemmas” or “social traps,” which are broader than those covered by the 

prisoner’s dilemma.  

  While symmetric versions of VOD conduce to the elucidation of such interesting 

issues like the so-called “bystander effect,”2 asymmetric versions of VOD are useful 

for exploring the issue of who most likely contribute (help) in the aforementioned 

situations. Diekmann (1993) introduced asymmetry in terms of costs of contribution 

among players and showed, theoretically, that in the completely mixed strategy 

equilibrium, a player with more costs volunteers more often (the behavior of the good 

Samaritan is, thus, explained!). 

  While this theoretical prediction seems to support some observations, we are still 

puzzled with this conclusion. For example, if we consider a bystander’s rescue 

decisions in emergencies, is it not the case that the one with the least cost will help the 

                                         
1 Some studies deal with essentially the same problem outside of game theory. Darly and Latané 

(1968) examine the helping behavior of people witnessing an accident or crime, as best exemplified 

by the murder case of Kitty Genovese. It is said that her life could have been saved if only one of 

the bystanders had paid a small amount of cost (such as making an emergency call to the police). A 

large amount of evidence has also been accumulated by political scientists and psychologists to 

investigate factors affecting the “bystander effect” and the effect of the group size on the tendency 

to cooperate or contribute in similar situations (Latané and Nida, 1981). 

2 Kawagoe et al. (2018) characterize all the symmetric equilibria of this class of games. 
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victim? This intuition, naturally, leads us to further investigations. With the same 

motivation of study, Diekmann (1993) and Healy and Pate (2009) conducted laboratory 

experiments and confirmed that the converse of the prediction by the mixed strategy 

equilibrium was really the case; a player with less cost volunteers more often. But, how 

can one provide a theoretical justification for such experimental findings? Diekmann 

(1993) suggested in a footnote an explanation based on risk dominance proposed by 

Harsanyi and Selten (1988), but his ‘analysis’ seems to be incomplete. 

  Thus, we first provide a rigorous theoretical analysis of the game based on risk 

dominance. We confirm Diekmann (1993)’s above-mentioned conjecture and give 

some characterizations of equilibria in a more general setting by utilizing an extension 

of the risk dominance concept to general n-person games (Güth 1990). Then, we 

analyze the game with other-regarding preference and bounded rationality. We use 

inequality aversion (Fehr and Schmidt, 1999), level-k model (Stahl and Wilson 1995; 

Crawford et al. 2013), and quantal response equilibrium (QRE: McKelvey and Palfrey 

1995) as representative models. 

  Based on these analyses, S-equilibrium (where a player with less costs volunteers) is 

shown to be risk dominant for any treatment of Diekmann (1993)’s experiment. 

However, depending on parameter values of the games (QRE’s prediction depends on 

its noise parameter), the inequality aversion and the level-k model give different 

predictions than risk dominance. Thus, if Diekmann (1993)’s conjecture were right, as 

S-equilibrium was risk dominant in every treatment, we would observe S-equilibrium 

more frequently in his data. Our analysis showed that predictions by both mixed 

strategy and risk dominance were rejected. Other models captured important 

characteristics of the results, but no model explained all the data consistently. Finally, 
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we, then, conducted an econometric horse race to determine which model better fits the 

data. The estimation results showed that QRE best explains Diekmann (1993)’s data. 

Thus, Diekmann (1993)’s conjecture that a player with less cost volunteers more often 

was falsified. 

  We, then, extended his experiment by adding a treatment to differentiate the 

prediction by inequality aversion from other models. We also added a more complicated 

three-person version of the game. Diekmann (1993)’s conjecture was also falsified in 

our experiment, and it was confirmed, again, that QRE best fits the data. Thus, 

Diekmann (1993)’s conjecture is not supported by his and our results. 

  Of course, this does not mean free-riding among volunteering players with less cost 

is dominant in the data. Rather, in some treatments, the majority of players with less 

cost volunteer more often. What we show, empirically, is that the condition that S-

equilibrium is risk dominant is not a source of volunteering by players with less cost. 

Inequality aversion also fails. No single theory can explain the data. Roughly speaking, 

the fact that QRE was the best fit means that the subject behaviors might be a 

combination of mixed strategy equilibrium and random play, while its proportion 

depends on the parameters of the game. However, the understanding of volunteering 

decision by players with less cost needs a more careful scrutiny. 

  The organization of the study is as follows. In the next section, we formulate the 

VOD game with an asymmetric cost structure and present several candidate models that 

may explain the behavior of subjects in the experiments. This part includes extensive 

mathematical characterizations of the models with some new results. Section 3 re-

examines the data reported by Diekmann (1993) with those models. In Section 4, we 

turn to the analyses of our experiments. We conclude in the final section. 
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2. Model 

In the VOD game, if at least one of n players volunteers, certain public goods are 

provided. The benefit from the public goods for player i is denoted as 𝑉𝑖, and the cost 

of volunteering for player i is 𝐾𝑖. When public goods are not provided, the payoff for 

player i is 𝐿𝑖 . Assume 𝑉𝑖 − 𝐿𝑖 > 𝐾𝑖 > 0  for all i. Each player chooses between 

volunteering (C) and not volunteering (N). Obviously, there are multiple pure strategy 

Nash equilibria where one and only one player chooses C, and the rest of the players 

choose N. Note that a strategy profile where all players choose 𝑁  is not a Nash 

equilibrium.  

 

2.1 Mixed strategy equilibria 

Next, we consider the mixed strategy equilibria of the game. The probability that player 

𝑖 chooses C is denoted by 𝑝𝑖, and the probability of choosing N is denoted by 𝑞𝑖 =

1 − 𝑝𝑖. Then, the expected payoff of choosing C for player 𝑖 is 

𝐸𝑖(𝐶) = 𝑉𝑖 − 𝐾𝑖 , 

while the expected payoff of choosing N is 

𝐸𝑖(𝑁) = 𝑉𝑖 (1 − ∏ 𝑞𝑗

𝑗≠𝑖

) + 𝐿𝑖 ∏ 𝑞𝑗

𝑗≠𝑖

. 

  If player 𝑖 chooses C with a probability of one, then 𝐸𝑗(𝑁) > 𝐸𝑗(𝐶) for any other 

player 𝑗 ≠ 𝑖 by 𝐾𝑗 > 0. Furthermore, if all the other players than 𝑖 choose N with a 

probability of one, then 𝐸𝑖(𝐶) > 𝐸𝑖(𝑁)  by 𝑉𝑖 − 𝐿𝑖 > 𝐾𝑖 . Therefore, in a mixed 

strategy equilibrium, 𝑞𝑖 = 0 if and only if 𝑞𝑗 = 1 for any 𝑗 ≠ 𝑖. This implies that if 

a player takes a completely mixed strategy (mixed strategy with full support) in a mixed 
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strategy equilibrium, then there are no other players who choose C with a probability 

of one in this equilibrium. 

  Thus, the VOD game may have three kinds of mixed strategy equilibria. The first is 

that only one player chooses C and the rest of players choose N with a probability of 

one (that is, a pure strategy Nash equilibrium). The second is that some players (two or 

more players) take completely mixed strategies, and the rest of the players choose N 

with a probability of one. The third is the completely mixed strategy equilibrium (mixed 

strategy equilibrium where all players take completely mixed strategies).  

  Diekmann (1993) only considers the first and the last types of mixed strategy 

equilibrium and shows that the completely mixed strategy equilibrium always exists in 

a symmetric case (𝑉𝑖 = 𝑉, 𝐾𝑖 = 𝐾, and 𝐿𝑖 = 0 for any 𝑖 = 1,2, . . 𝑛) and in the case 

with 𝑛 = 2. However, the completely mixed strategy equilibrium does not always exist 

in more general cases. Hence, we identify the completely mixed strategies of the players 

in a mixed strategy equilibrium (which is not necessary completely mixed). 

  Given any mixed strategy profile 𝜃, let 𝐶(𝜃) be a set of players who do not choose 

𝑁 with a probability of one in 𝜃. Then, we have the following proposition.  

 

Proposition 1. Suppose that player 𝑖 takes a completely mixed strategy in a mixed 

strategy equilibrium 𝜃 (𝑖 ∈ 𝐶(𝜃)). Then  

𝑞𝑖 = (
𝑉𝑖 − 𝐿𝑖

𝐾𝑖
) [ ∏ (

𝐾𝑗

𝑉𝑗 − 𝐿𝑗
)

𝑗∈𝐶(𝜃)

]

1
#𝐶(𝜃)−1

 . (1) 

where #𝐶(𝜃) is the number of 𝐶(𝜃). 

 

Proof. In Appendix A. 
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  It follows from this proposition that the completely mixed strategy equilibrium is 

unique if it exists, and the strategies of the players are given by equation (1) if 𝐶(𝜃) is 

the set of all players. 

  Hereafter, we consider a special case in which there are only two different values for 

benefit 𝑉𝑖  and cost 𝐾𝑖 , and characterize the set of the mixed strategy equilibria. 

Following Diekmann (1993), we call the players with low cost “strong players” 

(hereafter S-players) and the players with high cost “weak players” (hereafter W-

players). That is, the cost for an S-player 𝐾𝑆 is strictly smaller than that for a W-player 

𝐾𝑊 (𝐾𝑆 < 𝐾𝑊). Here, let 𝑉𝑆 and 𝑉𝑊 be the benefit for an S-player and a W-player, 

respectively. 𝐿𝑆  and 𝐿𝑊  are defined similarly. We also, then, assume that these 

parameters satisfy the inequality 

𝑉𝑆 − 𝐿𝑆

𝐾𝑆
>

𝑉𝑊 − 𝐿𝑊

𝐾𝑊
,  (2) 

which implies that the marginal per capita cost for volunteering for an S-player is less 

than the one for a W-player. Diekmann (1993) considers the case where 𝐾𝑆 < 𝐾𝑊, 

0 < 𝑉𝑊 ≤ 𝑉𝑆, and 𝐿𝑆 = 𝐿𝑊 = 0, which satisfies condition (2). Moreover, as for the 

number of S-players, 𝑚, only the case of 𝑚 = 1 is considered. We generalize those 

analyses to an arbitrary 𝑚 ≤ 𝑛. 

  Note that Proposition 1 implies that if two players are of the same type, and they take 

completely mixed strategies in equilibrium, then their probabilities of volunteering are 

the same. Furthermore, by condition (2), we have the following. 
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Corollary 1. Suppose that an S-player 𝑖 and a W-player 𝑗 take completely mixed 

strategies in a mixed strategy equilibrium, then the probability that S-player 𝑖 will 

volunteer is less than that of W-player 𝑗; that is, 𝑞𝑖 > 𝑞𝑗. 

 

  As mentioned above, Diekmann (1993) shows that the completely mixed strategy 

equilibrium always exists in a symmetric case (𝑚 = 𝑛 or 𝑚 = 0) and in the case with 

𝑛 = 2. The following proposition gives the necessary and sufficient condition for the 

existence of the completely mixed strategy equilibrium when 𝑛 ≥ 2 and 1 ≤ 𝑚 ≤ 𝑛. 

 

Proposition 2. For any 𝑛 ≥ 2 and 1 ≤ 𝑚 ≤ 𝑛, the volunteer’s dilemma game has 

the completely mixed strategy equilibrium if and only if 

(
𝑉𝑊 − 𝐿𝑊

𝐾𝑊
)

𝑛−𝑚

> (
𝑉𝑆 − 𝐿𝑆

𝐾𝑆
)

𝑛−𝑚−1

 . (3) 

 

Proof. In Appendix A. 

  

  For any 𝑛 ≥ 2 and 𝑚 ≤ 𝑛, let Θ(𝑛, 𝑚) be the set of mixed strategy equilibria of 

the VOD game, where the number of players is 𝑛 and the number of S-players is 𝑚. 

By the above arguments, we can easily identify all mixed strategy profiles in Θ(2,1) 

(and also Θ(2,2) and Θ(2,0)), which has only two kinds of mixed strategy equilibria. 

One is that one player chooses C and the other player chooses N with a probability of 

one, and the other is the completely mixed strategy equilibrium in which the strategies 

of the players are given by (1) with #𝐶(𝜃) = 2. By the following proposition, we can 

also identify Θ(𝑛, 𝑚) where 𝑛 > 2, inductively. 
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Proposition 3. Suppose that 𝜃 ∈ 𝛩(𝑛, 𝑚)  is the completely mixed strategy 

equilibrium, and 𝑞𝑆(𝑛, 𝑚) and 𝑞𝑊(𝑛, 𝑚) are the probabilities of choosing 𝑁 by an 

S-player and a W-player in 𝜃, respectively. For any two non-negative integers, 𝑙 and 

ℎ, consider the VOD game where the number of players is 𝑛 + 𝑙 + ℎ, and the number 

of S-players is 𝑚 + 𝑙. In this game, a mixed strategy profile 𝜃′such that 𝑙 S-players 

and ℎ  W-players are choosing 𝑁  with a probability of one, 𝑚  S-players take 

𝑞𝑆(𝑛, 𝑚), and 𝑛 − 𝑚 W-players take 𝑞𝑊(𝑛, 𝑚) is a mixed strategy equilibrium; that 

is, 𝜃′ ∈ 𝛩(𝑛 + 𝑙 + ℎ, 𝑚 + 𝑙). 

 

Proof. In Appendix A. 

  

  For example, Θ(3,1) consists of two or three kinds of mixed strategy equilibria. 

First is that a player chooses C and the other two players choose N with a probability 

of one. Second is that a W- (an S-) player chooses N with a probability of one, and the 

other two players take completely mixed strategies in the completely mixed strategy 

equilibrium in Θ(2,1) (Θ(2,0)). Third is the completely mixed strategy equilibrium in 

which two W-players take 𝑞𝑊(3,1) and the S-player takes 𝑞𝑆(3,1) if (3) is satisfied 

for 𝑛 = 3 and 𝑚 = 1. 

  We now focus on the completely mixed strategy equilibrium. As in the above 

proposition, let 𝑞𝑆(𝑛, 𝑚) and 𝑞𝑊(𝑛, 𝑚) be the probabilities of choosing 𝑁 of an S-

player and a W-player in the completely mixed strategy equilibrium in Θ(𝑛, 𝑚) , 

respectively. The following proposition states how these probabilities change with the 

group size and the number of S-players in it.  
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Proposition 4. Suppose that 𝛩(𝑛, 𝑚), 𝛩(𝑛 + 1, 𝑚), and 𝛩(𝑛 + 1, 𝑚 + 1) have the 

completely mixed strategy equilibria. Then  

  (i) 𝑞𝑆(𝑛 + 1, 𝑚) > 𝑞𝑆(𝑛, 𝑚),  

  (ii) 𝑞𝑊(𝑛 + 1, 𝑚) > 𝑞𝑊(𝑛, 𝑚),  

  (iii) 𝑞𝑆(𝑛 + 1, 𝑚) > 𝑞𝑆(𝑛 + 1, 𝑚 + 1), and  

  (iv) 𝑞𝑊(𝑛 + 1, 𝑚) > 𝑞𝑊(𝑛 + 1, 𝑚 + 1). 

 

Proof. In Appendix A. 

 

Goeree et al. (2017) explored the relationship between group size and volunteering 

in symmetric VOD games, where the completely mixed strategy equilibrium predicts 

the probability of volunteering to be a decreasing function of group size and that the 

probability of a no-volunteer outcome increases with the number of players. Proposition 

4 considers their results in more generalized cases. Thus, it shows that the probability 

of a volunteer outcome increases with the number of S-players, and the probability of 

a no-volunteer outcome increases with the number of W-players. 

 

2.2 Equilibrium selection based on risk dominance 

As we have shown, there are multiple equilibria in VOD games in general. As for pure 

strategy Nash equilibria, there are two kinds of them: S-equilibrium where only one of 

the S-players chooses C and W-equilibrium where only one of the W-players chooses 

C. Then, asking a question of which equilibrium will be selected is important. For the 

case of m = 1, Diekmann (1993) suggests that S-equilibrium is only a risk dominant 
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equilibrium. Suppose, for example, m = 1 and n = 2. Then, the game becomes as follows 

(Table 1). 

 

Table 1. Asymmetric volunteer’s dilemma when m = 1 and n = 2 

Weak 

Strong  

C N 

C 𝑉𝑆 − 𝐾𝑆, 𝑉𝑊 − 𝐾𝑊 𝑉𝑆 − 𝐾𝑆, 𝑉𝑊 

N 𝑉𝑆, 𝑉𝑊 − 𝐾𝑊 𝐿𝑆, 𝐿𝑊 

 

In this game, there are two pure strategy Nash equilibria, (C, N) and (N, C), since 𝑉𝑖 −

𝐿𝑖 > 𝐾𝑖 for all i. If (C, N) risk dominates (N, C), the product of deviation loss for (C, 

N) is greater than that for (N, C) (Harsanyi and Selten, 1988). This implies 

(𝑉𝑆 − 𝐿𝑆 − 𝐾𝑆)𝐾𝑊 > 𝐾𝑆(𝑉𝑊 − 𝐿𝑊 − 𝐾𝑊). 

Note that this condition is equivalent to condition (2). Thus, we have the following 

proposition. 

 

Proposition 5. In the case of 𝑛 = 2 and 𝑚 = 1, S-equilibrium is risk dominant. 

 

  We now consider a risk dominant equilibrium in the case of many players. Here we 

consider Güth (1990)’s notion of unilateral deviation stability (UDS). UDS satisfies 

Harsanyi and Selten’s axioms for characterizing risk dominance.3 Suppose that an 𝑛-

                                         
3 The notion of p-dominance, introduced by Morris, Rob, and Shin (1995), generalizes the notion 

of risk dominance in Harsanyi and Selten (1988) differently than Güth (1990); that is, 1/2-

dominance coincides with the latter in symmetric 2x2 games. Peski (2010), also, proposes a related 
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person game has several strict Nash equilibria. Take two of them, 𝑠 = (𝑠1, ⋯ , 𝑠𝑛) and 

𝑡 = (𝑡1, ⋯ , 𝑡𝑛). Let M(𝑠, 𝑡) be a set of players whose equilibrium strategy is different 

in 𝑠 and 𝑡. For players 𝑖 and 𝑗 in M(𝑠, 𝑡), construct a comparison game 𝐺𝑖𝑗(𝑠, 𝑡), 

where the set of strategies is 𝑣 = (𝑠𝑘, 𝑡𝑘) for  𝑘 =  𝑖, 𝑗, and the payoff function is also 

restricted by this set of strategies (players other than 𝑖 and 𝑗 use the same strategies 

in both 𝑠 and 𝑡 by the assumption of M(𝑠, 𝑡).). Thus, 𝐺𝑖𝑗(𝑠, 𝑡) can be represented 

by the following game in Table 2. 

 

Table 2. Comparison game 𝐺𝑖𝑗(𝑠, 𝑡) 

 𝒔𝒋 𝒕𝒋 

𝒔𝒊 𝜋𝑖(𝑠), 𝜋𝑗(𝑠) 𝜋𝑖(𝑠𝑖, 𝑡𝑗), 𝜋𝑗(𝑠𝑖, 𝑡𝑗) 

𝒕𝒊 𝜋𝑖(𝑡𝑖, 𝑠𝑗), 𝜋𝑗(𝑡𝑖, 𝑠𝑗) 𝜋𝑖(𝑡), 𝜋𝑗(𝑡) 

 

The relative strength of equilibrium 𝑠 against 𝑡, 𝑅𝑖𝑗(𝑠, 𝑡), is defined as follows. 

𝑅𝑖𝑗(𝑠, 𝑡) =
{𝜋𝑗(𝑠) − 𝜋𝑗(𝑠𝑖, 𝑡𝑗)}{𝜋𝑖(𝑠) − 𝜋𝑖(𝑡𝑖, 𝑠𝑗)}

{𝜋𝑗(𝑡) − 𝜋𝑗(𝑡𝑖, 𝑠𝑗)}{𝜋𝑖(𝑡) − 𝜋𝑖(𝑠𝑖, 𝑡𝑗)}
 

Thus, the product of losses resulting from the unilateral deviation of players 𝑖 and 𝑗 

from equilibrium 𝑠 and 𝑡 is compared. Finally, the aggregated value of 𝑅𝑖𝑗(𝑠, 𝑡) for 

any pair of players in M(s, t) is given by 

𝑅∗(𝑠, 𝑡) = ∏ 𝑅𝑖𝑗(𝑠, 𝑡)

𝑖,𝑗∈𝑀(𝑠,𝑡)

𝑖>𝑗

 

Then, if 𝑅∗(𝑠, 𝑡) > 1, equilibrium 𝑠 risk dominates 𝑡. With this notion, we have a 

generalization of Proposition 5. 

                                         
concept for n-person symmetric games based on 1/2-dominance. However, as the game we study is 

not symmetric, we did not use these concepts. 
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Proposition 5’. In the case of 𝑛 ≥ 2 and 1 ≤ 𝑚 < 𝑛, S-equilibrium risk dominates 

W-equilibrium in the sense of unilateral deviation stability. 

 

Proof. In Appendix A. 

 

2.3 Alternative theories 

In what follows, we also examine the explanatory power of alternative theories that take 

into account the possibility that agents have a non-selfish motivation or act irrationally. 

In fact, we will see that the explanatory power of both mixed strategy equilibria and 

risk dominance is not satisfactory concerning the explanation of the experimental data, 

Diekmann (1993)’s and ours. Among many alternative models so far proposed for 

defining non-selfish motivation, we choose inequality aversion (Fehr and Schmidt, 

1999) as the most appropriate in the present context. As for irrational behavior, we 

investigate the level-k model (Stahl and Wilson 1995; Crawford et al. 2013) and the 

quantal response equilibrium (QRE: McKelvey and Palfrey 1995), which are both 

simple, but known to have been very successful in the experimental economics 

literature. 

 

A. Inequity aversion 

The concept of inequity aversion (resistance to inequitable outcomes) in explaining 

experimental regularities was developed in Fehr and Schmidt (1999).4 They postulated 

                                         
4 Bolton and Ockenfels (2000), also, proposed a similar kind of concept. One of the distinguished 

features in Fehr and Schmidt (1999)’s model as compared to Bolton and Ockenfels (2000)’s is that 
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that people make decisions to minimize inequity in outcomes. Specifically, consider a 

setting where player 𝑖 (𝑖 = 1,2, ⋯ , 𝑛) receives a pecuniary payoff 𝑥𝑖. Then the utility 

of an inequity averse player 𝑖 for the allocation (𝑥1,𝑥2, … , 𝑥𝑛) is given by 

𝑈𝑖(𝑥1,𝑥2, … 𝑥𝑛)

= 𝑥𝑖 −
𝛼

𝑛 − 1
∑ 𝑚𝑎𝑥{𝑥𝑗 − 𝑥𝑖, 0}

𝑗≠𝑖

−
𝛽

𝑛 − 1
∑ 𝑚𝑎𝑥{𝑥𝑖 − 𝑥𝑗 , 0}

𝑗≠𝑖

, 

(4) 

where 𝛼 is player 𝑖’s disutility of having less than the others and 𝛽 is player 𝑖’s 

disutility of having more than the others. Fehr and Schmidt (1999) assume that 0 ≤

𝛽 < 1, and 𝛽 ≤ 𝛼. 

  If there is a player having the above utility function, S-equilibrium or W-equilibrium 

would no longer be a Nash equilibrium, and other outcomes would be a Nash 

equilibrium depending on values of the parameters 𝛼 and 𝛽. We will list equilibrium 

conditions for each outcome later in examining Diekmann (1993)’s data. 

  However, the following proposition implies that the outcome that every player 

chooses C, All-C, cannot be an equilibrium irrespective of the values of the parameters. 

 

Proposition 6. Suppose that player 𝑖  is an inequity averse player. Then player 𝑖 

never chooses C when all other players choose C. 

 

Proof. In Appendix A. 

 

                                         
it allows a distinction between advantageous and disadvantageous inequalities. As this feature plays 

a role in explaining our data, we adopted Fehr and Schmidt (1999)’s model. 
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B. Level-k model 

Level-k model is a non-equilibrium model that reflects strategic thinking by boundedly 

rational players. It assumes that each player adopts a strategy that corresponds to some 

level of strategic thinking. Level-k models have so far been applied to many games, 

and have succeeded in explaining a number of anomalous behaviors found in the 

laboratory (for a survey, see Crawford et al., 2013).  

  Assume that L0 player, who is the least rational among the players, chooses C and N 

with probability 1/2, respectively. In the level-k model, L𝑘 player chooses the best 

response to the actions taken by L(𝑘 − 1) players. The outcome the level-k model 

predicts also depends on the payoff structure of the game; we will show its predictions 

later in analyzing Diekmann (1993)’s data. 

 

C. Quantal response equilibrium (QRE) 

QRE is an equilibrium concept based on boundedly rational strategic behavior, 

assuming that players play a noisy best response (McKelvey and Palfrey, 1995). For 

player 𝑖, the stochastic best response in terms of his choice probability of C is given by 

𝑝𝑖 =
exp (𝜆 ∙ 𝐸𝑖(𝐶))

exp (𝜆 ∙ 𝐸𝑖(𝐶)) + exp (𝜆 ∙ 𝐸𝑖(𝑁))
              

=
1

1 + exp [𝜆 ∙ {𝐸𝑖(𝑁) − 𝐸𝑖(𝐶)}]
 , 

 

where parameter 𝜆 ∈ [0, ∞)  represents the degree of rationality such that 𝜆 = 0 

implies complete randomizing over pure strategies. QRE is a fixed point of this 

mapping. If 𝜆 = 0, then 𝑝𝑖 = 1/2 for any 𝑖, which is usually called the centroid of 

the simplex of the strategy space.  
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  McKelvey and Palfrey (1995) showed that for any normal-form game, (i) the 

correspondence QRE(λ) is upper hemi-continuous, (ii) the number of QREs is odd for 

generic values of λ, and, (iii) generically, the graph (λ, QRE(λ)) contains a unique 

branch which starts at the centroid and converges to a unique mixed strategy 

equilibrium as λ approaches infinity. The limiting point of this principal branch is 

called limiting (logit) QRE. Thus, limiting QRE can serve as an equilibrium selection 

criterion in generic cases.  

  Turocy (2005) showed that with the homotopy method (under an intuitive 

monotonicity assumption), the limiting QRE is the risk dominant equilibrium in generic 

2x2 games with two strict Nash equilibrium. However, the cases with more than two 

players may be problematic. It is easy to see that these games have multiple S-equilibria, 

depending on which S-player finally contribute. Thus, the principal branch of the QRE 

graph that starts from the centroid may bifurcate somewhere on the way, meaning that 

these cases are not generic. This actually happens in our case. However, in the statistical 

estimation that follows, the log-likelihood function is maximized well before the 

bifurcation occurs. 

 

3. Re-examination of Diekmann’s experiment 

3.1 The experiment 

For empirically testing our theoretical predictions in previous section, we begin with 

the reexamination of Diekmann (1993)’s experiment. Diekmann (1993) concludes that 

the predictions of the risk-dominance theory accord better with his data than that of the 

completely mixed strategy equilibrium. Thus, unlike the completely mixed strategy 
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equilibrium prediction which states that a player with less cost contributes less often, 

an S-player in the experiment contributes a significantly higher proportion.  

  However, once we closely consider his experimental result, it seems the explanatory 

power of the risk-dominance theory is not so high. Therefore, it is worthwhile to 

reexamine the data with econometric comparisons, including the alternative theories in 

Section 2.3, which was not available when his research was conducted. 

  His experiment consists of ten different sessions, including symmetric and 

asymmetric versions of VOD. The total of 328 subjects were recruited and allotted 

randomly into the sessions. However, as a result of the preliminary test, twenty-seven 

subjects were excluded from the proper experiment. In what follows, we will only focus 

on the part of his experiment that concerns asymmetric VOD.  

 

Table 3. Diekmann's experimental games (Sessions) 

Games D-1 D-2 D-3 D-4 

Sessions B D C E F G I J 

# of players 2 2 2 2 2 2 5 5 

# of S-players 1 1 1 1 1 1 1 1 

V(common) 100 100 100 100 100 100 100 100 

𝑲𝑺 40 40 10 10 20 20 40 40 

𝑲𝑾 50 50 50 50 80 80 50 50 

Subjects’ role W S W S W S W S 

# of subjects 29 30 32 39 27 32 27 27 
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  Table 3 shows the sessions in his experiment that corresponds to asymmetric versions 

of VOD. It is important to notice that the subjects did not played the game at all; that 

is, they were not matched with one another to play the games. Instead, subjects were 

simply asked to make a decision as a W-player or an S-player before the experiment 

ended. Each subject could participate in only one session. How the game outcome was 

determined, and, thus, how the rewards were determined, is not reported in the study. 

  We classify each session by games and give each game a name, from D-1 to D-4. 

Note that Sessions D-1 to D-3 are two-player games, and only Session D-4 is a five-

player game. In every session, the number of S-players is one. Note also that for 

parameter values 𝑉, 𝐾𝑆 and 𝐾𝑊 (𝐿𝑆 = 𝐿𝑊 = 0), the condition in Proposition 5 and 5’ 

is satisfied; that is, S-equilibrium is risk dominant. 

 

3.2 Hypotheses 

Testing Diekmann’s conjecture is the primary purpose here. As S-equilibrium is risk 

dominant in all the session, it is expected that S-equilibrium should be observed most 

frequently. If it is not the case, our next task is to judge whether the completely mixed 

strategy equilibrium prediction is observed in his experiment.  

  As shown in Corollary 1, if players adopt completely mixed strategies, the 

probability that an S-player volunteers is less than that of a W-player. However, it is 

counterintuitive because the marginal per capita cost for volunteering for an S-player, 

𝐾𝑆/(𝑉𝑆 − 𝐿𝑆), is less than the one for a W-player, 𝐾𝑊/(𝑉𝑊 − 𝐿𝑊). Thus, our first 

hypothesis concerns whether S-equilibrium is attained in the laboratory. 

 

Hypothesis 1. S-equilibrium is more frequently observed than W-equilibrium. 
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  Of course, subjects in the experiment may not always play rationally. Sometimes 

they deviate from the equilibrium either consciously or unconsciously. The former 

results from different motivations subjects have; for example, other-regarding 

preferences. The latter is due to the subjects’ misunderstanding or confusion, lack of 

concentration, among others. Thus, we cannot expect that a particular equilibrium is 

played with a probability of one. If it is the case, a completely mixed strategy might 

predict the subjects’ behavior better than the pure strategy predicted by risk dominance. 

Then, is the subjects’ choice frequency of volunteering close to the mixed strategy 

equilibrium prediction in Section 2? This is our second hypothesis to be tested. 

 

Hypothesis 2. A subject’s choice frequency of volunteering coincides with the 

completely mixed strategy in a mixed strategy equilibrium. 

 

As we have shown in Section 2, there are two types of mixed strategy equilibria 

where some players take completely mixed strategies. The first type is the completely 

mixed strategy equilibrium. The second type is mixed strategy equilibria where some 

players choose N with a probability of 1 and the other players choose the completely 

mixed strategies. As the latter exists only in D-4 (five-person game) and our objective 

is to differentiate counter intuitive completely mixed strategy prediction from that of 

risk dominance, we use the former in testing Hypothesis 2. Table 4 summarizes 

completely mixed strategy equilibria in Diekmann (1993)’s experiment. 
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As both hypotheses are mutually inconsistent, it is an easy task to judge which theory, 

mixed strategy equilibrium and risk dominance, predicts better subject behavior in the 

experiment. 

 

Table 4. Completely mixed strategy equilibrium prediction for Diekmann's 

Games 

 D-1 D-2 D-3 D-4 

𝑷𝑺 0.500 0.500 0.200 0.006 

𝑷𝑾 0.600 0.900 0.800 0.205 

 

Table 5. The prediction of inequality aversion 

 D-1 D-2 D-3 D-4 

S-eq. 𝛼 ≤ 3/2 
𝛼 ≤ 9, 

𝛽 ≤ 5 

𝛼 ≤ 4, 

𝛽 ≤ 4 
𝛼 ≤ 6 

W-eq. 
𝛼 ≤ 1, 

𝛽 ≤ 4/5 

𝛼 ≤ 1, 

𝛽 ≤ 1/5 

𝛼 ≤ 1, 

𝛽 ≤ 1/4 

𝛼 ≤ 8, 

𝛽 ≤ 16/5 

All-N α ≥ 1 α ≥ 9 α ≥ 4 α ≥ 6 

 

  If the date supports neither hypothesis, we have to resort to different theories other 

than rational ones such as mixed strategy equilibrium and risk dominance. Thus, to 

obtain theoretical predictions by inequity aversion for each experimental session, we 

assume that all players have the same utility function given by (4). Then, for each 

session, either S-equilibrium, W-equilibrium, or the outcome that every player chooses 

N, All-N, can be a Nash equilibrium depending on the values of the parameters. The 
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ranges of the values of 𝛼 and 𝛽 that each outcome will be a Nash equilibrium for 

each session are summarized in Table 5.  

As for the level-k model, the best responses of L𝑘 S-player and L𝑘 W-player to the 

actions of L(𝑘 − 1) players up to 𝑘 = 4 are summarized in Table 6. 

 

Table 6. Best response of Lk to L(k-1)5 

  
D-1 D-2 D-3 D-4 

L1 

S C C C N 

W C,N C,N N N 

L2 

S 𝐶 C C C 

W N N N C 

L3 

S C C C N 

W N N N N 

L4 

S C C C C 

W N N N C 

 

We, then, econometrically measure the goodness-of-fit of these alternative theories, 

including QRE. 

 

3.3 Results 

                                         
5 “C, N” means that both strategies are indifferent. The identification of a higher-level 

strategy assumed that both are played with equal probability. 
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Table 7 shows Diekman’s experimental data, where n is the number of groups, 𝑛𝑆 and 

𝑛𝑊 are the number of C chosen by an S-player and a W-player, respectively, and 𝑓𝑆 

and 𝑓𝑊 are the choice frequency of C by an S-player and a W-player respectively. If 

Diekmann’s conjecture is right, as S-equilibrium is risk dominant in every session, we 

have to observe 𝑓𝑆 > 𝑓𝑊. In two-person game sessions (D-1, D-2 and D-3) 𝑓𝑆 > 𝑓𝑊 

is observed  (chi squared test, p < 0.05 except Session D-3). However, in Session D-

4, a five-player game, we have a counter fact: 𝑓𝑆 = 0.30 < 𝑓𝑊 = 0.56 (chi squared 

test, p ＜0.05). Thus, we conclude that Diekmann’s conjecture is only applicable to 

two-person games. Therefore, Hypothesis 1 is only partially confirmed. 

 

Table 7. Choice Frequencies of Each Strategy 

 D-1 D-2 D-3 D-4 

𝒏𝑺 20 37 27 8 

𝒏𝑾 13 6 2 15 

𝒇
𝑺
 0.67 0.95 0.84 0.30 

𝒇
𝑾

 0.45 0.19 0.07 0.56 

 

  As for the completely mixed strategy equilibrium, when we compare Tables 4 and 7, 

there are huge discrepancies between them. Significant differences are visible in D-2, 

D-3, and D-4 Sessions. The null hypothesis stating that the choice frequency of C and 

the probabilities obtained from the completely mixed strategy equilibrium are equal is 

rejected for S-players in Sessions D-2, D-3, and D-4 (binomial test, p < 0.01 for each). 

On the contrary, W-players chose C less frequently than the completely mixed strategy 

equilibrium. The null hypothesis stating that the choice frequency of C and the 
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probabilities obtained from the completely mixed strategy equilibrium are equal is 

rejected for W-players in Sessions D-2, D-3, and D-4 (binomial test, p < 0.01 for each). 

Thus, the mixed strategy equilibrium prediction also fails.6 

  Furthermore, to find the model that best fits Diekmann (1993)’s data among 

alternative theories, we will resort to an econometric horse race; that is, conducting 

maximum likelihood estimation for obtaining the parameter values such as 𝛼, 𝛽, and 

𝜆 in these models and comparing explanatory powers among them. 

  Moreover, to make a comparison, we need to make the models “statistical” in the 

sense that they “contain adjustable parameters” (Sober 2008, p.79). Recall that the 

level-k analysis in Section 2.3B usually gives a “point prediction” with a probability of 

one assigned to a specific strategy. This can be problematic when we conduct an 

econometric comparison because the value of the log-likelihood of a probability of zero 

is minus infinity. Thus, we decided to introduce the same kind of noises across all the 

models, which may be simply interpreted as the errors in the implementation of the 

actions agents choose. Specifically, we assume that the choice probability of C for each 

player 𝑖 is given by the following logit form, 

𝑝𝑖 =
exp (

𝐸𝑈𝑖(𝐶)
𝜇 )

exp  (
𝐸𝑈𝑖(𝐶)

𝜇 ) + exp (
𝐸𝑈𝑖(𝑁)

𝜇 )
, 𝑖 = 1,2, … , 𝑛, (5) 

where 𝜇 is the noise parameter, and 𝐸𝑈𝑖(𝐶) (𝐸𝑈𝑖(𝑁)) is the expected utility of player 

𝑖 for choosing C (𝑁). In the model of inequality aversion, player 𝑖’s expected utility is 

calculated by (4); that is, the utility of an inequality averse player. In the level-k model, 

                                         
6 Note that in Session D-1, the null hypothesis is not rejected (binomial test, p < 0.05 for S-players 

and W-players). 
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if player 𝑖 is L𝑘 player, his expected utility is the expected payoff when all other 

players are L(𝑘 − 1) players. In our estimation of QRE, we also use 𝜇 = 1/𝜆 for ease 

of comparison. 

  In each model, the probabilities of each player’s choices are obtained in a fixed point 

of the above 𝑛 equations for any given values of parameters. Let 𝜔 be the vector of 

parameters for each model (for example, 𝜔 = (𝜇, 𝛼, 𝛽)  in inequality aversion), 

𝑝𝑆
𝐷𝑗

(𝜔) be the choice probability of the S-player, and 𝑛𝑆
𝐷𝑗

 be the number of S-players 

who chose C in game D- 𝑗. 𝑝𝑊
𝐷𝑗

(𝜔), 𝑛𝑊
𝐷𝑗

, and notations for the other sessions are 

defined similarly. Then, for each model, the maximum likelihood estimates are 

obtained by maximizing the following log likelihood function with respect to 𝜔. 

𝐿𝑜𝑔𝐿𝐷(𝜔) = ∑ 𝑛𝑆
𝐷𝑗

ln (𝑝𝑆
𝐷𝑗

(𝜔))

4

𝑗=1

+ ∑(𝑔𝑆
𝐷𝑗

− 𝑛𝑆
𝐷𝑗

)ln (1 − 𝑝𝑆
𝐷𝑗

(𝜔))

4

𝑗=1

+ ∑ 𝑛𝑊
𝐷𝑗

ln (𝑝𝑊
𝐷𝑗

(𝜔))

4

𝑗=1

+ ∑(𝑔𝑤
𝐷𝑗

− 𝑛𝑊
𝐷𝑗

)ln (1 − 𝑝𝑊
𝐷𝑗

(𝜔))

4

𝑗=1

, 

where 𝑔𝑆
𝐷𝑗

 (𝑔𝑊
𝐷𝑗

) is the number of the S-players (W-players) in D- 𝑗. Since the subjects 

in Diekmann (1993) were not matched with one another to play the games, 𝑔𝑆
𝐷𝑗

 is not 

necessarily the same as 𝑔𝑊
𝐷𝑗

. For example, 𝑔𝑆
𝐷1 = 30, whereas 𝑔𝑊

𝐷1 = 29. 

  Table 8 shows the estimated parameters.7 In Level-k, we estimate two types of 

models. In Level-1, it is assumed that all players are L1 players. Another model is 

Level-2 where all players are assumed to be L2-players. The log likelihood for 

completely mixed strategy equilibrium (in Table 4) is also shown in this table. For 

model comparisons, the following Akaike information criterion (AIC) is used, 

AIC = −2𝐿𝑜𝑔𝐿 + 2𝑘, 

                                         
7 Our estimation procedures follow the method described in Chapter 16 in Moffatt (2016). 
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where k is the number of parameters in the model. The smaller the value of AIC, the 

better the model fit the data. 

  

Table 8. Estimated parameters based on Diekmann (1993) 

 Completely 

mixed 

strategy 

Inequality 

aversion 

Level-1 Level-2 QRE 

𝜶 ----- 0.145 ----- ----- ----- 

𝜷 ----- 0.778 ----- ----- ----- 

𝝁 ----- 30.829** 28.590** 78.750** 32.755** 

LogL -280.382 -124.989 -143.165 -157.774 -125.957 

AIC 560.764 255.978 288.330 317.548 253.915 

** denotes significance at the 1% level. 

 

  First, note that parameters 𝛼  and 𝛽  in the inequality aversion model are not 

significant. Thus, altruistic motivation does not play a role in explaining the data. Then, 

among the rest of the models, the value of AIC for QRE is minimum. Thus, we conclude 

that QRE is the best fit model in the data reported in Diekmann (1993). This result and 

the fact that S-equilibrium is frequently observed for two-person games are mutually 

consistent because limiting QRE converges to risk dominant S-equilibrium in two-

person games according to Turocy (2005).  

 

4. Our Experiment 
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In the previous section, we showed that Diekmann’s conjecture (which states that when 

S-equilibrium is risk dominant, it is frequently observed) is only confirmed in two-

person games. However, our theoretical analysis in Section 2 proved that S-equilibrium 

was also risk dominant in the five-person game in his experiment. Thus, the explanatory 

power of the risk dominance theory is not universal. Rather, QRE is the best fit model 

in his data. Interestingly, inequality aversion also fails. As Diekmann’s experiment is 

not an experiment in the exact sense, and for generalizing our findings, we need to run 

a proper experiment with more variations. Thus, we decided to conduct our own 

experiment.  

 

4.1 Design and procedures 

The experiments were conducted in November 2016 at Chuo University in Japan. The 

subjects were undergraduates of the university and were recruited via a university e-

mail list. Most of them were not from the Economics Department; only a few knew of 

game theory, and none had previously participated in any experiment. 

  The games we used in the experiment were two-person and three-person Volunteer’s 

dilemma games. In the two-person game, one player was an S-player, and the other was 

a W-player. In the three-person game, we had two variations: In one, there were one S-

player and two W-players; In the other, there were two S-players and one W-player. 

We call the two-person game session as Session A, the first variation of the three-person 

game session as Session B, and the second variation of the three-person game session 

as Session C. 

  In every session, 𝐿𝑆 = 𝐿𝑊 = 0, and the cost for volunteering is common for players 

of the same type; that is, 𝐾𝑆 = 200 and 𝐾𝑊 = 400. There were three sessions for 
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each of two-person and three-person games, which have different pair of benefits (for 

S- and W-players) from the public goods. Note that the condition (2) assumed in the 

model in Section 2 is always satisfied with these parameter values. Thus, S-equilibrium 

is always risk dominant. Table 9 summarizes the details of each Session. 

  The experiments were conducted manually. Each subject was randomly assigned to 

a seat in the room. There was sufficient physical distance between seats to prevent eye 

contact, and no oral communication was allowed among the subjects. The experimental 

instructions were distributed, and the experimenter read them aloud in front of the 

subjects. 

 

Table 9. Summary of experimental sessions 

Session A-1 A-2 A-3 B-1 B-2 B-3 C-1 C-2 C-3 

# of players 2 2 2 3 3 3 3 3 3 

# of S-player 1 1 1 1 1 1 2 2 2 

𝑽𝑺 600 600 350 1000 1000 600 1000 1000 600 

𝑽𝑾 1000 600 600 1800 1000 1000 1800 1000 1000 

 

  Some subjects played the two-person game first and, then, without knowing the 

results, played three-person game. The others played the three-person game first and, 

then, the two-person game. Each game was played only once in each session.  

A total of 30 subjects participated in each two-person game session, forming 15 

groups. A total of 36 subjects participated in each three-person game with one S-player 

session, and 12 groups were created. For the three-person game with two S-players 
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session, the number of participants differs in each session due to no-show subjects: 13 

groups in two sessions and 10 groups in one session. 

  At the end of the experiment, the total payoffs each participant earned in both games 

was paid in cash. The conversion rate was one-to-one: each point earned was exchanged 

for JPY 1 at the end of the experiments. No participation fee was paid to each subject. 

For the one-hour experiment, the average reward was around JPY1,276 (approximately 

10 US dollars at the time). Details of the experimental procedure and instructions are 

given in Appendix C. 

  Table 10 summarizes the following two types of symmetric mixed strategy equilibria 

in the VOD games in our experiment. Eq-1 is the completely mixed strategy 

equilibrium, and Eq-2 is the mixed strategy equilibrium where two players of the same 

type take the same completely mixed strategy and the rest one takes N with a probability 

of one. 

 

Table 10. Symmetric mixed strategy equilibrium prediction in the experiment. 

Eq. Session A-1 A-2 A-3 B-1 B-2 B-3 C-1 C-2 C-3 

1 𝑝𝑆 0.600 0.333 0.333 0.503 0.106 0.307 0.529 0.368 0.368 

 𝑝𝑊 0.667 0.667 0.429 0.553 0.553 0.423 0.576 0.684 0.473 

2 𝑝𝑆 --- --- --- 0.000 0.000 0.000 0.800 0.800 0.667 

 𝑝𝑊 --- --- --- 0.778 0.600 0.600 0.000 0.000 0.000 

 

4.2 Results 

Table 11 summarizes our experimental data, where n is the number of groups, 𝑛𝑆 and 

𝑛𝑊 are the number of C chosen by an S-player and a W-player, respectively, and 𝑓𝑆 
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and 𝑓𝑊 are the choice frequency of C by an S-player and a W-player, respectively.8 

Note that in Sessions B-1, B-2, and B-3, there are one S-player and two W-players in a 

group, and that in Sessions C-1, C-2, and C-3, there are two S-players and one W-player 

in a group. 

 

Table 11. Choice frequencies of each strategy. 

Session A-1 A-2 A-3 B-1 B-2 B-3 C-1 C-2 C-3 

𝒏 15 15 15 12 12 12 13 13 10 

𝒏𝑺 12 13 5 4 9 4 13 14 9 

𝒏𝑾 6 2 7 13 9 11 8 3 5 

𝒇𝑺 0.800 0.867 0.333 0.333 0.750 0.333 0.500 0.538 0.450 

𝒇𝑾 0.400 0.133 0.467 0.542 0.375 0.458 0.615 0.231 0.500 

 

Figure 1 shows the differences between the probabilities obtained from the 

symmetric mixed strategy equilibrium (Eq-1 and Eq2 in Table 10) and the choice 

frequencies.  

In most Sessions, S-players chose C more frequently than the mixed strategy 

equilibrium. Significant differences are visible in Sessions A-2 and B-2 for Eq1 and 

Sessions B1-B3 for Eq2, and, in fact, the null hypothesis which states that the choice 

frequency of C and the probabilities obtained from the symmetric mixed strategy 

equilibrium are equal is rejected for S-players in Sessions A-2 and B-2 for Eq1 and 

Sessions B1-B3 for Eq2 (binomial test, p < 0.01 for each).  

   

                                         
8 Raw data is given in Appendix B. 
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(a) S-player in Eq1 

 

 

(b) W-player in Eq1 
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(c) S-player in Eq2 

 

 

(d) W-player in Eq2 

Figure 1. Difference between mixed strategy and the choice frequencies. 
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75.0% in B2 for Eq2). This fact contradicts the symmetric mixed strategy equilibrium 

prediction, other than in C-2 for Eq2, since the lowest probabilities (33.3%, 10.6%, and 

36.8% in Session A-2, B-2, and C-2 for Eq1 and 0.0% for Eq2 respectively) should be 

assigned in the equilibrium to the second treatment among the three treatments. 

  On the contrary, W-players chose C less frequently than the symmetric mixed 

strategy equilibrium in many Sessions. The null hypothesis stating that the choice 

frequency of C and the probabilities obtained from the symmetric mixed strategy 

equilibrium are equal is rejected for W-players in Sessions A-1, A-2, and C-2 for Eq1 

and Session B1 and B2 for Eq2 (binomial test, p < 0.01 for Eq1 and p < 0.05 for Eq2). 

Especially, as for Eq1, W-players chose C least often in the second treatment in every 

Session (13.3%, 37.5%, and 23.1% in Session A-2, B-2, and C-2 respectively for Eq1). 

However, in Eq1, the highest probabilities (66.7%, 55.3%, and 68.4% in Session A-2, 

B-2, and C-2 respectively for Eq1) should be assigned to the second treatment among 

the three treatments. From these, we conclude that the symmetric mixed strategy 

equilibria fails to explain our data.  Next, we will examine whether asymmetric mixed 

strategy equilibrium (other than S- or W-equilibrium) can explain our data. In Sessions 

B-1, B-2, and B-3, there are asymmetric mixed strategy equilibria in which one of the 

W-players chooses N with a probability of 1 and the other W-players and S-players 

choose C with a probability of less than 1. Likewise, in Sessions C-1, C-2, and C-3, 

there are asymmetric mixed strategy equilibria in which one of the S-players chooses 

N with a probability of 1 and the other S-players and W-players choose C with a 

probability of less than 1. 

  Asymmetric mixed strategy equilibrium predictions in the experiment are 

summarized in Table 12. The percentages of every possible outcome implied by the 
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asymmetric mixed strategy equilibrium are shown in Table 13. Differences of outcome 

frequencies between predictions of asymmetric mixed strategy equilibrium in the 

experiment are also presented in Figure 2. 

 

Table 12. Asymmetric mixed strategy equilibria. 

 B-1 B-2 B-3  C-1 C-2 C-3 

𝒑
𝑺
 0.778 0.600 0.600 𝒑

𝑺
 0.000 0.000 0.000 

𝒑
𝑾

 0.000 0.000 0.000 𝒑
𝑺
 0.778 0.600 0.600 

𝒑
𝑾

 0.800 0.800 0.667 𝒑
𝑾

 0.800 0.800 0.667 

 

Table 13. The frequencies of each outcome implied by asymmetric mixed 

strategy equilibria. 

 B-1 B-2 B-3 C-1 C-2 C-3 

S-eq. 0.156 0.120 0.200 0.000 0.000 0.000 

W-eq. 0.178 0.320 0.267 0.334 0.440 0.467 

All-C 0.000 0.000 0.000 0.000 0.000 0.000 

All-N 0.440 0.800 0.133 0.440 0.800 0.133 

Others 0.622 0.480 0.400 0.622 0.480 0.400 
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(a) Session B 

 

 

(b) Session C 

Figure 2. Differences of outcome frequencies between predictions of asymmetric 

mixed strategy equilibria in the experiment. 
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higher. The null hypothesis stating that the frequency of W-equilibrium is equal to the 

probability implied by the asymmetric mixed strategy equilibrium is rejected for 

Session B-1 (binomial test, p < 0.01), but the null hypothesis that the frequency of S-

equilibrium is equal to the probability implied by the asymmetric mixed strategy 

equilibrium is not rejected. The opposite is the case in Session B-2 where the frequency 

of S-equilibrium in the experiment is significantly higher than the theoretical 

predictions (binomial test, p < 0.01), while the frequency of W-equilibrium is 

significantly lower (binomial test, p < 0.01). In Session B-3, non-equilibrium outcomes, 

All-C, All-N, and others, due to coordination failures, are prominent.  

  In Session C-1, C-2, and C-3, frequencies of S-equilibrium in the experiment are 

significantly higher than the theoretical predictions (p < 0.01 for each), while the 

frequencies of W-equilibrium are significantly lower. The null hypothesis stating that 

the frequency of W-equilibrium is equal to the probability implied by asymmetric 

mixed strategy equilibrium is not rejected for every session. In summary, we must 

conclude that the asymmetric mixed strategy equilibrium prediction also fails in our 

experimental data. 

From these, we conclude that the mixed strategy equilibrium prediction fails in our 

data. Thus, we reject Hypothesis 2. 

  Then, how about equilibrium selection from risk dominance? We count the number 

of occurrences for each equilibrium and summarize them in Table 14. Here we count it 

as an S-equilibrium (W-equilibrium) when exactly one S-player (W-player) choose C 

and the other players choose N. Otherwise, the subjects made coordination failures, 

which are either over-cooperation where more than one player chooses C including 
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every player choosing C (“All-C”) or played mutually non-cooperatively by choosing 

N (“All-N”). This is never an equilibrium in our setting. 

 

Table 14. The percentage of each outcome in the experiment. 

Session A-1 A-2 A-3 B-1 B-2 B-3 C-1 C-2 C-3 

S-eq. 60.0 73.3 13.3 8.3 41.7 8.3 15.4 30.8 30.0 

W-eq. 13.3 0.0 26.7 41.7 0.0 25.0 15.4 15.4 20.0 

All-C 26.7 13.3 20.0 0.0 16.7 8.3 7.7 0.0 10.0 

All-N 0.0 13.3 40.0 0.0 8.3 25.0 7.7 15.4 10.0 

Others --- --- --- 50.0 33.3 20.0 53.8 38.4 30.0 

 

While S-equilibrium always risk dominates W-equilibrium, theoretically, in every 

Session, sometimes the percentages of W-equilibrium are higher than that of S-

equilibrium in our data (Sessions A-3, B-1, and B-3). More so, the percentages of non-

cooperative outcomes (“All-N”) are higher than that of S-equilibrium in some Sessions 

(Sessions A-3 and B-3). In fact, the null hypothesis stating that the frequency of S-

equilibrium is equal among three treatments (such as among A-1, A-2, and A-3) is 

rejected in both Sessions A and B (Chi-squared test, p < 0.01 for Session A and p < 

0.05 for Session B).  

  If the sum of the percentages of W-equilibrium and the non-cooperative outcome is 

seen as counter-evidence against S-equilibrium prediction, risk dominance prediction 

fails in more than a half of Sessions (except for Sessions A-1, A-2, B-2 and C-3). Thus, 

we have to conclude from these data that the explanatory power of the risk dominance 

concept is very limited. Therefore, we reject Hypothesis 1. 
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Thus, Diekmann’s conjecture that S-equilibrium is played more frequently when it 

is risk dominant also fails in our experiment. The mixed strategy equilibrium prediction 

fails as well. Therefore, we have to examine alternative theories with altruistic 

motivation or bounded rationality.  

 

4.3 Econometric estimation 

As in Section 3, we examine three alternative theories, inequality aversion, level-k 

model, and QRE as representative models in behavioral game theory. Model structures 

and estimation strategy are identical in Section 3. 

 

A. Inequity aversion 

Ranges of parameter values consistent with each equilibrium are shown in Table 15. 

Moreover, remember that the most prominent regularity in our data is that the 

frequencies of S-equilibrium vary among sessions, unlike the prediction of risk 

dominance. 

  In fact, from Table 14, S-equilibrium was observed most frequently in the second 

treatment in every Session (73.3%, 41.7% and 30.8% in Session A-2, B-2 and C-2 

respectively), while W-equilibrium was observed most frequently in the third treatment 

in Sessions A and C (26.7% and 20.0% in Session A-3 and C-3 respectively) and the 

first treatment in Session B (41.7%).  

  In fact, the most frequent outcome was an S-equilibrium in sessions A-1, A-2, B-2, 

C-1, C-2, and C-3. However, All-N was the most frequent in sessions A-3 and B-3, and 

W-equilibrium was the most frequent in session B-3.  
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  But these regularities are not consistent with inequality aversion for any parameter 

values shown in Table 15. 

 

Table 15. The prediction of inequity aversion.9 

 A-1 A-2 A-3 B-1 B-2 B-3 C-1 C-2 C-3 

S-eq. 𝛼 ≤
2

3
 𝛼 ≤ 2 𝛼 ≤

1

3
 𝛼 ≤

4

5
 𝛼 ≤ 4 𝛼 ≤

2

3
 𝛼 ≤

4

3
 𝛼 ≤ 4 𝛼 ≤ 1 

W-eq. any 𝛼 𝛼 ≤
1

2
 𝛼 ≤

4

3
 

𝛼 + 𝛽

≤ 7 
𝛼 ≤

3

2
 𝛼 ≤ 3 any 𝛼 𝛼 ≤

3

2
 any 𝛼 

All-N -- 2 ≤ 𝛼 
4

3
≤ 𝛼 

7

≤ 𝛼 + 𝛽 
4 ≤ 𝛼 3 ≤ 𝛼 -- 4 ≤ 𝛼 -- 

 

B. Level-k model 

Assume that L0 player, who is the least rational player, chooses C and N with a 

probability of 1/2 respectively. In the level-k model, L𝑘  player chooses the best 

response to the actions taken by L(𝑘 − 1) players. If we assume 𝐿𝑆 =  𝐿𝑊 = 0 as in 

the experimental sessions, the best responses of L𝑘 S-player and L𝑘 W-player to the 

actions of L(𝑘 − 1) players up to 𝑘 = 4 are summarized in Table 16.  

  As L1 and L3, as well as L2 and L4, choose exactly the same responses in every 

Session, it is enough to consider up to L2 in the analysis. Then, suppose that both an S-

player and a W-player have the same level of strategic thinking. This assumption is 

natural and justifiable, as the subjects were in the same population, and each player’s 

role was randomly determined in the experiment.  

                                         
9 The symbol “—“ implies that the outcome cannot be a Nash equilibrium irrespective of the values 

of 𝛼 and 𝛽. 
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Table 16. Best response of Lk to L(k-1) 

  A-1 A-2 A-3 B-1 B-2 B-3 C-1 C-2 C-3 

L1 

S-player C C N C C N C C N 

W-player C N N C N N C N N 

L2 

S-player N 𝐶 C N C C N N C 

W-player N N C N N C N N C 

L3 

S-player C C N C C N C C N 

W-player C N N C N N C C N 

L4 

S-player N C C N C C N N C 

W-player N N C N N C N N C 

 

  Remember that S-equilibrium was observed most frequently in the second treatment 

in every session in our experiment. The fact can be obtained if all the players are L1 (In 

this case, an S-player chooses C and a W-player chooses N.). Thus, the level-k model 

can explain a part of the regularities found in our experiment. 

  Note, however, that whatever level the players find themselves in, the level-k model 

predicts that a W-equilibrium where an S-player chooses N and a W-player chooses C 

never occur in every session. This contradicts the fact that the percentages of W-

equilibrium are higher than that of S-equilibrium in some sessions in our experimental 

data. 

 

C. Estimation results 

 Electronic copy available at: https://ssrn.com/abstract=3430130 



41 

 

 

Similar to the previous section, we conduct a maximum likelihood estimation for 

obtaining the parameter values for inequality aversion, the level-k model, and QRE. For 

each model, the maximum likelihood estimates are obtained by maximizing the 

following log-likelihood function with respect to 𝜔. 

𝐿𝑜𝑔𝐿(𝜔) = 𝐿𝑜𝑔𝐿𝐴(𝜔) + 𝐿𝑜𝑔𝐿𝐵(𝜔) + 𝐿𝑜𝑔𝐿𝐶(𝜔), 

where each term is defined similarly to 𝐿𝑜𝑔𝐿𝐷(𝜔) in Section 3.10 Table 17 shows the 

estimated parameters. The log likelihood for the completely mixed strategy equilibrium 

(Eq-1 in Table 10) is also shown in this table.11  

  From Table 17, one can see that the value of AIC for QRE is minimum among them. 

Thus, we conclude that QRE is the best fit model in our experimental data. However, 

since λ = 1/𝜇, a relatively higher value of �̂� = 25.781 means that players’ choices 

are close to the ones made via a low level of rationality, as λ = 0.039. Next, the value 

of AIC for inequality aversion is lowest, but none of the parameters concerning 

inequality aversion, 𝛼 and 𝛽, is significant, and only 𝜇 is significant. Finally, Level-

1’s performance is better than Level-2. All these facts indicate that our data is generated 

by players with a relatively low level of rationality. 

  But this does not necessarily imply that subject choice were random. QRE captures 

some of the regularities in our experimental data. In fact, Table B1 in Appendix B 

                                         
10 In this definition, it is implicitly assumed that players of the same type have the same choice 

probabilities in a fixed point. Even if we redefine the log likelihood function to consider the 

possibility in which players of the same type have different choice probabilities, no result of the 

estimation changes. 

11 As shown in Tables 10 and 12, there are the other mixed strategy equilibria in Session B and C. 

However, the AIC when assuming Eq-1 in Table 10 in all sessions is smaller than those for other 

combinations of equilibria. 
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shows choice probabilities implied by the estimated parameter values, which are closer 

to the data than the completely mixed strategy equilibrium prediction.  

 

Table 17. Estimated parameters 

 Completely 

mixed strategy 

Inequality 

aversion 

Level-1 Level-2 QRE 

𝜶 ----- 0.0241 ----- ----- ----- 

𝜷 ----- 0.0547 ----- ----- ----- 

𝝁 ----- 25.738** 22.752** 186.228+ 25.781** 

LogL -237.324 -202.188 -205.784 -210.384 -202.351 

AIC 474.648 410.377 413.569 422.767 406.702 

** and + denote significance at the 1% and 10% levels, respectively. 

 

 

6. Conclusion 

We have analyzed a generalized version of an asymmetric VOD game where the cost 

for volunteering is different among players. In this game, there is S-equilibrium where 

a player with less cost contributes more often. S-equilibrium is intuitively appealing, 

and, in fact, it is an efficient outcome. Under certain plausible conditions, S-equilibrium 

is risk dominant for a general n-person game, which was, firstly, proved in this study. 

As many researchers accept the risk dominance concept as an equilibrium selection 

criterion, the plausibility of S-equilibrium is reinforced by that fact. Thus, our first task 

was to closely examine Diekmann’s conjecture which states that when S-equilibrium is 

risk dominant, it is observed more frequently. However, this conjecture was not fully 
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confirmed in both Diekmann’s and our experiments, even though S-equilibrium was 

risk dominant in every session.  

  As for the prediction by the mixed strategy equilibrium, which sometimes contradicts 

with our intuition, if we consider people’s volunteering decision in the time of a natural 

disaster, we can say that it is not an unacceptable prediction. Sometimes a player with 

more cost contributes more often, as the Parable of the Good Samaritan illustrates. 

However, again, it failed in explaining Diekmann’s and our data. 

  Thus, we further analyzed the game with alternative theories including inequality 

aversion, level-k model, and QRE as representative models in behavioral game theory. 

Interestingly, our econometric comparison results show that altruistic motivation 

reflected by the inequality aversion model play no role in explaining the data. Instead, 

QRE best fits the data. In fact, choice probabilities implied by QRE is closer than the 

mixed strategy equilibrium prediction.  

  For two-person games, it is shown that limiting QRE converges to risk dominant 

equilibrium. Thus, for two-person games, the frequency of S-equilibrium is relatively 

higher when S-equilibrium is risk dominant. However, for a general n-person game, 

whether limiting QRE converges to risk dominant equilibrium is unknown. Especially, 

if there are more than two S-players in the game, as in our experiment, the principal 

branch of QRE correspondence bifurcates because there exits at least two symmetric S-

equilibria. Analyzing, theoretically, such complicated nonlinear dynamics is quite 

difficult at this moment. The numerical simulation also shows quite exotic behaviors 

and no convergence. Fortunately, as the best fit parameter of QRE was found before 

the principal branch of QRE correspondence bifurcates, our conclusion is intact, a close 
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examination of limiting QRE in this game requires more elaboration in the future 

research. 
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Appendix A. Proofs 

 

Proof of Proposition 1 

Proof. If some players take completely mixed strategies, then the rest of players choose 

N with probability one in an equilibrium 𝜃 . Thus 0 < 𝑞𝑖 < 1  for any 𝑖 ∈ 𝐶(𝜃) . 

Therefore, 𝐸𝑖(𝐶) = 𝐸𝑖(𝑁) must hold, and we have 

∏ 𝑞𝑗

𝑗≠𝑖

=
𝐾𝑖

𝑉𝑖 − 𝐿𝑖
, 

for any 𝑖 ∈ 𝐶(𝜃). Therefore, we have 

∏ (∏ 𝑞𝑗

𝑗≠𝑖

)

𝑖∈𝐶(𝜃)

= ∏ (
𝐾𝑖

𝑉𝑖 − 𝐿𝑖
)

𝑖∈𝐶(𝜃)

. 

Note that for any player ℎ ∈ 𝐶(𝜃), 𝐶(𝜃) ∖ {ℎ} ≠ ∅ since at least two players belong 

to 𝐶(𝜃). Solving the left-hand side of the above equation for 𝑞ℎ, we have 

∏ (∏ 𝑞𝑗

𝑗≠𝑖

)

𝑖∈𝐶(𝜃)

= (∏ 𝑞𝑗

𝑗≠ℎ

) ∏ (𝑞ℎ ∏ 𝑞𝑗

𝑗≠𝑖,ℎ

)

𝑖∈𝐶(𝜃)∖{ℎ}

= 𝑞ℎ
#𝐶(𝜃)−1 (∏ 𝑞𝑗

𝑗≠ℎ

) ∏ ( ∏ 𝑞𝑗

𝑗≠𝑖,ℎ

)

𝑖∈𝐶(𝜃)∖{ℎ}

= 𝑞ℎ
#𝐶(𝜃)−1 (∏ 𝑞𝑗

𝑗≠ℎ

) (∏ 𝑞𝑗

𝑗≠ℎ

)

#𝐶(𝜃)−2

= 𝑞ℎ
#𝐶(𝜃)−1 (

𝐾ℎ

𝑉ℎ − 𝐿ℎ
)

#𝐶(𝜃)−1

. 

The third equality follows from the fact that 𝑞𝑘 = 1 for any 𝑘 ∉ 𝐶(𝜃). Thus, we have 

equation (1) for any player ℎ ∈ 𝐶(𝜃).  

Q.E.D. 
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Proof of Proposition 2 

Proof. By Proposition1, the probability of choosing N of a W-player, 𝑞𝑊 , in the 

completely mixed strategy equilibrium is given by 

𝑞𝑊 = [(
𝐾𝑠

𝑉𝑠 − 𝐿𝑠
)

𝑚

(
𝑉𝑤 − 𝐿𝑤

𝐾𝑤
)

𝑚−1

]

1
𝑛−1

 

This is always a positive number. Moreover, 1 > 𝑞𝑊 holds by (2) since 

1 > 𝑞𝑊 ⟺ (
𝑉𝑆 − 𝐿𝑆

𝐾𝑆
)

𝑚

> (
𝑉𝑊 − 𝐿𝑊

𝐾𝑊
)

𝑚−1

. 

The probability of choosing N of a S-player, 𝑞𝑆 , in the completely mixed strategy 

equilibrium is given by 

𝑞𝑆 = [(
𝑉𝑆 − 𝐿𝑆

𝐾𝑆
)

𝑛−𝑚−1

(
𝐾𝑊

𝑉𝑊 − 𝐿𝑊
)

𝑛−𝑚

]

1
𝑛−1

. 

This is always a positive number. Moreover,  

1 > 𝑞𝑆 ⟺ (
𝑉𝑊 − 𝐿𝑊

𝐾𝑊
)

𝑛−𝑚

> (
𝑉𝑆 − 𝐿𝑆

𝐾𝑆
)

𝑛−𝑚−1

. 

Thus, 𝑞𝑊  always satisfy 1 > 𝑞𝑊 > 0  and (3) gives the necessary and sufficient 

condition for 1 > 𝑞𝑆 > 0.  

Q.E.D. 

 

Proof of Proposition 3 

Proof. For any S-player 𝑖 with 𝑞𝑖 = 𝑞𝑆(𝑛, 𝑚) in 𝜃′, 

∏ 𝑞𝑗

𝑗≠𝑖

= [(
𝑉𝑆 − 𝐿𝑆

𝐾𝑆
)

𝑛−𝑚−1

(
𝐾𝑊

𝑉𝑊 − 𝐿𝑊
)

𝑛−𝑚

]

𝑚−1
𝑛−1

[(
𝐾𝑆

𝑉𝑆 − 𝐿𝑆
)

𝑚

(
𝑉𝑊 − 𝐿𝑊

𝐾𝑊
)

𝑚−1

]

𝑛−𝑚
𝑛−1

= (
𝐾𝑆

𝑉𝑆 − 𝐿𝑆
). 
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Therefore, 𝐸𝑖(𝐶) = 𝐸𝑖(𝑁).  Similarly, for any W-player 𝑖  with 𝑞𝑖 = 𝑞𝑊(𝑛, 𝑚) in 

𝜃′, 𝐸𝑖(𝐶) = 𝐸𝑖(𝑁). For any player 𝑖 with 𝑞𝑖 = 1 in 𝜃′, 

∏ 𝑞𝑗

𝑗≠𝑖

= [(
𝐾𝑆

𝑉𝑆 − 𝐿𝑆
)

𝑚

(
𝐾𝑊

𝑉𝑊 − 𝐿𝑊
)

𝑛−𝑚

]

1
𝑛−1

. 

Therefore, for any S-player 𝑖 with 𝑞𝑖 = 1 in 𝜃′, 

𝐸𝑖(𝑁) > 𝐸𝑖(𝐶) ⇔ ∏ 𝑞𝑗

𝑗≠𝑖

< (
𝐾𝑆

𝑉𝑆 − 𝐿𝑆
) 

⇔ [(
𝐾𝑆

𝑉𝑆 − 𝐿𝑆
)

𝑚

(
𝐾𝑊

𝑉𝑊 − 𝐿𝑊
)

𝑛−𝑚

]

1
𝑛−1

< (
𝐾𝑆

𝑉𝑆 − 𝐿𝑆
) 

⇔ (
𝑉𝑊 − 𝐿𝑊

𝐾𝑊
)

𝑛−𝑚

> (
𝑉𝑆 − 𝐿𝑆

𝐾𝑆
)

𝑛−𝑚−1

. 

The last inequality is always true by (3) since Θ(𝑛, 𝑚) has the completely mixed 

strategy equilibrium. For any W-player 𝑖 with 𝑞𝑖 = 1 in 𝜃′, 

𝐸𝑖(𝑁) > 𝐸𝑖(𝐶) ⇔ ∏ 𝑞𝑗

𝑗≠𝑖

< (
𝐾𝑊

𝑉𝑊 − 𝐿𝑊
) 

⇔ [(
𝐾𝑆

𝑉𝑆 − 𝐿𝑆
)

𝑚

(
𝐾𝑊

𝑉𝑊 − 𝐿𝑊
)

𝑛−𝑚

]

1
𝑛−1

< (
𝐾𝑊

𝑉𝑊 − 𝐿𝑊
) 

⇔ (
𝑉𝑆 − 𝐿𝑆

𝐾𝑆
)

𝑚

> (
𝑉𝑊 − 𝐿𝑊

𝐾𝑊
)

𝑚−1

. 

The last inequality is always true by (2).  

Q.E.D. 

 

Proof of Proposition 4 

Proof. Suppose that 𝜃 ∈ Θ(𝑛, 𝑚) is the completely mixed strategy equilibrium. Then, 

we have 

ln 𝑞𝑆 =
𝑛 − 𝑚 − 1

𝑛 − 1
ln (

𝑉𝑆 − 𝐿𝑆

𝐾𝑆
) −

𝑛 − 𝑚

𝑛 − 1
ln (

𝑉𝑊 − 𝐿𝑊

𝐾𝑊
) 
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Differentiate both sides by 𝑛, we have 

d𝑞𝑆

d𝑛
=

𝑞𝑆

(𝑛 − 1)2
[𝑚 ln (

𝑉𝑆 − 𝐿𝑆

𝐾𝑆
) − (𝑚 − 1) ln (

𝑉𝑊 − 𝐿𝑊

𝐾𝑊
)] > 0. 

The last inequality follows from the fact that 

𝑉𝑆 − 𝐿𝑆

𝐾𝑆
>

𝑉𝑊 − 𝐿𝑊

𝐾𝑊
> 1. 

On the other hand, differentiate both sides by 𝑚, we have 

d𝑞𝑆

d𝑚
= −

𝑞𝑆

(𝑛 − 1)
[ln (

𝑉𝑆 − 𝐿𝑆

𝐾𝑆
) − ln (

𝑉𝑊 − 𝐿𝑊

𝐾𝑊
)] < 0 

For W-player, we have 

ln 𝑞𝑊 = −
𝑚

𝑛 − 1
ln (

𝑉𝑆 − 𝐿𝑆

𝐾𝑆
) +

𝑚 − 1

𝑛 − 1
ln (

𝑉𝑊 − 𝐿𝑊

𝐾𝑊
) . 

Differentiate both sides by 𝑛, we have 

d𝑞𝑊

d𝑛
=

𝑞𝑊

(𝑛 − 1)2
[𝑚 ln (

𝑉𝑆 − 𝐿𝑆

𝐾𝑆
) − (𝑚 − 1) ln (

𝑉𝑊 − 𝐿𝑊

𝐾𝑊
)] > 0 

On the other hand, differentiate both sides by 𝑚, we have 

d𝑞𝑊

d𝑚
= −

𝑞𝑊

(𝑛 − 1)
[ln (

𝑉𝑆 − 𝐿𝑆

𝐾𝑆
) − ln (

𝑉𝑊 − 𝐿𝑊

𝐾𝑊
)] < 0. 

Q.E.D. 

 

Proof of Proposition 5’ 

Proof. Note that there are 𝑚 S-equilibrium and n − 𝑚 W-equilibrium. For any pair 

(𝑠, 𝑡) where 𝑠 is a S-equilibrium and 𝑡 is a W-equilibrium, 𝑀(𝑠, 𝑡) = {𝑖, 𝑗} where 

𝑖  is a S-player and 𝑗 is a W-player, respectively, and players other than 𝑖  and 𝑗 

choose N in both 𝑠 and 𝑡. Therefore, 𝐺𝑖𝑗(𝑠, 𝑡) is similar to Table 1, and we have  

𝑅∗(𝑠, 𝑡) = 𝑅𝑖𝑗(𝑠, 𝑡) =
𝐾𝑊(𝑉𝑆 − 𝐿𝑆 − 𝐾𝑆)

𝐾𝑆(𝑉𝑊 − 𝐿𝑊 − 𝐾𝑊)
. 

Thus, 𝑅∗(𝑠, 𝑡) > 1 if and only if  
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(
𝑉𝑆 − 𝐿𝑆

𝐾𝑆
) > (

𝑉𝑊 − 𝐿𝑊

𝐾𝑊
). 

Q.E.D. 

 

Proof of Proposition 6 

Proof.  For player 𝑖, let 𝐻(𝑖) be the set of players such that 𝑉𝑗 − 𝐾𝑗 ≥ 𝑉𝑖, 𝐿(𝑖) be 

the set of players such that 𝑉𝑖 − 𝐾𝑖 > 𝑉𝑗 − 𝐾𝑗, and 𝑀(𝑖) be the set of players other 

than 𝑖  such that 𝑉𝑖 > 𝑉𝑗 − 𝐾𝑗 ≥ 𝑉𝑖 − 𝐾𝑖  (the players of same type as 𝑖  belong to 

𝑀(𝑖)). Note that 𝐻(𝑖) ∩ 𝐿(𝑖) = ∅ 𝑎𝑛𝑑 𝐻(𝑖) ∩ 𝑀(𝑖) = ∅ by their definition. Then, if 

all players choose C, the utility of player 𝑖 is given by 

(𝑉𝑖 − 𝐾𝑖) −
𝛼

𝑛 − 1
∑ (𝑉𝑗 − 𝐾𝑗 − 𝑉𝑖 + 𝐾𝑖)

𝑗∈𝐻(𝑖)∪𝑀(𝑖)

−
𝛽

𝑛 − 1
∑ (𝑉𝑖 − 𝐾𝑖 − 𝑉𝑗 + 𝐾𝑗)

𝑗∈𝐿(𝑖)

. 

On the other hand, if player 𝑖 chooses N and the other players choose C, then player 

𝑖’s utility is 

𝑉𝑖 −
𝛼

𝑛 − 1
∑ (𝑉𝑗 − 𝐾𝑗 − 𝑉𝑖)

𝑗∈𝐻(𝑖)

−
𝛽

𝑛 − 1
∑ (𝑉𝑖 − 𝑉𝑗 + 𝐾𝑗)

𝑗∈𝑀(𝑖)∪𝐿(𝑖)

. 

Therefore, if player 𝑖 deviates from All-C, player 𝑖’s utility will increase by 

𝐾𝑖 +
𝛼

𝑛 − 1
∑ {(𝑉𝑗 − 𝐾𝑗 − 𝑉𝑖 + 𝐾𝑖) − (𝑉𝑗 − 𝐾𝑗 − 𝑉𝑖)}

𝑗∈𝐻(𝑖)

+
𝛽

𝑛 − 1
∑ {(𝑉𝑖 − 𝐾𝑖 − 𝑉𝑗 + 𝐾𝑗) − (𝑉𝑖 − 𝑉𝑗 + 𝐾𝑗)}

𝑗∈𝐿(𝑖)

+
𝛼

𝑛 − 1
∑ (𝑉𝑗 − 𝐾𝑗 − 𝑉𝑖 + 𝐾𝑖)

𝑗∈𝑀(𝑖)

−
𝛽

𝑛 − 1
∑ (𝑉𝑖 − 𝑉𝑗 + 𝐾𝑗)

𝑗∈𝑀(𝑖)

. 

If 𝛽 = 0, then the above equation is positive since 𝐾𝑖 > 0 and the other terms are 

nonnegative. Suppose that 𝛽 > 0 and rearrange this equation, we have, 
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𝐾𝑖 (1 −
#𝑀(𝑖)

𝑛 − 1
+

𝛼#𝐻(𝑖)

𝑛 − 1
−

𝛽#𝐿(𝑖)

𝑛 − 1
) +

(1 + 𝛼)#𝑀(𝑖)

𝑛 − 1
𝐾𝑖

−
𝛼 + 𝛽

𝑛 − 1
∑ (𝑉𝑖 − 𝑉𝑗 + 𝐾𝑗)

𝑗∈𝑀(𝑖)

≥ 𝐾𝑖 (1 −
#𝑀(𝑖)

𝑛 − 1
+

𝛽

𝑛 − 1
(#𝐻(𝑖) − #𝐿(𝑖))) +

(1 + 𝛼)#𝑀(𝑖)

𝑛 − 1
𝐾𝑖

−
𝛼 + 1

𝑛 − 1
∑ (𝑉𝑖 − 𝑉𝑗 + 𝐾𝑗)

𝑗∈𝑀(𝑖)

= 𝐾𝑖 (1 −
#𝑀(𝑖)

𝑛 − 1
+

𝛽

𝑛 − 1
(#𝐻(𝑖) − #𝐿(𝑖)))

+
1 + 𝛼

𝑛 − 1
∑ (𝐾𝑖 − 𝑉𝑖 + 𝑉𝑗 − 𝐾𝑗)

𝑗∈𝑀(𝑖)

 

≥ 𝐾𝑖 (1 −
#𝑀(𝑖)

𝑛 − 1
+

𝛽

𝑛 − 1
(#𝐻(𝑖) − #𝐿(𝑖))), 

where #𝐻(𝑖), #𝐿(𝑖), 𝑎𝑛𝑑 #𝑀(𝑖) be the number of their set, respectively. The first 

inequality follows from 𝛽 < 1 and 𝛽 ≤ 𝛼 . The last inequality follows from 𝐾𝑖 −

𝑉𝑖 + 𝑉𝑗 − 𝐾𝑗 ≥ 0 for any 𝑗 ∈ 𝑀(𝑖). Since there are only two types of players, S and 

W, if #𝐻(𝑖) > 0 then #𝐿(𝑖) = 0, and vice versa. Suppose that #𝐻(𝑖) > 0, then the 

last equation is positive since n − 1 ≥ #𝑀(𝑖) and 𝛽 > 0. Suppose that #𝐿(𝑖) > 0, 

then we have 

𝐾𝑖 (1 −
#𝑀(𝑖)

𝑛 − 1
+

𝛽

𝑛 − 1
(#𝐻(𝑖) − #𝐿(𝑖))) = 𝐾𝑖 (1 −

#𝑀(𝑖)

𝑛 − 1
−

𝛽#𝐿(𝑖)

𝑛 − 1
)

> 𝐾𝑖 (1 −
#𝑀(𝑖)

𝑛 − 1
−

#𝐿(𝑖)

𝑛 − 1
) = 𝐾𝑖 (1 −

#𝑀(𝑖) + #𝐿(𝑖)

𝑛 − 1
) ≥ 0, 

 

since 𝛽 < 1 and 𝑛 − 1 ≥ #𝑀(𝑖) + #𝐿(𝑖).  

Q.E.D. 
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Appendix B. 

 

Table B1. Choice probabilities implied by the estimated parameters  

Session  Actual Choice 

frequencies 

Completely 

mixed strategy 

QRE 

A-1 𝑝
𝑆
 0.800 0.600 0.591 

A-1 𝑝
𝑤
 0.400 0.667 0.509 

A-2 𝑝
𝑆
 0.867 0.333 0.703 

A-2 𝑝
𝑤
 0.133 0.667 0.298 

A-3 𝑝
𝑆
 0.333 0.333 0.510 

A-3 𝑝
𝑤
 0.467 0.429 0.399 

B-1 𝑝
𝑆
 0.333 0.503 0.542 

B-1 𝑝
𝑤
 0.542 0.553 0.507 

B-1 𝑝
𝑤
 0.542 0.553 0.507 

B-2 𝑝
𝑆
 0.750 0.106 0.768 

B-2 𝑝
𝑤
 0.375 0.553 0.287 

B-2 𝑝
𝑤
 0.375 0.553 0.287 

B-3 𝑝
𝑆
 0.333 0.307 0.518 

B-3 𝑝
𝑤
 0.458 0.423 0.396 

B-3 𝑝
𝑤
 0.458 0.423 0.396 

C-1 𝑝
𝑆
 0.500 0.529 0.537 

C-1 𝑝
𝑆
 0.500 0.529 0.537 

C-1 𝑝
𝑤
 0.615 0.576 0.487 
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C-2 𝑝
𝑆
 0.538 0.368 0.588 

C-2 𝑝
𝑆
 0.538 0.368 0.588 

C-2 𝑝
𝑤
 0.231 0.684 0.290 

C-3 𝑝
𝑆
 0.450 0.368 0.493 

C-3 𝑝
𝑆
 0.450 0.368 0.493 

C-3 𝑝
𝑤
 0.500 0.473 0.365 

 

Table B2. Raw data 

 

Group Player Choice Group Player Choice 

1 

 

Strong C 9 Strong C 

Weak N Weak N 

2 Strong C 10 Strong C 

Weak C Weak N 

3 

 

Strong C 11 Strong C 

Weak C Weak N 

4 

 

Strong N 12 Strong C 

Weak C Weak C 

5 Strong C 13 Strong C 

Weak N Weak N 

6 Strong N 14 Strong C 

Weak C Weak C 

7 Strong N 15 Strong C 

Weak N Weak N 
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8 Strong C 

Weak N 

(a) Session A-1 

 

Group Player Choice Group Player Choice 

1 

 

Strong C 9 Strong C 

Weak C Weak N 

2 Strong C 10 Strong C 

Weak N Weak C 

3 

 

Strong N 11 Strong N 

Weak N Weak N 

4 

 

Strong C 12 Strong C 

Weak N Weak N 

5 Strong C 13 Strong C 

Weak N Weak N 

6 Strong C 14 Strong C 

Weak N Weak N 

7 Strong C 15 Strong C 

Weak N Weak N 

8 Strong C 

Weak N 

(b) Session A-2 

 

Group Player Choice Group Player Choice 

1 Strong C 9 Strong C 
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 Weak C Weak C 

2 Strong N 10 Strong N 

Weak N Weak N 

3 

 

Strong N 11 Strong N 

Weak N Weak C 

4 

 

Strong C 12 Strong C 

Weak N Weak C 

5 Strong C 13 Strong N 

Weak N Weak N 

6 Strong N 14 Strong N 

Weak N Weak C 

7 Strong N 15 Strong N 

Weak C Weak C 

8 Strong N 

Weak N 

(c) Session A-3 

 

Group Player Choice Group Player Choice 

1 

 

Strong N 7 Strong N 

Weak N Weak C 

Weak C Weak C 

2 Strong N 8 Strong C 

Weak C Weak N 

Weak C Weak N 
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3 

 

Strong N 9 Strong N 

Weak N Weak N 

Weak N Weak N 

4 

 

Strong C 10 Strong C 

Weak C Weak N 

Weak N Weak C 

5 Strong N 11 Strong N 

Weak C Weak C 

Weak C Weak N 

6 Strong C 12 Strong N 

Weak C Weak N 

Weak N Weak C 

(d) Session B-1 

 

Group Player Choice Group Player Choice 

1 

 

Strong N 7 Strong C 

Weak N Weak C 

Weak N Weak C 

2 Strong N 8 Strong C 

Weak C Weak N 

Weak C Weak C 

3 

 

Strong C 9 Strong C 

Weak N Weak N 

Weak N Weak C 
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4 

 

Strong N 10 Strong C 

Weak N Weak N 

Weak C Weak N 

5 Strong C 11 Strong C 

Weak C Weak N 

Weak C Weak N 

6 Strong C 12 Strong C 

Weak N Weak N 

Weak N Weak N 

(e) Session B-2 

 

Group Player Choice Group Player Choice 

1 

 

Strong C 7 Strong N 

Weak C Weak N 

Weak C Weak C 

2 Strong N 8 Strong N 

Weak N Weak C 

Weak C Weak C 

3 

 

Strong C 9 Strong N 

Weak C Weak N 

Weak N Weak N 

4 

 

Strong N 10 Strong N 

Weak C Weak N 

Weak N Weak N 
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5 Strong C 11 Strong C 

Weak N Weak N 

Weak N Weak C 

6 Strong N 12 Strong N 

Weak C Weak N 

Weak C Weak N 

(f) Session B-3 

 

Group Player Choice Group Player Choice 

1 

 

Strong N 8 Strong N 

Strong N Strong C 

Weak C Weak C 

2 Strong N 9 Strong C 

Strong N Strong C 

Weak N Weak C 

3 

 

Strong C 10 Strong C 

Strong N Strong N 

Weak C Weak N 

4 

 

Strong C 11 Strong C 

Strong C Strong N 

Weak N Weak N 

5 Strong N 12 Strong C 

Strong C Strong C 

Weak C Weak C 
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6 Strong C 13 Strong N 

Strong C Strong N 

Weak N Weak C 

7 Strong N 

Strong C 

Weak C 

(g) Session C-1 

 

Group Player Choice Group Player Choice 

1 

 

Strong N 8 Strong C 

Strong N Strong C 

Weak C Weak N 

2 Strong C 9 Strong C 

Strong C Strong C 

Weak N Weak C 

3 

 

Strong C 10 Strong N 

Strong N Strong N 

Weak N Weak C 

4 

 

Strong C 11 Strong N 

Strong C Strong C 

Weak N Weak N 

5 Strong N 12 Strong N 

Strong C Strong C 

Weak N Weak N 
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6 Strong C 13 Strong N 

Strong C Strong N 

Weak N Weak N 

7 Strong N 

Strong N 

Weak N 

(h)Session C-2 

 

Group Player Choice Group Player Choice 

1 

 

Strong N 6 Strong N 

Strong N Strong N 

Weak N Weak C 

2 Strong N 7 Strong C 

Strong C Strong C 

Weak C Weak C 

3 

 

Strong C 8 Strong C 

Strong N Strong N 

Weak N Weak N 

4 

 

Strong N 9 Strong N 

Strong C Strong N 

Weak C Weak C 

5 Strong C 10 Strong C 

Strong C Strong N 

Weak N Weak N 
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(i) Session C-3 

Appendix C. Instructions (originally in Japanese) 

 

Session A-1: Instructions 

In this experiment, you are paired with another player and make a decision. 

Pairing is randomly determined and you are not informed of whom you are paired 

with during and after the experiment. 

Your role in the experiment is either X or Y, which is randomly determined. 

As a result, there are a player whose role is X and a player whose role is Y in each 

pair. 

Please check in the recording sheet about which role do you play in the experiment. 

In the experiment, each player in a pair chooses option A or B 

simultaneously and independently. If a player X chooses A, he/she has to pay 200 

JPY. If a player Y chooses A, he/she has to pay 400 JPY. If each player chooses B, no 

one needs to pay anything. 

Depending on the number of players who chose A, each player's payoff is 

determined by the following table. 

 

Payoff table 

 # of player who chose 

A other than you 

0 1 

Player X Option A 400 400 

Option B 0 600 

Player Y Option A 600 600 
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Option B 0 1000 

 

Thus, if one member in your pair chooses A, a player X gains 600 JPY and a player Y 

1000 JPY. Please note that if your role is X and choose A, as you have to pay 200 

JPY, your payoff becomes 400 JPY and that if your role is Y and choose A, as you 

have to pay 400 JPY, your payoff becomes 600 JPY. 

If no one chooses A including yourself, each player gains nothing. 

Then, once you decide your choice, draw a circle on A or B in the recording 

sheet. After everyone’s choice is made, experimenters collect your recording sheet. 

If this is your first experiment today, please wait for a while for next 

experiment. Your outcome in the experiment is not informed before all the 

experiments ends. If this is your second experiment today, we sum up your outcomes 

in both experiments and pay the total to you in cash. 

Session A-1: Recording sheet 

 

Your identity：Pair (    ) Role (    )  Player (    )    

 

Payoff table 

 # of player who chose 

A other than you 

0 1 

Player X Option A 400 400 

Option B 0 600 

Player Y Option A 600 600 

Option B 0 1000 
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Your choice A or  B 

 

 

Session B-1: Instructions 

In this experiment, you are paired with other two players and make a decision. 

Pairing is randomly determined and you are not informed of whom you are paired 

with during and after the experiment. 

Your role in the experiment is either X or Y, which is randomly determined. 

As a result, there are a player whose role is X and two players whose role are Y in 

each group. Please check in the recording sheet about which role do you play in the 

experiment. 

In the experiment, each player in a group chooses option A or B 

simultaneously and independently. If a player X chooses A, he/she has to pay 200 

JPY. If a player Y chooses A, he/she has to pay 400 JPY. If each player chooses B, no 

one needs to pay anything. 

Depending on the number of players who chose A, each player's payoff is 

determined by the following table. 

 

Payoff table 

 # of player who 

chose A other 

than you 

0 1 2 
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Player X Option A 800 800 800 

Option B 0 1000 1000 

Player Y Option A 1400 1400 1400 

Option B 0 1800 1800 

 

Thus, if one member in your group chooses A, a player X gains 1000 JPY and a 

player Y 1800 JPY. Please note that if your role is X and choose A, as you have to 

pay 200 JPY, your payoff becomes 800 JPY and that if your role is Y and choose A, 

as you have to pay 400 JPY, your payoff becomes 1400 JPY. 

If no one chooses A including yourself, each player gains nothing. 

Then, once you decide your choice, draw a circle on A or B in the recording 

sheet. After everyone’s choice is made, experimenters collect your recording sheet. 

If this is your first experiment today, please wait for a while for next 

experiment. Your outcome in the experiment is not informed before all the 

experiments ends. If this is your second experiment today, we sum up your outcomes 

in both experiments and pay the total to you in cash. 

Session B-1: Recording sheet 

 

Your identity：Pair (    ) Role (    )  Player (    )    

 

Payoff table 

 # of player who 

chose A other 

than you 

0 1 2 
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Player X Option A 800 800 800 

Option B 0 1000 1000 

Player Y Option A 1400 1400 1400 

Option B 0 1800 1800 

 

 

Your choice A or  B 
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